Update README.md
Browse files
README.md
CHANGED
@@ -84,38 +84,37 @@ processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swed
|
|
84 |
model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish")
|
85 |
model.to("cuda")
|
86 |
|
87 |
-
chars_to_ignore_regex = '[
|
88 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
89 |
|
90 |
# Preprocessing the datasets.
|
91 |
# We need to read the aduio files as arrays
|
92 |
def speech_file_to_array_fn(batch):
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
|
98 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
99 |
|
100 |
# Preprocessing the datasets.
|
101 |
# We need to read the aduio files as arrays
|
102 |
def evaluate(batch):
|
103 |
-
|
104 |
|
105 |
-
|
106 |
-
|
107 |
|
108 |
pred_ids = torch.argmax(logits, dim=-1)
|
109 |
-
|
110 |
-
|
111 |
|
112 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
113 |
|
114 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
115 |
```
|
116 |
|
117 |
-
**
|
118 |
-
**CER**: 5.965
|
119 |
|
120 |
|
121 |
## Training
|
|
|
84 |
model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish")
|
85 |
model.to("cuda")
|
86 |
|
87 |
+
chars_to_ignore_regex = '[\\\\\\\\,\\\\\\\\?\\\\\\\\.\\\\\\\\!\\\\\\\\-\\\\\\\\;\\\\\\\\:\\\\\\\\"\\\\\\\\“]'
|
88 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
89 |
|
90 |
# Preprocessing the datasets.
|
91 |
# We need to read the aduio files as arrays
|
92 |
def speech_file_to_array_fn(batch):
|
93 |
+
\\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
94 |
+
\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
95 |
+
\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
96 |
+
\\\\treturn batch
|
97 |
|
98 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
99 |
|
100 |
# Preprocessing the datasets.
|
101 |
# We need to read the aduio files as arrays
|
102 |
def evaluate(batch):
|
103 |
+
\\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
104 |
|
105 |
+
\\\\twith torch.no_grad():
|
106 |
+
\\\\t\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
107 |
|
108 |
pred_ids = torch.argmax(logits, dim=-1)
|
109 |
+
\\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
|
110 |
+
\\\\treturn batch
|
111 |
|
112 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
113 |
|
114 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
115 |
```
|
116 |
|
117 |
+
**Test result**: 18.252392%
|
|
|
118 |
|
119 |
|
120 |
## Training
|