Update handler.py
Browse files- handler.py +7 -6
handler.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
-
from typing import
|
2 |
from pyannote.audio import Pipeline
|
|
|
3 |
import torch
|
4 |
import base64
|
5 |
import numpy as np
|
@@ -21,16 +22,16 @@ class EndpointHandler():
|
|
21 |
"""
|
22 |
# process input
|
23 |
inputs = data.pop("inputs", data)
|
24 |
-
parameters = data.pop("parameters", None) #
|
25 |
|
26 |
# decode the base64 audio data
|
27 |
audio_data = base64.b64decode(inputs)
|
28 |
audio_nparray = np.frombuffer(audio_data, dtype=np.int16)
|
29 |
-
|
30 |
# prepare pynannote input
|
31 |
-
audio_tensor= torch.from_numpy(audio_nparray).
|
32 |
pyannote_input = {"waveform": audio_tensor, "sample_rate": SAMPLE_RATE}
|
33 |
-
|
34 |
# apply pretrained pipeline
|
35 |
# pass inputs with all kwargs in data
|
36 |
if parameters is not None:
|
@@ -44,4 +45,4 @@ class EndpointHandler():
|
|
44 |
for segment, _, label in diarization.itertracks(yield_label=True)
|
45 |
]
|
46 |
|
47 |
-
return {"diarization": processed_diarization}
|
|
|
1 |
+
from typing import Dict
|
2 |
from pyannote.audio import Pipeline
|
3 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
4 |
import torch
|
5 |
import base64
|
6 |
import numpy as np
|
|
|
22 |
"""
|
23 |
# process input
|
24 |
inputs = data.pop("inputs", data)
|
25 |
+
parameters = data.pop("parameters", None) # min_speakers=2, max_speakers=5
|
26 |
|
27 |
# decode the base64 audio data
|
28 |
audio_data = base64.b64decode(inputs)
|
29 |
audio_nparray = np.frombuffer(audio_data, dtype=np.int16)
|
30 |
+
|
31 |
# prepare pynannote input
|
32 |
+
audio_tensor= torch.from_numpy(audio_nparray).unsqueeze(0)
|
33 |
pyannote_input = {"waveform": audio_tensor, "sample_rate": SAMPLE_RATE}
|
34 |
+
|
35 |
# apply pretrained pipeline
|
36 |
# pass inputs with all kwargs in data
|
37 |
if parameters is not None:
|
|
|
45 |
for segment, _, label in diarization.itertracks(yield_label=True)
|
46 |
]
|
47 |
|
48 |
+
return {"diarization": processed_diarization}
|