Create create_handler.ipynb
Browse files- create_handler.ipynb +280 -0
create_handler.ipynb
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"## 1. Setup & Installation"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": 1,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [
|
15 |
+
{
|
16 |
+
"name": "stdout",
|
17 |
+
"output_type": "stream",
|
18 |
+
"text": [
|
19 |
+
"Overwriting requirements.txt\n"
|
20 |
+
]
|
21 |
+
}
|
22 |
+
],
|
23 |
+
"source": [
|
24 |
+
"%%writefile requirements.txt\n",
|
25 |
+
"torchaudio==0.11.*\n",
|
26 |
+
"git+https://github.com/philschmid/pyannote-audio.git"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"cell_type": "code",
|
31 |
+
"execution_count": null,
|
32 |
+
"metadata": {},
|
33 |
+
"outputs": [],
|
34 |
+
"source": [
|
35 |
+
"!pip install -r requirements.txt --upgrade"
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "markdown",
|
40 |
+
"metadata": {},
|
41 |
+
"source": [
|
42 |
+
"## 2. Create Custom Handler for Inference Endpoints\n"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "code",
|
47 |
+
"execution_count": 2,
|
48 |
+
"metadata": {},
|
49 |
+
"outputs": [
|
50 |
+
{
|
51 |
+
"name": "stdout",
|
52 |
+
"output_type": "stream",
|
53 |
+
"text": [
|
54 |
+
"Overwriting handler.py\n"
|
55 |
+
]
|
56 |
+
}
|
57 |
+
],
|
58 |
+
"source": [
|
59 |
+
"%%writefile handler.py\n",
|
60 |
+
"from typing import Dict\n",
|
61 |
+
"from pyannote.audio import Pipeline\n",
|
62 |
+
"from transformers.pipelines.audio_utils import ffmpeg_read\n",
|
63 |
+
"import torch \n",
|
64 |
+
"\n",
|
65 |
+
"SAMPLE_RATE = 16000\n",
|
66 |
+
"\n",
|
67 |
+
"\n",
|
68 |
+
"\n",
|
69 |
+
"class EndpointHandler():\n",
|
70 |
+
" def __init__(self, path=\"\"):\n",
|
71 |
+
" # load the model\n",
|
72 |
+
" self.pipeline = Pipeline.from_pretrained(\"pyannote/speaker-diarization\")\n",
|
73 |
+
"\n",
|
74 |
+
"\n",
|
75 |
+
" def __call__(self, data: Dict[str, bytes]) -> Dict[str, str]:\n",
|
76 |
+
" \"\"\"\n",
|
77 |
+
" Args:\n",
|
78 |
+
" data (:obj:):\n",
|
79 |
+
" includes the deserialized audio file as bytes\n",
|
80 |
+
" Return:\n",
|
81 |
+
" A :obj:`dict`:. base64 encoded image\n",
|
82 |
+
" \"\"\"\n",
|
83 |
+
" # process input\n",
|
84 |
+
" inputs = data.pop(\"inputs\", data)\n",
|
85 |
+
" parameters = data.pop(\"parameters\", None) # min_speakers=2, max_speakers=5\n",
|
86 |
+
"\n",
|
87 |
+
" \n",
|
88 |
+
" # prepare pynannote input\n",
|
89 |
+
" audio_nparray = ffmpeg_read(inputs, SAMPLE_RATE)\n",
|
90 |
+
" audio_tensor= torch.from_numpy(audio_nparray).unsqueeze(0)\n",
|
91 |
+
" pyannote_input = {\"waveform\": audio_tensor, \"sample_rate\": SAMPLE_RATE}\n",
|
92 |
+
" \n",
|
93 |
+
" # apply pretrained pipeline\n",
|
94 |
+
" # pass inputs with all kwargs in data\n",
|
95 |
+
" if parameters is not None:\n",
|
96 |
+
" diarization = self.pipeline(pyannote_input, **parameters)\n",
|
97 |
+
" else:\n",
|
98 |
+
" diarization = self.pipeline(pyannote_input)\n",
|
99 |
+
"\n",
|
100 |
+
" # postprocess the prediction\n",
|
101 |
+
" processed_diarization = [\n",
|
102 |
+
" {\"label\": str(label), \"start\": str(segment.start), \"stop\": str(segment.end)}\n",
|
103 |
+
" for segment, _, label in diarization.itertracks(yield_label=True)\n",
|
104 |
+
" ]\n",
|
105 |
+
" \n",
|
106 |
+
" return {\"diarization\": processed_diarization}"
|
107 |
+
]
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"cell_type": "markdown",
|
111 |
+
"metadata": {},
|
112 |
+
"source": [
|
113 |
+
"test custom pipeline"
|
114 |
+
]
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"cell_type": "code",
|
118 |
+
"execution_count": 1,
|
119 |
+
"metadata": {},
|
120 |
+
"outputs": [],
|
121 |
+
"source": [
|
122 |
+
"from handler import EndpointHandler\n",
|
123 |
+
"\n",
|
124 |
+
"# init handler\n",
|
125 |
+
"my_handler = EndpointHandler(path=\".\")"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"cell_type": "code",
|
130 |
+
"execution_count": 2,
|
131 |
+
"metadata": {},
|
132 |
+
"outputs": [],
|
133 |
+
"source": [
|
134 |
+
"import base64\n",
|
135 |
+
"from PIL import Image\n",
|
136 |
+
"from io import BytesIO\n",
|
137 |
+
"import json\n",
|
138 |
+
"\n",
|
139 |
+
"# file reader\n",
|
140 |
+
"with open(\"sample.wav\", \"rb\") as f:\n",
|
141 |
+
" request = {\"inputs\": f.read()}\n",
|
142 |
+
"\n",
|
143 |
+
"# test the handler\n",
|
144 |
+
"pred = my_handler(request)"
|
145 |
+
]
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"cell_type": "code",
|
149 |
+
"execution_count": 3,
|
150 |
+
"metadata": {},
|
151 |
+
"outputs": [
|
152 |
+
{
|
153 |
+
"data": {
|
154 |
+
"text/plain": [
|
155 |
+
"{'diarization': [{'label': 'SPEAKER_01',\n",
|
156 |
+
" 'start': '0.4978125',\n",
|
157 |
+
" 'stop': '1.3921875'},\n",
|
158 |
+
" {'label': 'SPEAKER_01', 'start': '1.8984375', 'stop': '2.7590624999999998'},\n",
|
159 |
+
" {'label': 'SPEAKER_02', 'start': '2.9953125', 'stop': '3.5015625000000004'},\n",
|
160 |
+
" {'label': 'SPEAKER_01',\n",
|
161 |
+
" 'start': '3.5690625000000002',\n",
|
162 |
+
" 'stop': '4.311562500000001'},\n",
|
163 |
+
" {'label': 'SPEAKER_02', 'start': '4.6153125', 'stop': '6.7753125'},\n",
|
164 |
+
" {'label': 'SPEAKER_00', 'start': '7.1128125', 'stop': '7.551562500000001'},\n",
|
165 |
+
" {'label': 'SPEAKER_02',\n",
|
166 |
+
" 'start': '7.551562500000001',\n",
|
167 |
+
" 'stop': '9.475312500000001'},\n",
|
168 |
+
" {'label': 'SPEAKER_02',\n",
|
169 |
+
" 'start': '9.812812500000003',\n",
|
170 |
+
" 'stop': '10.555312500000003'},\n",
|
171 |
+
" {'label': 'SPEAKER_00',\n",
|
172 |
+
" 'start': '9.863437500000003',\n",
|
173 |
+
" 'stop': '10.420312500000001'},\n",
|
174 |
+
" {'label': 'SPEAKER_03', 'start': '12.411562500000002', 'stop': '15.5503125'},\n",
|
175 |
+
" {'label': 'SPEAKER_00', 'start': '15.786562500000002', 'stop': '16.1409375'},\n",
|
176 |
+
" {'label': 'SPEAKER_01', 'start': '16.1409375', 'stop': '16.1578125'},\n",
|
177 |
+
" {'label': 'SPEAKER_00', 'start': '17.1534375', 'stop': '17.4234375'},\n",
|
178 |
+
" {'label': 'SPEAKER_01', 'start': '17.7440625', 'stop': '20.3596875'},\n",
|
179 |
+
" {'label': 'SPEAKER_01', 'start': '20.6128125', 'stop': '20.6634375'},\n",
|
180 |
+
" {'label': 'SPEAKER_00', 'start': '20.6634375', 'stop': '20.8490625'},\n",
|
181 |
+
" {'label': 'SPEAKER_01', 'start': '20.8490625', 'stop': '20.8828125'},\n",
|
182 |
+
" {'label': 'SPEAKER_01', 'start': '21.1021875', 'stop': '22.1315625'},\n",
|
183 |
+
" {'label': 'SPEAKER_02', 'start': '22.4521875', 'stop': '22.7053125'},\n",
|
184 |
+
" {'label': 'SPEAKER_02', 'start': '23.2115625', 'stop': '23.4815625'},\n",
|
185 |
+
" {'label': 'SPEAKER_01', 'start': '23.4815625', 'stop': '24.0215625'},\n",
|
186 |
+
" {'label': 'SPEAKER_02', 'start': '24.3253125', 'stop': '25.5065625'},\n",
|
187 |
+
" {'label': 'SPEAKER_01', 'start': '25.8440625', 'stop': '27.3121875'},\n",
|
188 |
+
" {'label': 'SPEAKER_02', 'start': '27.3121875', 'stop': '27.4978125'},\n",
|
189 |
+
" {'label': 'SPEAKER_01', 'start': '29.7253125', 'stop': '29.9615625'}]}"
|
190 |
+
]
|
191 |
+
},
|
192 |
+
"execution_count": 3,
|
193 |
+
"metadata": {},
|
194 |
+
"output_type": "execute_result"
|
195 |
+
}
|
196 |
+
],
|
197 |
+
"source": [
|
198 |
+
"pred"
|
199 |
+
]
|
200 |
+
}
|
201 |
+
],
|
202 |
+
"metadata": {
|
203 |
+
"kernelspec": {
|
204 |
+
"display_name": "Python 3.9.13 ('dev': conda)",
|
205 |
+
"language": "python",
|
206 |
+
"name": "python3"
|
207 |
+
},
|
208 |
+
"language_info": {
|
209 |
+
"codemirror_mode": {
|
210 |
+
"name": "ipython",
|
211 |
+
"version": 3
|
212 |
+
},
|
213 |
+
"file_extension": ".py",
|
214 |
+
"mimetype": "text/x-python",
|
215 |
+
"name": "python",
|
216 |
+
"nbconvert_exporter": "python",
|
217 |
+
"pygments_lexer": "ipython3",
|
218 |
+
"version": "3.9.13"
|
219 |
+
},
|
220 |
+
"orig_nbformat": 4,
|
221 |
+
"vscode": {
|
222 |
+
"interpreter": {
|
223 |
+
"hash": "f6dd96c16031089903d5a31ec148b80aeb0d39c32affb1a1080393235fbfa2fc"
|
224 |
+
}
|
225 |
+
}
|
226 |
+
},
|
227 |
+
"nbformat": 4,
|
228 |
+
"nbformat_minor": 2
|
229 |
+
}
|
230 |
+
|
231 |
+
|
232 |
+
handler.py
|
233 |
+
|
234 |
+
from typing import Dict
|
235 |
+
from pyannote.audio import Pipeline
|
236 |
+
import torch
|
237 |
+
import base64
|
238 |
+
import numpy as np
|
239 |
+
|
240 |
+
SAMPLE_RATE = 16000
|
241 |
+
|
242 |
+
class EndpointHandler():
|
243 |
+
def __init__(self, path=""):
|
244 |
+
# load the model
|
245 |
+
self.pipeline = Pipeline.from_pretrained("KIFF/pyannote-speaker-diarization-endpoint")
|
246 |
+
|
247 |
+
def __call__(self, data: Dict[str, bytes]) -> Dict[str, str]:
|
248 |
+
"""
|
249 |
+
Args:
|
250 |
+
data (:obj:):
|
251 |
+
includes the deserialized audio file as bytes
|
252 |
+
Return:
|
253 |
+
A :obj:`dict`:. base64 encoded image
|
254 |
+
"""
|
255 |
+
# process input
|
256 |
+
inputs = data.pop("inputs", data)
|
257 |
+
parameters = data.pop("parameters", None) # min_speakers=2, max_speakers=5
|
258 |
+
|
259 |
+
# decode the base64 audio data
|
260 |
+
audio_data = base64.b64decode(inputs)
|
261 |
+
audio_nparray = np.frombuffer(audio_data, dtype=np.int16)
|
262 |
+
|
263 |
+
# prepare pynannote input
|
264 |
+
audio_tensor= torch.from_numpy(audio_nparray).float().unsqueeze(0)
|
265 |
+
pyannote_input = {"waveform": audio_tensor, "sample_rate": SAMPLE_RATE}
|
266 |
+
|
267 |
+
# apply pretrained pipeline
|
268 |
+
# pass inputs with all kwargs in data
|
269 |
+
if parameters is not None:
|
270 |
+
diarization = self.pipeline(pyannote_input, **parameters)
|
271 |
+
else:
|
272 |
+
diarization = self.pipeline(pyannote_input)
|
273 |
+
|
274 |
+
# postprocess the prediction
|
275 |
+
processed_diarization = [
|
276 |
+
{"label": str(label), "start": str(segment.start), "stop": str(segment.end)}
|
277 |
+
for segment, _, label in diarization.itertracks(yield_label=True)
|
278 |
+
]
|
279 |
+
|
280 |
+
return {"diarization": processed_diarization}
|