marma commited on
Commit
f014c49
1 Parent(s): 74a6082

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -12
README.md CHANGED
@@ -84,38 +84,37 @@ processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swed
84
  model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish")
85
  model.to("cuda")
86
 
87
- chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]'
88
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
89
 
90
  # Preprocessing the datasets.
91
  # We need to read the aduio files as arrays
92
  def speech_file_to_array_fn(batch):
93
- \\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
94
- \\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
95
- \\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
96
- \\treturn batch
97
 
98
  test_dataset = test_dataset.map(speech_file_to_array_fn)
99
 
100
  # Preprocessing the datasets.
101
  # We need to read the aduio files as arrays
102
  def evaluate(batch):
103
- \\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
104
 
105
- \\twith torch.no_grad():
106
- \\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
107
 
108
  pred_ids = torch.argmax(logits, dim=-1)
109
- \\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
110
- \\treturn batch
111
 
112
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
113
 
114
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
115
  ```
116
 
117
- **WER**: 18.252
118
- **CER**: 5.965
119
 
120
 
121
  ## Training
 
84
  model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish")
85
  model.to("cuda")
86
 
87
+ chars_to_ignore_regex = '[\\\\\\\\,\\\\\\\\?\\\\\\\\.\\\\\\\\!\\\\\\\\-\\\\\\\\;\\\\\\\\:\\\\\\\\"\\\\\\\\“]'
88
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
89
 
90
  # Preprocessing the datasets.
91
  # We need to read the aduio files as arrays
92
  def speech_file_to_array_fn(batch):
93
+ \\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
94
+ \\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
95
+ \\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
96
+ \\\\treturn batch
97
 
98
  test_dataset = test_dataset.map(speech_file_to_array_fn)
99
 
100
  # Preprocessing the datasets.
101
  # We need to read the aduio files as arrays
102
  def evaluate(batch):
103
+ \\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
104
 
105
+ \\\\twith torch.no_grad():
106
+ \\\\t\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
107
 
108
  pred_ids = torch.argmax(logits, dim=-1)
109
+ \\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
110
+ \\\\treturn batch
111
 
112
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
113
 
114
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
115
  ```
116
 
117
+ **Test result**: 18.252392%
 
118
 
119
 
120
  ## Training