|
import os |
|
|
|
from trainer import Trainer, TrainerArgs |
|
|
|
from TTS.utils.audio import AudioProcessor |
|
from TTS.vocoder.configs import WavernnConfig |
|
from TTS.vocoder.datasets.preprocess import load_wav_data |
|
from TTS.vocoder.models.wavernn import Wavernn |
|
from TTS.config.shared_configs import BaseAudioConfig |
|
from TTS.tts.configs.shared_configs import BaseDatasetConfig , CharactersConfig |
|
from TTS.tts.datasets import load_tts_samples |
|
|
|
|
|
|
|
|
|
output_path = os.path.dirname(os.path.abspath(__file__)) |
|
dataset_config = BaseDatasetConfig( |
|
formatter="mozilla", meta_file_train="metadata.csv", path="/kaggle/input/persian-tts-dataset-famale" |
|
) |
|
audio_config = BaseAudioConfig( |
|
sample_rate=24000, |
|
do_trim_silence=True, |
|
resample=False, |
|
mel_fmin=95, |
|
mel_fmax=8000.0, |
|
|
|
|
|
) |
|
|
|
config = WavernnConfig( |
|
batch_size=64, |
|
eval_batch_size=16, |
|
num_loader_workers=1, |
|
num_eval_loader_workers=1, |
|
run_eval=True, |
|
test_delay_epochs=-1, |
|
epochs=1000, |
|
seq_len=1280, |
|
pad_short=2000, |
|
use_noise_augment=False, |
|
save_step=1000, |
|
eval_split_size=10, |
|
print_step=25, |
|
print_eval=True, |
|
mixed_precision=False, |
|
lr=1e-4, |
|
data_path="/kaggle/input/persian-tts-dataset-famale/wavs/", |
|
output_path=output_path, |
|
audio=audio_config, |
|
|
|
) |
|
|
|
|
|
ap = AudioProcessor(**config.audio.to_dict()) |
|
|
|
|
|
eval_samples, train_samples = load_wav_data(config.data_path, config.eval_split_size) |
|
|
|
|
|
model = Wavernn(config) |
|
|
|
|
|
trainer = Trainer( |
|
TrainerArgs(), |
|
config, |
|
output_path, |
|
model=model, |
|
train_samples=train_samples, |
|
eval_samples=eval_samples, |
|
training_assets={"audio_processor": ap}, |
|
) |
|
trainer.fit() |
|
|