Update README.md
Browse files
README.md
CHANGED
@@ -2,4 +2,62 @@
|
|
2 |
license: mit
|
3 |
language:
|
4 |
- en
|
5 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: mit
|
3 |
language:
|
4 |
- en
|
5 |
+
---
|
6 |
+
|
7 |
+
|
8 |
+
```python
|
9 |
+
import torch
|
10 |
+
from torch.utils.data import DataLoader, Dataset
|
11 |
+
from transformers import RobertaTokenizer, RobertaForSequenceClassification, AdamW
|
12 |
+
from sklearn.model_selection import train_test_split
|
13 |
+
import pandas as pd
|
14 |
+
|
15 |
+
# Load the tokenizer
|
16 |
+
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
17 |
+
|
18 |
+
# Load RoBERTa pre-trained model
|
19 |
+
model = RobertaForSequenceClassification.from_pretrained('roberta-base', num_labels=2)
|
20 |
+
model = model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
```
|
26 |
+
|
27 |
+
```python
|
28 |
+
|
29 |
+
def predict_description(model, tokenizer, text, max_length=512):
|
30 |
+
model.eval() # Set the model to evaluation mode
|
31 |
+
|
32 |
+
# Ensure model is on the correct device
|
33 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
34 |
+
model = model.to(device)
|
35 |
+
|
36 |
+
# Encode the input text
|
37 |
+
inputs = tokenizer.encode_plus(
|
38 |
+
text,
|
39 |
+
None,
|
40 |
+
add_special_tokens=True,
|
41 |
+
max_length=max_length,
|
42 |
+
padding='max_length',
|
43 |
+
return_token_type_ids=False,
|
44 |
+
return_tensors='pt',
|
45 |
+
truncation=True
|
46 |
+
)
|
47 |
+
|
48 |
+
# Move tensors to the correct device
|
49 |
+
inputs = {key: value.to(device) for key, value in inputs.items()}
|
50 |
+
|
51 |
+
# Make prediction
|
52 |
+
with torch.no_grad():
|
53 |
+
outputs = model(**inputs)
|
54 |
+
logits = outputs.logits
|
55 |
+
probabilities = torch.softmax(logits, dim=-1)
|
56 |
+
predicted_class_id = torch.argmax(probabilities, dim=-1).item()
|
57 |
+
|
58 |
+
return predicted_class_id
|
59 |
+
|
60 |
+
|
61 |
+
(['INCIDENT', 'REQUEST'])[predict_description(model, tokenizer, """My ID card is not being detected.""")]
|
62 |
+
|
63 |
+
```
|