KES commited on
Commit
dbac39f
·
1 Parent(s): 90a810f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +22 -2
README.md CHANGED
@@ -17,7 +17,7 @@ datasets:
17
  ---
18
 
19
  # Model
20
- This model utilises T5-base sentence correction pre-trained model. It was fine tuned using a modified version of the [JFLEG](https://arxiv.org/abs/1702.04066) dataset and [Happy Transformer framework](https://github.com/EricFillion/happy-transformer). This model was pre-trained for educational purposes only for correction on local caribbean dialect.
21
  .
22
  ___
23
 
@@ -47,4 +47,24 @@ if(correction.text.find(" .")):
47
 
48
  print(correction.text) # Correction: "What is your name?".
49
 
50
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  ---
18
 
19
  # Model
20
+ This model utilises T5-base sentence correction pre-trained model. It was fine tuned using a modified version of the [JFLEG](https://arxiv.org/abs/1702.04066) dataset and [Happy Transformer framework](https://github.com/EricFillion/happy-transformer). This model was pre-trained for educational purposes only for correction on local Caribbean dialect. For more on Caribbean dialect checkout the library [Caribe](https://pypi.org/project/Caribe/).
21
  .
22
  ___
23
 
 
47
 
48
  print(correction.text) # Correction: "What is your name?".
49
 
50
+ ```
51
+ _
52
+ # Usage with Transformers
53
+
54
+ ```python
55
+
56
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
57
+
58
+ tokenizer = AutoTokenizer.from_pretrained("KES/T5-KES")
59
+
60
+ model = AutoModelForSeq2SeqLM.from_pretrained("KES/T5-KES")
61
+
62
+ text = "I am lived with my parenmts "
63
+ inputs = tokenizer("grammar:"+text, truncation=True, return_tensors='pt')
64
+
65
+ output = model.generate(inputs['input_ids'], num_beams=4, max_length=512, early_stopping=True)
66
+ correction=tokenizer.batch_decode(output, skip_special_tokens=True)
67
+ print("".join(correction)) #Correction: I am living with my parents.
68
+
69
+ ```
70
+