KaiquanMah
commited on
Commit
·
3ae2c86
1
Parent(s):
e1028d5
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +16 -16
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 241.50 +/- 16.16
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f56087995a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5608799630>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f56087996c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5608799750>", "_build": "<function ActorCriticPolicy._build at 0x7f56087997e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5608799870>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5608799900>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5608799990>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5608799a20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5608799ab0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5608799b40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5608799bd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5608795e40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685177993920679854, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA34K77byaC8z22vuS8XTbg0UQs+kKz/OAAAgD8AAIA/zYwkO1z7Irq3FLE7Dl4BONnn9rkIZo62AACAPwAAgD8a2J499ih0ui82IDppmwc1J/YRuz5bO7kAAIA/AACAPzO3zDyUQ0o/xjHmOwrXjr5EPGE8S9XcvAAAAAAAAAAAM2lSvEjLtbpzvak572XdsyElLjrcl8G4AACAPwAAgD+AWEG99iRgutoZUjhrawgzGnnBuvYodbcAAIA/AACAP8Bp6T0El1M/HUdZO5fL1b41WQs9Ylz6ugAAAAAAAAAAmgi/vdKh07shh8E6LZSNPP22Mj37/269AAAAAAAAgD+aw308j94BuqaNQbsTOUw3P1YYOnVEMDoAAIA/AACAPzMP8rtIoZG636K7O7peTjbkEQs7oSpDNQAAgD8AAIA/Zt5SO645jLqIyMk3aa2dMtJyWzrjHuq2AACAPwAAgD+Ao8O9KfA1utuCILrzpki1A8IFOmZGNjkAAIA/AACAP81MpLlI14K6Kt9HunqVNbX4iSW6wy9pOQAAgD8AAIA/MwjqPIXjtbnGbY25Ei6CtJ3t1DrXc6U4AACAPwAAgD8apdW9XIM3unqX/jqr59O2VU1Su0yZE7oAAIA/AACAPxpFOT1IH6S6YIlsu7FaTjbmSe650PWHOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGHy05dWyTqMAWyUTegDjAF0lEdAk17N1ZDArXV9lChoBkdAYsXX18LKFWgHTegDaAhHQJNuXYjB2wF1fZQoaAZHQGHV9si0OVhoB03oA2gIR0CTdQhPCVKPdX2UKGgGR0BhqpreqJdjaAdN6ANoCEdAk3gLWd3B6HV9lChoBkdAYY0ZccENfGgHTegDaAhHQJN6rPmgam51fZQoaAZHQGXce+M6zVtoB03oA2gIR0CTgpctoSL7dX2UKGgGR0BlJXRPXTVlaAdN6ANoCEdAk4W2Cdz4lHV9lChoBkdAYcG53kgfVGgHTegDaAhHQJOhwPatcOd1fZQoaAZHQGcZGf5DZ15oB03oA2gIR0CTowXyAhB7dX2UKGgGR0BwIhJNCZ4OaAdNcAFoCEdAk6QA9aEBbXV9lChoBkdAZU6zImw7kmgHTegDaAhHQJOmm46Oo5x1fZQoaAZHQGMyu58Sf19oB03oA2gIR0CTqO4oqkM1dX2UKGgGR0Bnwln/T9bYaAdN6ANoCEdAk6uMgyM1j3V9lChoBkdAXdg8fV7QcGgHTegDaAhHQJOzYMnZ00Z1fZQoaAZHQGIltCqp97ZoB03oA2gIR0CTtXJJ5E+gdX2UKGgGR0Bhom+h4+r3aAdN6ANoCEdAk7X7jDKoynV9lChoBkdAR1nXK8tf5WgHTTIBaAhHQJO7F3HJcPh1fZQoaAZHQF6LiA2AG0NoB03oA2gIR0CTu73nIQvpdX2UKGgGR0Bk5QMtsenyaAdN6ANoCEdAk7xcbBGhEnV9lChoBkdAZWB3HJcPfGgHTegDaAhHQJPF8Wznied1fZQoaAZHQF/cfyf+S8toB03oA2gIR0CTycZPEbYLdX2UKGgGR0BmLJVsDW9UaAdN6ANoCEdAk84lx4ptrXV9lChoBkdAYbnX9zfaYmgHTegDaAhHQJPUuYKIBR11fZQoaAZHQGVCJ5mh/RVoB03oA2gIR0CT14S26TW5dX2UKGgGR0BfrD81n/T9aAdN6ANoCEdAk+MAIhQm/nV9lChoBkdAYHuuuA7Pp2gHTegDaAhHQJP2p4fOlft1fZQoaAZHQF5kkcjqv/1oB03oA2gIR0CT9027Wd3CdX2UKGgGR0BhQoe7tiQUaAdN6ANoCEdAk/rYt+TePHV9lChoBkdAYRJylvZRK2gHTegDaAhHQJP8mo2n8891fZQoaAZHQGFVOKO1fE5oB03oA2gIR0CUApVe8f3fdX2UKGgGR0Bk7v7tRekYaAdN6ANoCEdAlASilFc6eXV9lChoBkdAYirgZ0jkdWgHTegDaAhHQJQFNmqYJE91fZQoaAZHQGccJBHCoCNoB03oA2gIR0CUChUL2HtXdX2UKGgGR0Bh2C9sabWmaAdN6ANoCEdAlAqvXbuc+nV9lChoBkdAY6E4z7/GVGgHTegDaAhHQJQLOv8qFyt1fZQoaAZHQDbnL4etCAtoB0vjaAhHQJQQ4BCD28J1fZQoaAZHQGQ8ho/RmbtoB03oA2gIR0CUFD0dRzikdX2UKGgGR0BnFSA+Y+jeaAdN6ANoCEdAlBm3aFmFrXV9lChoBkdAcSHmaH9FWmgHTSoCaAhHQJQbxPwd8zB1fZQoaAZHQF2OqbBoEjhoB03oA2gIR0CUIDRuCPIXdX2UKGgGR0Bly+w3YL9daAdN6ANoCEdAlCmZs9B8hXV9lChoBkdAX2VfBvaURmgHTegDaAhHQJQsmGpMpPR1fZQoaAZHQGSjGLcbiqBoB03oA2gIR0CUNhUmD15CdX2UKGgGR0BiLcTN+so2aAdN6ANoCEdAlDbs9wFTvXV9lChoBkdAYho05U96kmgHTegDaAhHQJQ3mcRUWEd1fZQoaAZHQGaqhz3h4t9oB03oA2gIR0CUTcVXFLnLdX2UKGgGR0BjugNAkcCHaAdN6ANoCEdAlFZHtnf2snV9lChoBkdAUa0FQl8gIWgHS/VoCEdAlFgkMXrMT3V9lChoBkdAZ+reBxxT9GgHTegDaAhHQJRal0xM3611fZQoaAZHQHGYWGIsRQJoB030AmgIR0CUXXF4s3AEdX2UKGgGR0BjZ9/OMVDbaAdN6ANoCEdAlGJMCT2WZHV9lChoBkdAY7uOOsDGLmgHTegDaAhHQJRjNBC2MKl1fZQoaAZHQEIhd9Dx9XtoB00FAWgIR0CUY7BoEjgRdX2UKGgGR0BwQGSTyJ9BaAdN4wNoCEdAlGOpmEoOQXV9lChoBkdAZWE1YyO7x2gHTegDaAhHQJRpolOXVsl1fZQoaAZHQHDNHzH0btJoB00PAmgIR0CUbAGfwqiHdX2UKGgGR0A4OmHxjJ+2aAdL6GgIR0CUbsCCz1K5dX2UKGgGR0BTEdo8IRh+aAdL5mgIR0CUb30q6OHWdX2UKGgGR0Bons/hVENOaAdN6ANoCEdAlG/Er5IpY3V9lChoBkdAZ2sdaMaS92gHTegDaAhHQJRxDJKaodd1fZQoaAZHQGIO2B8QZoBoB03oA2gIR0CUc8/Aj6eodX2UKGgGR0Bg2cE5hjOLaAdN6ANoCEdAlHnCQgcLjXV9lChoBkdAZbhwG4ZuRGgHTegDaAhHQJR8ev0RODd1fZQoaAZHQGDWcDbJwKloB03oA2gIR0CUhqE+xGDudX2UKGgGR0Bwf1TFVDKHaAdNFwJoCEdAlKL+NgjQiXV9lChoBkdAYXL8BuGbkWgHTegDaAhHQJSpFke6qbV1fZQoaAZHQHA/aArhBJJoB00nAmgIR0CUqjjZtelbdX2UKGgGR0BkiKxgRbr1aAdN6ANoCEdAlKpLEcbR4XV9lChoBkdAZV37Qb+98WgHTegDaAhHQJSr29cry2B1fZQoaAZHQGcIctPHktFoB03oA2gIR0CUrZX6ZYxMdX2UKGgGR0BvvX8wYcebaAdNPgFoCEdAlK99H2AXmHV9lChoBkdAX4ZNwiqyW2gHTegDaAhHQJSxHUb1h9d1fZQoaAZHQGVtQ2uPmxNoB03oA2gIR0CUsX+De0ojdX2UKGgGR0BvKaLIgeRxaAdNvwNoCEdAlLSzBqKxcHV9lChoBkdAX6SQjlgc+GgHTegDaAhHQJS5LWuoxYd1fZQoaAZHQGUfk1VHWjJoB03oA2gIR0CUvVjJuEVWdX2UKGgGR0Be/0tmL9/CaAdN6ANoCEdAlL2qhpQDWHV9lChoBkdAY+0se4kNWmgHTegDaAhHQJS/JGrjo6l1fZQoaAZHQGGBB8IAwPBoB03oA2gIR0CUyrL7XQMQdX2UKGgGR0BkJB9ZzPrwaAdN6ANoCEdAlM8o33pOe3V9lChoBkdAcf02jfvWpmgHTd0CaAhHQJTfJ+/gzgx1fZQoaAZHQFYhxWkrPMVoB03oA2gIR0CU/IDdP+GXdX2UKGgGR0BjtCf8MuvmaAdN6ANoCEdAlQNIZ/CqInV9lChoBkdAY1VHavicXmgHTegDaAhHQJUEj/xUedV1fZQoaAZHQGa9ll05lvtoB03oA2gIR0CVBKKl54W2dX2UKGgGR0BnFlLlFMIvaAdN6ANoCEdAlQg7iQ1aXHV9lChoBkdAYgu2rn1WbWgHTegDaAhHQJUKbPqs2eh1fZQoaAZHQF55o3aSLZVoB03oA2gIR0CVDErsByS3dX2UKGgGR0BlBOM2m52AaAdN6ANoCEdAlQykOAiFCnV9lChoBkdAZZZcCYCyQmgHTegDaAhHQJURefI0ZWJ1fZQoaAZHQG7rQyZa3ZxoB01YAmgIR0CVEdEaVD8cdX2UKGgGR0BiPuQGOdXlaAdN6ANoCEdAlRekA5q/NHV9lChoBkdAY00dupCKJmgHTegDaAhHQJUdMvysjml1fZQoaAZHQGWKJLM9r45oB03oA2gIR0CVHZv3JxNqdX2UKGgGR0BhZ0CkoF3ZaAdN6ANoCEdAlR+dcnmaIHV9lChoBkdAcE4BikO7QWgHTYsBaAhHQJUnPnA6+391fZQoaAZHQGaSM7MgU11oB03oA2gIR0CVKXz/p+tsdX2UKGgGR0BtY3QdCE6DaAdNOwJoCEdAlSn2NJe3QXV9lChoBkdAZ4FdY4hllWgHTegDaAhHQJU2L9Hc1wZ1fZQoaAZHQHF3Ap8WsRxoB02eAWgIR0CVN0/CqIacdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7bd3d1b1c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7bd3d1b250>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7bd3d1b2e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7bd3d1b370>", "_build": "<function ActorCriticPolicy._build at 0x7f7bd3d1b400>", "forward": "<function ActorCriticPolicy.forward at 0x7f7bd3d1b490>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7bd3d1b520>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7bd3d1b5b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7bd3d1b640>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7bd3d1b6d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7bd3d1b760>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7bd3d1b7f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7bd3d20f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685180529936139607, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPqoHj42fQ28dtkVO/mq87gmFWS9gE45ugAAgD8AAIA/zT59PTRSjT5Q/fq9bwx1vpAKlL0ElgG9AAAAAAAAAABmTkE7cYptu59QuzuFyps8BdqNvNQKhT0AAIA/AACAPxrpv732rCC6MoUuuw2M9rXG2pA6P5NMOgAAgD8AAIA/motlPUhvq7q/7je85w7vNia3ujg2g1W2AACAPwAAgD8gP0E+vVo8PKu7Gzs7piw5x7zPPUcQProAAIA/AACAPw1kTT5Clow/CHdCP9+h774pHwq94uaQPQAAAAAAAAAAAAOTvOEAqLoj4tM5eYWltY77hTrdrPK4AACAPwAAgD/aP52+9NEcP4Mnoj1ZcaO+b8Z3veq8ij0AAAAAAAAAADOCSb213q8/mYgWv8XJmL40uXI89oWhvQAAAAAAAAAA8+aNvbI6uT9eXuK+5+OhvaVGqLwK+869AAAAAAAAAADzixm+mNujPu2piD5Rq4i+SUOjPRiWhT0AAAAAAAAAADMgWD3XhEs/0o0uvVoQh77CuyQ8XX3UugAAAAAAAAAAc3ypvRR+g7oqbnc7JfuWNtZyGDszYo66AACAPwAAgD8G2Wi+DMSPP7NvVb4ZLdW+ocs6vvV0RD0AAAAAAAAAAM3/Lj241o25SuaKOV5GQzNWd6K6KoukuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGLDdTxXnyOMAWyUTegDjAF0lEdAkLrvgJkXlHV9lChoBkdAZah2nsLORmgHTegDaAhHQJC7JZGKAJ91fZQoaAZHQGQlJ9iMHbBoB03oA2gIR0CQwB2sq8UVdX2UKGgGR0BkK1lum78OaAdN6ANoCEdAkMB4QFs54nV9lChoBkdAYl+q9XcQAmgHTegDaAhHQJDDYWDYh+x1fZQoaAZHQGYyUXP7el9oB03oA2gIR0CQxNR7qptKdX2UKGgGR0BmVBCjUNKAaAdN6ANoCEdAkMaDJ6po9XV9lChoBkdAZ4E5wOvt+mgHTegDaAhHQJDb34VRDTl1fZQoaAZHQGJmpN0vGqBoB03oA2gIR0CQ33rKNhmYdX2UKGgGR0BiMhHkLhJiaAdN6ANoCEdAkOJ+C04R3HV9lChoBkdARclM23rleWgHTRcBaAhHQJDjTub7TDx1fZQoaAZHQGK3CIcinpBoB03oA2gIR0CQ6b4ACGN8dX2UKGgGR0BHj6dDpkf+aAdL+WgIR0CQ8SV4oqkNdX2UKGgGR0Bg1c7nxJ/YaAdN6ANoCEdAkPIXA6+36XV9lChoBkdAYn6gg5imVWgHTegDaAhHQJD0wG8mKIl1fZQoaAZHQGU64BvJiiJoB03oA2gIR0CQ+zmw7kn1dX2UKGgGR0BhzagkC3gDaAdN6ANoCEdAkQBmyC4Bm3V9lChoBkdATgT6guh9LGgHS/poCEdAkQLRyXD3unV9lChoBkdAY5LaufVZtGgHTegDaAhHQJELG+Cbtqp1fZQoaAZHQGLK/gaWHDdoB03oA2gIR0CRC6MUAT7EdX2UKGgGR0BmtYoCuEElaAdN6ANoCEdAkQveEAYHgXV9lChoBkdAZSWVXV9WqGgHTegDaAhHQJETr3bmEGt1fZQoaAZHQGAZg7xNIsloB03oA2gIR0CRGERGtp22dX2UKGgGR0BingbXHzYmaAdN6ANoCEdAkRqxIOH313V9lChoBkdAXo1UbT+efGgHTegDaAhHQJEdfEHdGiJ1fZQoaAZHQF8NZOi35N5oB03oA2gIR0CRISdYGMXKdX2UKGgGR0BhWz2criEQaAdN6ANoCEdAkTPTWK/EfnV9lChoBkdAYuVDrJKaomgHTegDaAhHQJE2tbQkX1t1fZQoaAZHQDPSFxn3+MtoB0vjaAhHQJE3GDmKZUl1fZQoaAZHQGN0sNlRP45oB03oA2gIR0CRPa3kPtladX2UKGgGR0BkFbi2lVLjaAdN6ANoCEdAkUU+avzOHHV9lChoBkdAYztUgjhUBGgHTegDaAhHQJFJtpj+aSd1fZQoaAZHQGWQoJJGvwFoB03oA2gIR0CRUq76pHZsdX2UKGgGR0BjWJEv0yxiaAdN6ANoCEdAkVmNZmqYJHV9lChoBkdAZsCGfwqiGmgHTegDaAhHQJFbzTTfBN51fZQoaAZHQGL1vU8V58loB03oA2gIR0CRYz4M4LkTdX2UKGgGR0Bj1nGwRoRJaAdN6ANoCEdAkWPDYEnss3V9lChoBkdAZiUmtQsPKGgHTegDaAhHQJFj+dkJ8fF1fZQoaAZHQGBbUf5k9U1oB03oA2gIR0CRaYaWom5UdX2UKGgGR0BjYfsw+MZQaAdN6ANoCEdAkW5QZsKsuHV9lChoBkdAY3Hu63AmA2gHTegDaAhHQJFwSois4kx1fZQoaAZHQGEWfvWpZOloB03oA2gIR0CRc5a4MF2WdX2UKGgGR0BnT6WqtHQQaAdN6ANoCEdAkYen/cWTHXV9lChoBkdAYFrtnf2saWgHTegDaAhHQJGLlLf1pTN1fZQoaAZHQGN4vSDyvs9oB03oA2gIR0CRjCF+NLlFdX2UKGgGR0BiTlLL6k6+aAdN6ANoCEdAkZQP+fh/AnV9lChoBkdAY2+wqy4WlGgHTegDaAhHQJGat67dzn11fZQoaAZHQGLlSC4BmwtoB03oA2gIR0CRngX2ugYhdX2UKGgGR0BkuS7ZnL7oaAdN6ANoCEdAkaQTHS4OMHV9lChoBkdAZB6EtdzGP2gHTegDaAhHQJGoi+bmU4d1fZQoaAZHQGPg7VJ+UhVoB03oA2gIR0CRqqUuctoSdX2UKGgGR0A3pvcJtzjnaAdL52gIR0CRq9cslLOBdX2UKGgGR0BcNob0e2d/aAdN6ANoCEdAkbFA/LTx5XV9lChoBkdAYbi/+sHSnmgHTegDaAhHQJGxtFa0Qbx1fZQoaAZHQGK/ICuEEkloB03oA2gIR0CRseXfIjnndX2UKGgGR0Bkm1N+LFXJaAdN6ANoCEdAkba1schkiHV9lChoBke/96J53Tuv2WgHTQUBaAhHQJG4rqJMxoJ1fZQoaAZHQGQ1Xx4IKMNoB03oA2gIR0CRu0Lyc0+DdX2UKGgGR0BftksFt8/maAdN6ANoCEdAkb3QVbiZOXV9lChoBkdAOVnWz4UN8WgHS91oCEdAkb6cGLUCrHV9lChoBkdAXpjJ+2E0zmgHTegDaAhHQJHCHMlkYoB1fZQoaAZHQGI03DFZPmBoB03oA2gIR0CRxZhIOH32dX2UKGgGR0BhqOo99tuUaAdN6ANoCEdAkdrJul41P3V9lChoBkdAYLYd4mkWRGgHTegDaAhHQJHbJaQmu1Z1fZQoaAZHQD6PgHeJpFloB0vlaAhHQJHcfCk43m51fZQoaAZHQGK2DFyaNMpoB03oA2gIR0CR4FAHmig1dX2UKGgGR0BldT4i5d4WaAdN6ANoCEdAkeZZckdFOXV9lChoBkdARLgYR/ViF2gHS+poCEdAkegc45tFa3V9lChoBkdAXebSWqtHQWgHTegDaAhHQJHuyhVU+9t1fZQoaAZHQGSP87yQPqdoB03oA2gIR0CR8u9Oh0yQdX2UKGgGR0Bhf7XrdFfBaAdN6ANoCEdAkfZNIXj2jHV9lChoBkdAZfTU+9rXUmgHTegDaAhHQJH9+piqhlF1fZQoaAZHQGE332mHgxdoB03oA2gIR0CR/uV8kUsWdX2UKGgGR0BjbZUJfICEaAdN6ANoCEdAkgYSCvovBnV9lChoBkdAR3POW0JF9mgHS+5oCEdAkgiUcwQDm3V9lChoBkdAXmGYKIBRymgHTegDaAhHQJIIp0CA+ZB1fZQoaAZHQGXnPy9VWCFoB03oA2gIR0CSDK1a4c3mdX2UKGgGR0BmqHCGetjkaAdN6ANoCEdAkg0vybx3FHV9lChoBkdAYeUf9xZMc2gHTegDaAhHQJIPfRG+bmV1fZQoaAZHQDOXkRzzVc5oB00aAWgIR0CSD6Uh3aBadX2UKGgGR0BlalYhdMTOaAdN6ANoCEdAkhF+vIOpbXV9lChoBkdAT9b+Lm6oVGgHTQYBaAhHQJITShBZ6ld1fZQoaAZHQFwcYyO7xutoB03oA2gIR0CSI7CE6DGtdX2UKGgGR0Bm6udkJ8fFaAdN6ANoCEdAkiP6asp5NXV9lChoBkdAQXMH4XXRPWgHTRIBaAhHQJIlJOnEVFh1fZQoaAZHQGSMfQrtmcxoB03oA2gIR0CSKMQb+98JdX2UKGgGR0BiFH++/QBxaAdN6ANoCEdAkjBvmgam43V9lChoBkdAYEyFgUlAvGgHTegDaAhHQJIzwRzzVc51fZQoaAZHQGHZm1x82JloB03oA2gIR0CSQGDh99c9dX2UKGgGR0Bk+fG0eEIxaAdN6ANoCEdAkkdxAGB4EHV9lChoBkdAZbcmlZX+2mgHTegDaAhHQJJTikM1CPZ1fZQoaAZHQGTnJDE3sHBoB03oA2gIR0CSW5vy9VWCdX2UKGgGR0BkcBaHKwIMaAdN6ANoCEdAkmA4X0oSc3V9lChoBkdAYt1P8AJb+2gHTegDaAhHQJJg2cDr7fp1fZQoaAZHQGLPIdlum79oB03oA2gIR0CSY3sJY1YRdX2UKGgGR0Blpe9FnZkDaAdN6ANoCEdAkmOp48lolHV9lChoBkdAW6KRfWtlqmgHTegDaAhHQJJltXq7iAF1fZQoaAZHQGCEn1FpfyBoB03oA2gIR0CSZ3mDlHSXdX2UKGgGR0Bl9FY0VJtjaAdN6ANoCEdAkmfsgdOqN3V9lChoBkdAYHsP07KaHGgHTegDaAhHQJJoNR51Ng11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44e01327850513253a0f5827d88b3111696c71dea2dda7ff35d4b1effa57edad
|
3 |
+
size 146747
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -26,12 +26,12 @@
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,7 +45,7 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7bd3d1b1c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7bd3d1b250>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7bd3d1b2e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7bd3d1b370>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7bd3d1b400>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7bd3d1b490>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7bd3d1b520>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7bd3d1b5b0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7bd3d1b640>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7bd3d1b6d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7bd3d1b760>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7bd3d1b7f0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f7bd3d20f80>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1685180529936139607,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPqoHj42fQ28dtkVO/mq87gmFWS9gE45ugAAgD8AAIA/zT59PTRSjT5Q/fq9bwx1vpAKlL0ElgG9AAAAAAAAAABmTkE7cYptu59QuzuFyps8BdqNvNQKhT0AAIA/AACAPxrpv732rCC6MoUuuw2M9rXG2pA6P5NMOgAAgD8AAIA/motlPUhvq7q/7je85w7vNia3ujg2g1W2AACAPwAAgD8gP0E+vVo8PKu7Gzs7piw5x7zPPUcQProAAIA/AACAPw1kTT5Clow/CHdCP9+h774pHwq94uaQPQAAAAAAAAAAAAOTvOEAqLoj4tM5eYWltY77hTrdrPK4AACAPwAAgD/aP52+9NEcP4Mnoj1ZcaO+b8Z3veq8ij0AAAAAAAAAADOCSb213q8/mYgWv8XJmL40uXI89oWhvQAAAAAAAAAA8+aNvbI6uT9eXuK+5+OhvaVGqLwK+869AAAAAAAAAADzixm+mNujPu2piD5Rq4i+SUOjPRiWhT0AAAAAAAAAADMgWD3XhEs/0o0uvVoQh77CuyQ8XX3UugAAAAAAAAAAc3ypvRR+g7oqbnc7JfuWNtZyGDszYo66AACAPwAAgD8G2Wi+DMSPP7NvVb4ZLdW+ocs6vvV0RD0AAAAAAAAAAM3/Lj241o25SuaKOV5GQzNWd6K6KoukuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGLDdTxXnyOMAWyUTegDjAF0lEdAkLrvgJkXlHV9lChoBkdAZah2nsLORmgHTegDaAhHQJC7JZGKAJ91fZQoaAZHQGQlJ9iMHbBoB03oA2gIR0CQwB2sq8UVdX2UKGgGR0BkK1lum78OaAdN6ANoCEdAkMB4QFs54nV9lChoBkdAYl+q9XcQAmgHTegDaAhHQJDDYWDYh+x1fZQoaAZHQGYyUXP7el9oB03oA2gIR0CQxNR7qptKdX2UKGgGR0BmVBCjUNKAaAdN6ANoCEdAkMaDJ6po9XV9lChoBkdAZ4E5wOvt+mgHTegDaAhHQJDb34VRDTl1fZQoaAZHQGJmpN0vGqBoB03oA2gIR0CQ33rKNhmYdX2UKGgGR0BiMhHkLhJiaAdN6ANoCEdAkOJ+C04R3HV9lChoBkdARclM23rleWgHTRcBaAhHQJDjTub7TDx1fZQoaAZHQGK3CIcinpBoB03oA2gIR0CQ6b4ACGN8dX2UKGgGR0BHj6dDpkf+aAdL+WgIR0CQ8SV4oqkNdX2UKGgGR0Bg1c7nxJ/YaAdN6ANoCEdAkPIXA6+36XV9lChoBkdAYn6gg5imVWgHTegDaAhHQJD0wG8mKIl1fZQoaAZHQGU64BvJiiJoB03oA2gIR0CQ+zmw7kn1dX2UKGgGR0BhzagkC3gDaAdN6ANoCEdAkQBmyC4Bm3V9lChoBkdATgT6guh9LGgHS/poCEdAkQLRyXD3unV9lChoBkdAY5LaufVZtGgHTegDaAhHQJELG+Cbtqp1fZQoaAZHQGLK/gaWHDdoB03oA2gIR0CRC6MUAT7EdX2UKGgGR0BmtYoCuEElaAdN6ANoCEdAkQveEAYHgXV9lChoBkdAZSWVXV9WqGgHTegDaAhHQJETr3bmEGt1fZQoaAZHQGAZg7xNIsloB03oA2gIR0CRGERGtp22dX2UKGgGR0BingbXHzYmaAdN6ANoCEdAkRqxIOH313V9lChoBkdAXo1UbT+efGgHTegDaAhHQJEdfEHdGiJ1fZQoaAZHQF8NZOi35N5oB03oA2gIR0CRISdYGMXKdX2UKGgGR0BhWz2criEQaAdN6ANoCEdAkTPTWK/EfnV9lChoBkdAYuVDrJKaomgHTegDaAhHQJE2tbQkX1t1fZQoaAZHQDPSFxn3+MtoB0vjaAhHQJE3GDmKZUl1fZQoaAZHQGN0sNlRP45oB03oA2gIR0CRPa3kPtladX2UKGgGR0BkFbi2lVLjaAdN6ANoCEdAkUU+avzOHHV9lChoBkdAYztUgjhUBGgHTegDaAhHQJFJtpj+aSd1fZQoaAZHQGWQoJJGvwFoB03oA2gIR0CRUq76pHZsdX2UKGgGR0BjWJEv0yxiaAdN6ANoCEdAkVmNZmqYJHV9lChoBkdAZsCGfwqiGmgHTegDaAhHQJFbzTTfBN51fZQoaAZHQGL1vU8V58loB03oA2gIR0CRYz4M4LkTdX2UKGgGR0Bj1nGwRoRJaAdN6ANoCEdAkWPDYEnss3V9lChoBkdAZiUmtQsPKGgHTegDaAhHQJFj+dkJ8fF1fZQoaAZHQGBbUf5k9U1oB03oA2gIR0CRaYaWom5UdX2UKGgGR0BjYfsw+MZQaAdN6ANoCEdAkW5QZsKsuHV9lChoBkdAY3Hu63AmA2gHTegDaAhHQJFwSois4kx1fZQoaAZHQGEWfvWpZOloB03oA2gIR0CRc5a4MF2WdX2UKGgGR0BnT6WqtHQQaAdN6ANoCEdAkYen/cWTHXV9lChoBkdAYFrtnf2saWgHTegDaAhHQJGLlLf1pTN1fZQoaAZHQGN4vSDyvs9oB03oA2gIR0CRjCF+NLlFdX2UKGgGR0BiTlLL6k6+aAdN6ANoCEdAkZQP+fh/AnV9lChoBkdAY2+wqy4WlGgHTegDaAhHQJGat67dzn11fZQoaAZHQGLlSC4BmwtoB03oA2gIR0CRngX2ugYhdX2UKGgGR0BkuS7ZnL7oaAdN6ANoCEdAkaQTHS4OMHV9lChoBkdAZB6EtdzGP2gHTegDaAhHQJGoi+bmU4d1fZQoaAZHQGPg7VJ+UhVoB03oA2gIR0CRqqUuctoSdX2UKGgGR0A3pvcJtzjnaAdL52gIR0CRq9cslLOBdX2UKGgGR0BcNob0e2d/aAdN6ANoCEdAkbFA/LTx5XV9lChoBkdAYbi/+sHSnmgHTegDaAhHQJGxtFa0Qbx1fZQoaAZHQGK/ICuEEkloB03oA2gIR0CRseXfIjnndX2UKGgGR0Bkm1N+LFXJaAdN6ANoCEdAkba1schkiHV9lChoBke/96J53Tuv2WgHTQUBaAhHQJG4rqJMxoJ1fZQoaAZHQGQ1Xx4IKMNoB03oA2gIR0CRu0Lyc0+DdX2UKGgGR0BftksFt8/maAdN6ANoCEdAkb3QVbiZOXV9lChoBkdAOVnWz4UN8WgHS91oCEdAkb6cGLUCrHV9lChoBkdAXpjJ+2E0zmgHTegDaAhHQJHCHMlkYoB1fZQoaAZHQGI03DFZPmBoB03oA2gIR0CRxZhIOH32dX2UKGgGR0BhqOo99tuUaAdN6ANoCEdAkdrJul41P3V9lChoBkdAYLYd4mkWRGgHTegDaAhHQJHbJaQmu1Z1fZQoaAZHQD6PgHeJpFloB0vlaAhHQJHcfCk43m51fZQoaAZHQGK2DFyaNMpoB03oA2gIR0CR4FAHmig1dX2UKGgGR0BldT4i5d4WaAdN6ANoCEdAkeZZckdFOXV9lChoBkdARLgYR/ViF2gHS+poCEdAkegc45tFa3V9lChoBkdAXebSWqtHQWgHTegDaAhHQJHuyhVU+9t1fZQoaAZHQGSP87yQPqdoB03oA2gIR0CR8u9Oh0yQdX2UKGgGR0Bhf7XrdFfBaAdN6ANoCEdAkfZNIXj2jHV9lChoBkdAZfTU+9rXUmgHTegDaAhHQJH9+piqhlF1fZQoaAZHQGE332mHgxdoB03oA2gIR0CR/uV8kUsWdX2UKGgGR0BjbZUJfICEaAdN6ANoCEdAkgYSCvovBnV9lChoBkdAR3POW0JF9mgHS+5oCEdAkgiUcwQDm3V9lChoBkdAXmGYKIBRymgHTegDaAhHQJIIp0CA+ZB1fZQoaAZHQGXnPy9VWCFoB03oA2gIR0CSDK1a4c3mdX2UKGgGR0BmqHCGetjkaAdN6ANoCEdAkg0vybx3FHV9lChoBkdAYeUf9xZMc2gHTegDaAhHQJIPfRG+bmV1fZQoaAZHQDOXkRzzVc5oB00aAWgIR0CSD6Uh3aBadX2UKGgGR0BlalYhdMTOaAdN6ANoCEdAkhF+vIOpbXV9lChoBkdAT9b+Lm6oVGgHTQYBaAhHQJITShBZ6ld1fZQoaAZHQFwcYyO7xutoB03oA2gIR0CSI7CE6DGtdX2UKGgGR0Bm6udkJ8fFaAdN6ANoCEdAkiP6asp5NXV9lChoBkdAQXMH4XXRPWgHTRIBaAhHQJIlJOnEVFh1fZQoaAZHQGSMfQrtmcxoB03oA2gIR0CSKMQb+98JdX2UKGgGR0BiFH++/QBxaAdN6ANoCEdAkjBvmgam43V9lChoBkdAYEyFgUlAvGgHTegDaAhHQJIzwRzzVc51fZQoaAZHQGHZm1x82JloB03oA2gIR0CSQGDh99c9dX2UKGgGR0Bk+fG0eEIxaAdN6ANoCEdAkkdxAGB4EHV9lChoBkdAZbcmlZX+2mgHTegDaAhHQJJTikM1CPZ1fZQoaAZHQGTnJDE3sHBoB03oA2gIR0CSW5vy9VWCdX2UKGgGR0BkcBaHKwIMaAdN6ANoCEdAkmA4X0oSc3V9lChoBkdAYt1P8AJb+2gHTegDaAhHQJJg2cDr7fp1fZQoaAZHQGLPIdlum79oB03oA2gIR0CSY3sJY1YRdX2UKGgGR0Blpe9FnZkDaAdN6ANoCEdAkmOp48lolHV9lChoBkdAW6KRfWtlqmgHTegDaAhHQJJltXq7iAF1fZQoaAZHQGCEn1FpfyBoB03oA2gIR0CSZ3mDlHSXdX2UKGgGR0Bl9FY0VJtjaAdN6ANoCEdAkmfsgdOqN3V9lChoBkdAYHsP07KaHGgHTegDaAhHQJJoNR51Ng11ZS4="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58ef66522cc162defc3dc7019865380d598f1e1caedf7e576c5e10af23ff9a30
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43329
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c46918aa150b5d5aa1941c90803bd60d8d5fb50d0f0437e41e77a0cd321e14ce
|
3 |
size 43329
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 241.5026633651887, "std_reward": 16.158825353705975, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-27T10:11:19.464016"}
|