KPOETA commited on
Commit
57e19aa
verified
1 Parent(s): 33508e6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -42
README.md CHANGED
@@ -9,31 +9,6 @@ metrics:
9
  - recall
10
  - f1
11
  - accuracy
12
- model-index:
13
- - name: KPOETA/BERTO-LOS-MUCHACHOS-1
14
- results:
15
- - task:
16
- name: Token Classification
17
- type: token-classification
18
- dataset:
19
- name: conll2002
20
- type: conll2002
21
- config: es
22
- split: validation
23
- args: es
24
- metrics:
25
- - name: Precision
26
- type: precision
27
- value: 0.880600409370025
28
- - name: Recall
29
- type: recall
30
- value: 0.8897058823529411
31
- - name: F1
32
- type: f1
33
- value: 0.8851297291118985
34
- - name: Accuracy
35
- type: accuracy
36
- value: 0.9806463992982264
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -41,14 +16,38 @@ should probably proofread and complete it, then remove this comment. -->
41
 
42
  # xml-roberta-large-finetuned-ner
43
 
44
- Este es modelo resultado de un finetuning de
45
- [FacebookAI/xlm-roberta-large-finetuned-conll03-english](https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-english) sobre el conll2002 dataset.
46
  Los siguientes son los resultados sobre el conjunto de evaluaci贸n:
47
- - Loss: 0.092
48
- - Precision: 0.8768651513038626
49
- - Recall: 0.8833942118572633
50
- - F1: 0.8768651513038628
51
- - Accuracy: 0.982701988941157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
  ## Model description
54
 
@@ -65,13 +64,3 @@ The following hyperparameters were used during training:
65
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
  - lr_scheduler_type: linear
67
  - num_epochs: 5
68
-
69
- ### Training results
70
-
71
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
72
- |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
73
- | 0.0743 | 1.0 | 2081 | 0.1131 | 0.8385 | 0.8587 | 0.8485 | 0.9771 |
74
- | 0.049 | 2.0 | 4162 | 0.1429 | 0.8492 | 0.8564 | 0.8528 | 0.9756 |
75
- | 0.031 | 3.0 | 6243 | 0.1298 | 0.8758 | 0.8817 | 0.8787 | 0.9800 |
76
- | 0.0185 | 4.0 | 8324 | 0.1279 | 0.8827 | 0.8890 | 0.8859 | 0.9808 |
77
- | 0.0125 | 5.0 | 10405 | 0.1364 | 0.8806 | 0.8897 | 0.8851 | 0.9806 |
 
9
  - recall
10
  - f1
11
  - accuracy
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
16
 
17
  # xml-roberta-large-finetuned-ner
18
 
19
+
 
20
  Los siguientes son los resultados sobre el conjunto de evaluaci贸n:
21
+ {'eval_loss': 0.0929097980260849,
22
+ 'eval_precision': 0.8704318936877077,
23
+ 'eval_recall': 0.8833942118572633,
24
+ 'eval_f1': 0.8768651513038628,
25
+ 'eval_accuracy': 0.982701988941157,
26
+
27
+ 'eval_LOC': {'precision': 0.8867924528301887,
28
+ 'recall': 0.8238007380073801,
29
+ 'f1': 0.8541367766618843,
30
+ 'number': 1084},
31
+
32
+ 'eval_MISC': {'precision': 0.7349726775956285,
33
+ 'recall': 0.7911764705882353,
34
+ 'f1': 0.7620396600566574,
35
+ 'number': 340},
36
+
37
+ 'eval_ORG': {'precision': 0.8400272294077604,
38
+ 'recall': 0.8814285714285715,
39
+ 'f1': 0.8602300453119553,
40
+ 'number': 1400},
41
+
42
+ 'eval_PER': {'precision': 0.9599465954606141,
43
+ 'recall': 0.9782312925170068,
44
+ 'f1': 0.9690026954177898,
45
+ 'number': 735},
46
+
47
+ 'eval_runtime': 3.6357,
48
+ 'eval_samples_per_second': 417.526,
49
+ 'eval_steps_per_second': 26.13,
50
+ 'epoch': 5.0}
51
 
52
  ## Model description
53
 
 
64
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
  - lr_scheduler_type: linear
66
  - num_epochs: 5