Upload 11 files
Browse files- README.md +160 -0
- config.json +52 -0
- config.original.json +52 -0
- gpt2_model.safetensors +3 -0
- gpt_config.py +143 -0
- special_tokens_map.json +6 -0
- tokenizer.json +0 -0
- tokenizer.py +928 -0
- tokenizer_config.json +192 -0
- xtts2_gpt_modeling.py +460 -0
README.md
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
base_model:
|
| 4 |
+
- coqui/XTTS-v2
|
| 5 |
+
---
|
| 6 |
+
# Auralis 🌌
|
| 7 |
+
|
| 8 |
+
## Model Details 🛠️
|
| 9 |
+
|
| 10 |
+
**Model Name:** Auralis
|
| 11 |
+
|
| 12 |
+
**Model Architecture:** Based on [Coqui XTTS-v2](https://huggingface.co/coqui/XTTS-v2)
|
| 13 |
+
|
| 14 |
+
**License:**
|
| 15 |
+
- license: Apache 2.0
|
| 16 |
+
- base_model: XTTS-v2 Components [Coqui AI License](https://coqui.ai/cpml)
|
| 17 |
+
|
| 18 |
+
**Language Support:** English, Spanish, French, German, Italian, Portuguese, Polish, Turkish, Russian, Dutch, Czech, Arabic, Chinese (Simplified), Hungarian, Korean, Japanese, Hindi
|
| 19 |
+
|
| 20 |
+
**Developed by:** [AstraMind.ai](https://www.astramind.ai)
|
| 21 |
+
|
| 22 |
+
**GitHub:** [AstraMind AI](https://github.com/astramind-ai/Auralis/tree/main)
|
| 23 |
+
|
| 24 |
+
**Primary Use Case:** Text-to-Speech (TTS) generation for real-world applications, including books, dialogues, and multilingual tasks.
|
| 25 |
+
|
| 26 |
+
---
|
| 27 |
+
|
| 28 |
+
## Model Description 🚀
|
| 29 |
+
|
| 30 |
+
Auralis transforms text into natural, high-quality speech with exceptional speed and scalability. It is powered by [Coqui XTTS-v2](https://huggingface.co/coqui/XTTS-v2) and optimized for both consumer-grade and high-performance GPUs. Auralis is designed to meet real-world needs like long-text processing, voice cloning, and concurrent request handling.
|
| 31 |
+
|
| 32 |
+
### Key Features:
|
| 33 |
+
- **Warp-Speed Processing:** Generate speech for an entire novel (e.g., Harry Potter) in ~10 minutes.
|
| 34 |
+
- **Hardware Friendly:** Requires <10GB VRAM on a single NVIDIA RTX 3090.
|
| 35 |
+
- **Scalable:** Handles multiple requests simultaneously.
|
| 36 |
+
- **Streaming:** Seamlessly processes long texts in a streaming format.
|
| 37 |
+
- **Custom Voices:** Enables voice cloning from short reference audio.
|
| 38 |
+
|
| 39 |
+
---
|
| 40 |
+
|
| 41 |
+
## Quick Start ⭐
|
| 42 |
+
|
| 43 |
+
```python
|
| 44 |
+
from auralis import TTS, TTSRequest
|
| 45 |
+
|
| 46 |
+
# Initialize the model
|
| 47 |
+
tts = TTS().from_pretrained("AstraMindAI/xtts2-gpt")
|
| 48 |
+
|
| 49 |
+
# Create a TTS request
|
| 50 |
+
request = TTSRequest(
|
| 51 |
+
text="Hello Earth! This is Auralis speaking.",
|
| 52 |
+
speaker_files=["reference.wav"]
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
# Generate speech
|
| 56 |
+
output = tts.generate_speech(request)
|
| 57 |
+
output.save("output.wav")
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
---
|
| 61 |
+
|
| 62 |
+
## Ebook Generation 📚
|
| 63 |
+
|
| 64 |
+
Auralis converting ebooks into audio formats at lightning speed. For Python script, check out [ebook_audio_generator.py](https://github.com/astramind-ai/Auralis/blob/main/examples/vocalize_a_ebook.py).
|
| 65 |
+
|
| 66 |
+
```python
|
| 67 |
+
def process_book(chapter_file: str, speaker_file: str):
|
| 68 |
+
# Read chapter
|
| 69 |
+
with open(chapter_file, 'r') as f:
|
| 70 |
+
chapter = f.read()
|
| 71 |
+
|
| 72 |
+
# You can pass the whole book, auralis will take care of splitting
|
| 73 |
+
|
| 74 |
+
request = TTSRequest(
|
| 75 |
+
text=chapter,
|
| 76 |
+
speaker_files=[speaker_file],
|
| 77 |
+
audio_config=AudioPreprocessingConfig(
|
| 78 |
+
enhance_speech=True,
|
| 79 |
+
normalize=True
|
| 80 |
+
)
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
output = tts.generate_speech(request)
|
| 84 |
+
|
| 85 |
+
output.play()
|
| 86 |
+
output.save("chapter_output.wav")
|
| 87 |
+
|
| 88 |
+
# Example usage
|
| 89 |
+
process_book("chapter1.txt", "reference_voice.wav")
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
---
|
| 93 |
+
|
| 94 |
+
## Intended Use 🌟
|
| 95 |
+
|
| 96 |
+
Auralis is designed for:
|
| 97 |
+
- **Content Creators:** Generate audiobooks, podcasts, or voiceovers.
|
| 98 |
+
- **Developers:** Integrate TTS into applications via a simple Python API.
|
| 99 |
+
- **Accessibility**: Providing audio versions of digital content for people with visual or reading difficulties.
|
| 100 |
+
- **Multilingual Scenarios:** Convert text to speech in multiple supported languages.
|
| 101 |
+
|
| 102 |
+
---
|
| 103 |
+
|
| 104 |
+
## Performance 📊
|
| 105 |
+
|
| 106 |
+
**Benchmarks on NVIDIA RTX 3090:**
|
| 107 |
+
- Short phrases (<100 characters): ~1 second
|
| 108 |
+
- Medium texts (<1,000 characters): ~5-10 seconds
|
| 109 |
+
- Full books (~100,000 characters): ~10 minutes
|
| 110 |
+
|
| 111 |
+
**Memory Usage:**
|
| 112 |
+
- Base VRAM: ~4GB
|
| 113 |
+
- Peak VRAM: ~10GB
|
| 114 |
+
|
| 115 |
+
---
|
| 116 |
+
|
| 117 |
+
## Model Features 🛸
|
| 118 |
+
|
| 119 |
+
1. **Speed & Efficiency:**
|
| 120 |
+
- Smart batching for rapid processing of long texts.
|
| 121 |
+
- Memory-optimized for consumer GPUs.
|
| 122 |
+
|
| 123 |
+
2. **Easy Integration:**
|
| 124 |
+
- Python API with support for synchronous and asynchronous workflows.
|
| 125 |
+
- Streaming mode for continuous playback during generation.
|
| 126 |
+
|
| 127 |
+
3. **Audio Quality Enhancements:**
|
| 128 |
+
- Background noise reduction.
|
| 129 |
+
- Voice clarity and volume normalization.
|
| 130 |
+
- Customizable audio preprocessing.
|
| 131 |
+
|
| 132 |
+
4. **Multilingual Support:**
|
| 133 |
+
- Automatic language detection.
|
| 134 |
+
- High-quality speech in 15+ languages.
|
| 135 |
+
|
| 136 |
+
5. **Customization:**
|
| 137 |
+
- Voice cloning using short reference clips.
|
| 138 |
+
- Adjustable parameters for tone, pacing, and language.
|
| 139 |
+
|
| 140 |
+
---
|
| 141 |
+
|
| 142 |
+
## Limitations & Ethical Considerations ⚠️
|
| 143 |
+
|
| 144 |
+
- **Voice Cloning Risks:** Auralis supports voice cloning, which may raise ethical concerns about misuse. Use responsibly and ensure proper consent.
|
| 145 |
+
- **Accent Limitations:** While robust for many languages, accents and intonations may vary based on the input.
|
| 146 |
+
|
| 147 |
+
---
|
| 148 |
+
|
| 149 |
+
## Citation 📜
|
| 150 |
+
|
| 151 |
+
If you use Auralis in your research or projects, please cite:
|
| 152 |
+
|
| 153 |
+
```bibtex
|
| 154 |
+
@misc{auralis2024,
|
| 155 |
+
author = {AstraMind AI},
|
| 156 |
+
title = {Auralis: High-Performance Text-to-Speech Engine},
|
| 157 |
+
year = {2024},
|
| 158 |
+
url = {https://huggingface.co/AstraMindAI/auralis}
|
| 159 |
+
}
|
| 160 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "xtts_gpt",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"XttsGPT"
|
| 5 |
+
],
|
| 6 |
+
"vocab_size": 6681,
|
| 7 |
+
"hidden_size": 1024,
|
| 8 |
+
"num_hidden_layers": 30,
|
| 9 |
+
"num_attention_heads": 16,
|
| 10 |
+
"n_inner": 4096,
|
| 11 |
+
"number_text_tokens": 6681,
|
| 12 |
+
"num_audio_tokens": 1026,
|
| 13 |
+
"max_audio_tokens": 605,
|
| 14 |
+
"start_audio_token": 1024,
|
| 15 |
+
"stop_audio_token": 1025,
|
| 16 |
+
"max_text_tokens": 402,
|
| 17 |
+
"max_prompt_tokens": 70,
|
| 18 |
+
"activation_function": "gelu_new",
|
| 19 |
+
"attn_pdrop": 0.1,
|
| 20 |
+
"layer_norm_epsilon": 1e-05,
|
| 21 |
+
"initializer_range": 0.02,
|
| 22 |
+
"use_masking_gt_prompt_approach": true,
|
| 23 |
+
"use_perceiver_resampler": true,
|
| 24 |
+
"kv_cache": true,
|
| 25 |
+
"enable_redaction": false,
|
| 26 |
+
"reorder_and_upcast_attn": false,
|
| 27 |
+
"scale_attn_by_inverse_layer_idx": false,
|
| 28 |
+
"auto_map": {
|
| 29 |
+
"AutoConfig": "AstraMindAI/xtts2-gpt--gpt_config.XTTSGPTConfig",
|
| 30 |
+
"AutoModelForCausalLM": "AstraMindAI/xtts2-gpt--xtts2_gpt_modeling.XttsGPT",
|
| 31 |
+
"AutoTokenizer": "AstraMindAI/xtts2-gpt--tokenizer.XTTSTokenizerFast"
|
| 32 |
+
},
|
| 33 |
+
"languages": [
|
| 34 |
+
"en",
|
| 35 |
+
"es",
|
| 36 |
+
"fr",
|
| 37 |
+
"de",
|
| 38 |
+
"it",
|
| 39 |
+
"pt",
|
| 40 |
+
"pl",
|
| 41 |
+
"tr",
|
| 42 |
+
"ru",
|
| 43 |
+
"nl",
|
| 44 |
+
"cs",
|
| 45 |
+
"ar",
|
| 46 |
+
"zh-cn",
|
| 47 |
+
"hu",
|
| 48 |
+
"ko",
|
| 49 |
+
"ja",
|
| 50 |
+
"hi"
|
| 51 |
+
]
|
| 52 |
+
}
|
config.original.json
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "xtts_gpt",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"XttsGPT"
|
| 5 |
+
],
|
| 6 |
+
"vocab_size": 6681,
|
| 7 |
+
"hidden_size": 1024,
|
| 8 |
+
"num_hidden_layers": 30,
|
| 9 |
+
"num_attention_heads": 16,
|
| 10 |
+
"n_inner": 4096,
|
| 11 |
+
"number_text_tokens": 6681,
|
| 12 |
+
"num_audio_tokens": 1026,
|
| 13 |
+
"max_audio_tokens": 605,
|
| 14 |
+
"start_audio_token": 1024,
|
| 15 |
+
"stop_audio_token": 1025,
|
| 16 |
+
"max_text_tokens": 402,
|
| 17 |
+
"max_prompt_tokens": 70,
|
| 18 |
+
"activation_function": "gelu_new",
|
| 19 |
+
"attn_pdrop": 0.1,
|
| 20 |
+
"layer_norm_epsilon": 1e-05,
|
| 21 |
+
"initializer_range": 0.02,
|
| 22 |
+
"use_masking_gt_prompt_approach": true,
|
| 23 |
+
"use_perceiver_resampler": true,
|
| 24 |
+
"kv_cache": true,
|
| 25 |
+
"enable_redaction": false,
|
| 26 |
+
"reorder_and_upcast_attn": false,
|
| 27 |
+
"scale_attn_by_inverse_layer_idx": false,
|
| 28 |
+
"auto_map": {
|
| 29 |
+
"AutoConfig": "AstraMindAI/xtts2-gpt--gpt_config.XTTSGPTConfig",
|
| 30 |
+
"AutoModelForCausalLM": "AstraMindAI/xtts2-gpt--xtts2_gpt_modeling.XttsGPT",
|
| 31 |
+
"AutoTokenizer": "AstraMindAI/xtts2-gpt--tokenizer.XTTSTokenizerFast"
|
| 32 |
+
},
|
| 33 |
+
"languages": [
|
| 34 |
+
"en",
|
| 35 |
+
"es",
|
| 36 |
+
"fr",
|
| 37 |
+
"de",
|
| 38 |
+
"it",
|
| 39 |
+
"pt",
|
| 40 |
+
"pl",
|
| 41 |
+
"tr",
|
| 42 |
+
"ru",
|
| 43 |
+
"nl",
|
| 44 |
+
"cs",
|
| 45 |
+
"ar",
|
| 46 |
+
"zh-cn",
|
| 47 |
+
"hu",
|
| 48 |
+
"ko",
|
| 49 |
+
"ja",
|
| 50 |
+
"hi"
|
| 51 |
+
]
|
| 52 |
+
}
|
gpt2_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:104d92b2297c243b64d1417bd5cfda015faca0a670e9bc90088eed0e844f8e35
|
| 3 |
+
size 1522497936
|
gpt_config.py
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import asdict, dataclass
|
| 2 |
+
from typing import Dict, Optional, List
|
| 3 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 4 |
+
from transformers.utils import logging
|
| 5 |
+
|
| 6 |
+
logger = logging.get_logger(__name__)
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
@dataclass
|
| 10 |
+
class GPTAudioConfig:
|
| 11 |
+
"""Configuration for GPT audio processing parameters"""
|
| 12 |
+
mel_channels: int = 80
|
| 13 |
+
sample_rate: int = 22050
|
| 14 |
+
output_sample_rate: int = 24000
|
| 15 |
+
|
| 16 |
+
@dataclass
|
| 17 |
+
class XTTSAudioConfig:
|
| 18 |
+
"""Configuration for audio processing parameters"""
|
| 19 |
+
sample_rate: int = 22050
|
| 20 |
+
output_sample_rate: int = 24000
|
| 21 |
+
mel_channels: int = 80
|
| 22 |
+
hop_length: int = 256
|
| 23 |
+
win_length: int = 1024
|
| 24 |
+
n_fft: int = 1024
|
| 25 |
+
fmin: int = 0
|
| 26 |
+
fmax: int = 8000
|
| 27 |
+
power: float = 1.0
|
| 28 |
+
mel_norms_file: Optional[str] = None
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class XTTSGPTConfig(PretrainedConfig):
|
| 32 |
+
"""Configuration class for the GPT component of XTTS."""
|
| 33 |
+
model_type = "xtts_gpt"
|
| 34 |
+
|
| 35 |
+
def __init__(
|
| 36 |
+
self,
|
| 37 |
+
# Model architecture
|
| 38 |
+
hidden_size: int = 1024, # gpt_n_model_channels in original
|
| 39 |
+
n_inner: int = 4096,
|
| 40 |
+
num_hidden_layers: int = 30, # gpt_layers in original
|
| 41 |
+
num_attention_heads: int = 16, # gpt_n_heads in original
|
| 42 |
+
|
| 43 |
+
# Tokenizer settings
|
| 44 |
+
vocab_size: int = 6681, # gpt_number_text_tokens in original
|
| 45 |
+
number_text_tokens: int = 6681, # Explicit text token vocabulary size
|
| 46 |
+
start_text_token: Optional[int] = None,
|
| 47 |
+
stop_text_token: Optional[int] = None,
|
| 48 |
+
|
| 49 |
+
# Audio token settings
|
| 50 |
+
num_audio_tokens: int = 1026, # gpt_num_audio_tokens in original
|
| 51 |
+
start_audio_token: int = 1024, # gpt_start_audio_token in original
|
| 52 |
+
stop_audio_token: int = 1025, # gpt_stop_audio_token in original
|
| 53 |
+
|
| 54 |
+
# Sequence length settings
|
| 55 |
+
max_audio_tokens: int = 605, # gpt_max_audio_tokens in original
|
| 56 |
+
max_text_tokens: int = 402, # gpt_max_text_tokens in original
|
| 57 |
+
max_prompt_tokens: int = 70, # gpt_max_prompt_tokens in original
|
| 58 |
+
gpt_max_audio_tokens: int = 605, # Used for generation
|
| 59 |
+
|
| 60 |
+
# Model behavior settings
|
| 61 |
+
use_masking_gt_prompt_approach: bool = True, # gpt_use_masking_gt_prompt_approach in original
|
| 62 |
+
use_perceiver_resampler: bool = True, # gpt_use_perceiver_resampler in original
|
| 63 |
+
kv_cache: bool = True,
|
| 64 |
+
enable_redaction: bool = False,
|
| 65 |
+
|
| 66 |
+
# GPT batch settings
|
| 67 |
+
gpt_batch_size: int = 1,
|
| 68 |
+
|
| 69 |
+
# Audio processing
|
| 70 |
+
audio_config: Optional[Dict] = None,
|
| 71 |
+
|
| 72 |
+
# Architecture specifics
|
| 73 |
+
layer_norm_epsilon: float = 1e-5,
|
| 74 |
+
initializer_range: float = 0.02,
|
| 75 |
+
add_cross_attention: bool = False,
|
| 76 |
+
scale_attn_by_inverse_layer_idx: bool = False,
|
| 77 |
+
reorder_and_upcast_attn: bool = False,
|
| 78 |
+
|
| 79 |
+
# Size settings for the decoder
|
| 80 |
+
decoder_input_dim: int = 1024,
|
| 81 |
+
architectures=["XttsGPT"],
|
| 82 |
+
auto_map={
|
| 83 |
+
"AutoConfig": "AstraMindAI/xtts2-gpt--gpt_config.XTTSGPTConfig",
|
| 84 |
+
"AutoModelForCausalLM": "AstraMindAI/xtts2-gpt--xtts2_gpt_modeling.XttsGPT",
|
| 85 |
+
},
|
| 86 |
+
activation_function: str = "gelu",
|
| 87 |
+
attn_pdrop: float = 0.1,
|
| 88 |
+
**kwargs
|
| 89 |
+
):
|
| 90 |
+
super().__init__(**kwargs)
|
| 91 |
+
self.architectures = architectures
|
| 92 |
+
self.auto_map = auto_map
|
| 93 |
+
self.audio_config = GPTAudioConfig(
|
| 94 |
+
**audio_config if audio_config is not None else {}
|
| 95 |
+
)
|
| 96 |
+
self.activation_function = activation_function
|
| 97 |
+
self.attn_pdrop = attn_pdrop
|
| 98 |
+
self.hidden_size = hidden_size
|
| 99 |
+
self.n_inner = n_inner
|
| 100 |
+
self.num_hidden_layers = num_hidden_layers
|
| 101 |
+
self.num_attention_heads = num_attention_heads
|
| 102 |
+
|
| 103 |
+
self.vocab_size = vocab_size
|
| 104 |
+
self.number_text_tokens = number_text_tokens
|
| 105 |
+
self.start_text_token = start_text_token
|
| 106 |
+
self.stop_text_token = stop_text_token
|
| 107 |
+
|
| 108 |
+
self.num_audio_tokens = num_audio_tokens
|
| 109 |
+
self.start_audio_token = start_audio_token
|
| 110 |
+
self.stop_audio_token = stop_audio_token
|
| 111 |
+
|
| 112 |
+
self.max_audio_tokens = max_audio_tokens
|
| 113 |
+
self.max_text_tokens = max_text_tokens
|
| 114 |
+
self.max_prompt_tokens = max_prompt_tokens
|
| 115 |
+
self.gpt_max_audio_tokens = gpt_max_audio_tokens
|
| 116 |
+
|
| 117 |
+
self.use_masking_gt_prompt_approach = use_masking_gt_prompt_approach
|
| 118 |
+
self.use_perceiver_resampler = use_perceiver_resampler
|
| 119 |
+
self.kv_cache = kv_cache
|
| 120 |
+
self.enable_redaction = enable_redaction
|
| 121 |
+
|
| 122 |
+
self.gpt_batch_size = gpt_batch_size
|
| 123 |
+
|
| 124 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
| 125 |
+
self.initializer_range = initializer_range
|
| 126 |
+
self.add_cross_attention = add_cross_attention
|
| 127 |
+
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
|
| 128 |
+
self.reorder_and_upcast_attn = reorder_and_upcast_attn
|
| 129 |
+
|
| 130 |
+
self.decoder_input_dim = decoder_input_dim
|
| 131 |
+
|
| 132 |
+
def to_dict(self) -> Dict:
|
| 133 |
+
"""Convert the config to a dictionary."""
|
| 134 |
+
output = super().to_dict()
|
| 135 |
+
output["audio_config"] = asdict(self.audio_config)
|
| 136 |
+
return output
|
| 137 |
+
|
| 138 |
+
@classmethod
|
| 139 |
+
def from_dict(cls, config_dict: Dict, *args, **kwargs) -> "XTTSGPTConfig":
|
| 140 |
+
"""Create a config from a dictionary."""
|
| 141 |
+
return cls(**config_dict)
|
| 142 |
+
|
| 143 |
+
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "[START]",
|
| 3 |
+
"eos_token": "[STOP]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"unk_token": "[UNK]"
|
| 6 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer.py
ADDED
|
@@ -0,0 +1,928 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
from typing import List, Optional, Union, Dict, Any
|
| 3 |
+
from functools import cached_property
|
| 4 |
+
|
| 5 |
+
import pypinyin
|
| 6 |
+
import torch
|
| 7 |
+
from hangul_romanize import Transliter
|
| 8 |
+
from hangul_romanize.rule import academic
|
| 9 |
+
from num2words import num2words
|
| 10 |
+
from spacy.lang.ar import Arabic
|
| 11 |
+
from spacy.lang.en import English
|
| 12 |
+
from spacy.lang.es import Spanish
|
| 13 |
+
from spacy.lang.ja import Japanese
|
| 14 |
+
from spacy.lang.zh import Chinese
|
| 15 |
+
from transformers import PreTrainedTokenizerFast, BatchEncoding
|
| 16 |
+
from transformers.tokenization_utils_base import TruncationStrategy, PaddingStrategy
|
| 17 |
+
from tokenizers import Tokenizer
|
| 18 |
+
from tokenizers.pre_tokenizers import WhitespaceSplit
|
| 19 |
+
from tokenizers.processors import TemplateProcessing
|
| 20 |
+
|
| 21 |
+
from auralis.models.xttsv2.components.tts.layers.xtts.zh_num2words import TextNorm as zh_num2words
|
| 22 |
+
|
| 23 |
+
import cutlet
|
| 24 |
+
|
| 25 |
+
def get_spacy_lang(lang):
|
| 26 |
+
if lang == "zh":
|
| 27 |
+
return Chinese()
|
| 28 |
+
elif lang == "ja":
|
| 29 |
+
return Japanese()
|
| 30 |
+
elif lang == "ar":
|
| 31 |
+
return Arabic()
|
| 32 |
+
elif lang == "es":
|
| 33 |
+
return Spanish()
|
| 34 |
+
else:
|
| 35 |
+
# For most languages, English does the job
|
| 36 |
+
return English()
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def find_best_split_point(text: str, target_pos: int, window_size: int = 30) -> int:
|
| 40 |
+
"""
|
| 41 |
+
Find best split point near target position considering punctuation and language markers.
|
| 42 |
+
added for better sentence splitting in TTS.
|
| 43 |
+
"""
|
| 44 |
+
# Define split markers by priority
|
| 45 |
+
markers = [
|
| 46 |
+
# Strong breaks (longest pause)
|
| 47 |
+
(r'[.!?؟။။။]+[\s]*', 1.0), # Periods, exclamation, question (multi-script)
|
| 48 |
+
(r'[\n\r]+\s*[\n\r]+', 1.0), # Multiple newlines
|
| 49 |
+
(r'[:|;;:;][\s]*', 0.9), # Colons, semicolons (multi-script)
|
| 50 |
+
|
| 51 |
+
# Medium breaks
|
| 52 |
+
(r'[,,،、][\s]*', 0.8), # Commas (multi-script)
|
| 53 |
+
(r'[)}\])】』»›》\s]+', 0.7), # Closing brackets/parentheses
|
| 54 |
+
(r'[-—−]+[\s]*', 0.7), # Dashes
|
| 55 |
+
|
| 56 |
+
# Weak breaks
|
| 57 |
+
(r'\s+[&+=/\s]+\s+', 0.6), # Special characters with spaces
|
| 58 |
+
(r'[\s]+', 0.5), # Any whitespace as last resort
|
| 59 |
+
]
|
| 60 |
+
|
| 61 |
+
# Calculate window boundaries
|
| 62 |
+
start = max(0, target_pos - window_size)
|
| 63 |
+
end = min(len(text), target_pos + window_size)
|
| 64 |
+
window = text[start:end]
|
| 65 |
+
|
| 66 |
+
best_pos = target_pos
|
| 67 |
+
best_score = 0
|
| 68 |
+
|
| 69 |
+
for pattern, priority in markers:
|
| 70 |
+
matches = list(re.finditer(pattern, window))
|
| 71 |
+
for match in matches:
|
| 72 |
+
# Calculate position score based on distance from target
|
| 73 |
+
pos = start + match.end()
|
| 74 |
+
distance = abs(pos - target_pos)
|
| 75 |
+
distance_score = 1 - (distance / (window_size * 2))
|
| 76 |
+
|
| 77 |
+
# Combine priority and position scores
|
| 78 |
+
score = priority * distance_score
|
| 79 |
+
|
| 80 |
+
if score > best_score:
|
| 81 |
+
best_score = score
|
| 82 |
+
best_pos = pos
|
| 83 |
+
|
| 84 |
+
return best_pos
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def split_sentence(text: str, lang: str, text_split_length: int = 250) -> List[str]:
|
| 88 |
+
"""
|
| 89 |
+
Enhanced sentence splitting with language awareness and optimal breakpoints.
|
| 90 |
+
|
| 91 |
+
Args:
|
| 92 |
+
text: Input text to split
|
| 93 |
+
lang: Language code
|
| 94 |
+
text_split_length: Target length for splits
|
| 95 |
+
|
| 96 |
+
Returns:
|
| 97 |
+
List of text splits optimized for TTS
|
| 98 |
+
"""
|
| 99 |
+
text = text.strip()
|
| 100 |
+
if len(text) <= text_split_length:
|
| 101 |
+
return [text]
|
| 102 |
+
|
| 103 |
+
nlp = get_spacy_lang(lang)
|
| 104 |
+
if "sentencizer" not in nlp.pipe_names:
|
| 105 |
+
nlp.add_pipe("sentencizer")
|
| 106 |
+
|
| 107 |
+
# Get base sentences using spaCy
|
| 108 |
+
doc = nlp(text)
|
| 109 |
+
sentences = list(doc.sents)
|
| 110 |
+
|
| 111 |
+
splits = []
|
| 112 |
+
current_split = []
|
| 113 |
+
current_length = 0
|
| 114 |
+
|
| 115 |
+
for sent in sentences:
|
| 116 |
+
sentence_text = str(sent).strip()
|
| 117 |
+
sentence_length = len(sentence_text)
|
| 118 |
+
|
| 119 |
+
# If sentence fits in current split
|
| 120 |
+
if current_length + sentence_length <= text_split_length:
|
| 121 |
+
current_split.append(sentence_text)
|
| 122 |
+
current_length += sentence_length + 1
|
| 123 |
+
|
| 124 |
+
# Handle long sentences
|
| 125 |
+
elif sentence_length > text_split_length:
|
| 126 |
+
# Add current split if exists
|
| 127 |
+
if current_split:
|
| 128 |
+
splits.append(" ".join(current_split))
|
| 129 |
+
current_split = []
|
| 130 |
+
current_length = 0
|
| 131 |
+
|
| 132 |
+
# Split long sentence at optimal points
|
| 133 |
+
remaining = sentence_text
|
| 134 |
+
while len(remaining) > text_split_length:
|
| 135 |
+
split_pos = find_best_split_point(
|
| 136 |
+
remaining,
|
| 137 |
+
text_split_length,
|
| 138 |
+
window_size=30
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
# Add split and continue with remainder
|
| 142 |
+
splits.append(remaining[:split_pos].strip())
|
| 143 |
+
remaining = remaining[split_pos:].strip()
|
| 144 |
+
|
| 145 |
+
# Handle remaining text
|
| 146 |
+
if remaining:
|
| 147 |
+
current_split = [remaining]
|
| 148 |
+
current_length = len(remaining)
|
| 149 |
+
|
| 150 |
+
# Start new split
|
| 151 |
+
else:
|
| 152 |
+
splits.append(" ".join(current_split))
|
| 153 |
+
current_split = [sentence_text]
|
| 154 |
+
current_length = sentence_length
|
| 155 |
+
|
| 156 |
+
# Add final split if needed
|
| 157 |
+
if current_split:
|
| 158 |
+
splits.append(" ".join(current_split))
|
| 159 |
+
|
| 160 |
+
cleaned_sentences = [s[:-1]+' ' if s.endswith('.') else s for s in splits if s] # prevents annoying sounds in italian
|
| 161 |
+
# Clean up splits
|
| 162 |
+
return cleaned_sentences
|
| 163 |
+
|
| 164 |
+
_whitespace_re = re.compile(r"\s+")
|
| 165 |
+
|
| 166 |
+
# List of (regular expression, replacement) pairs for abbreviations:
|
| 167 |
+
_abbreviations = {
|
| 168 |
+
"en": [
|
| 169 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 170 |
+
for x in [
|
| 171 |
+
("mrs", "misess"),
|
| 172 |
+
("mr", "mister"),
|
| 173 |
+
("dr", "doctor"),
|
| 174 |
+
("st", "saint"),
|
| 175 |
+
("co", "company"),
|
| 176 |
+
("jr", "junior"),
|
| 177 |
+
("maj", "major"),
|
| 178 |
+
("gen", "general"),
|
| 179 |
+
("drs", "doctors"),
|
| 180 |
+
("rev", "reverend"),
|
| 181 |
+
("lt", "lieutenant"),
|
| 182 |
+
("hon", "honorable"),
|
| 183 |
+
("sgt", "sergeant"),
|
| 184 |
+
("capt", "captain"),
|
| 185 |
+
("esq", "esquire"),
|
| 186 |
+
("ltd", "limited"),
|
| 187 |
+
("col", "colonel"),
|
| 188 |
+
("ft", "fort"),
|
| 189 |
+
]
|
| 190 |
+
],
|
| 191 |
+
"es": [
|
| 192 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 193 |
+
for x in [
|
| 194 |
+
("sra", "señora"),
|
| 195 |
+
("sr", "señor"),
|
| 196 |
+
("dr", "doctor"),
|
| 197 |
+
("dra", "doctora"),
|
| 198 |
+
("st", "santo"),
|
| 199 |
+
("co", "compañía"),
|
| 200 |
+
("jr", "junior"),
|
| 201 |
+
("ltd", "limitada"),
|
| 202 |
+
]
|
| 203 |
+
],
|
| 204 |
+
"fr": [
|
| 205 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 206 |
+
for x in [
|
| 207 |
+
("mme", "madame"),
|
| 208 |
+
("mr", "monsieur"),
|
| 209 |
+
("dr", "docteur"),
|
| 210 |
+
("st", "saint"),
|
| 211 |
+
("co", "compagnie"),
|
| 212 |
+
("jr", "junior"),
|
| 213 |
+
("ltd", "limitée"),
|
| 214 |
+
]
|
| 215 |
+
],
|
| 216 |
+
"de": [
|
| 217 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 218 |
+
for x in [
|
| 219 |
+
("fr", "frau"),
|
| 220 |
+
("dr", "doktor"),
|
| 221 |
+
("st", "sankt"),
|
| 222 |
+
("co", "firma"),
|
| 223 |
+
("jr", "junior"),
|
| 224 |
+
]
|
| 225 |
+
],
|
| 226 |
+
"pt": [
|
| 227 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 228 |
+
for x in [
|
| 229 |
+
("sra", "senhora"),
|
| 230 |
+
("sr", "senhor"),
|
| 231 |
+
("dr", "doutor"),
|
| 232 |
+
("dra", "doutora"),
|
| 233 |
+
("st", "santo"),
|
| 234 |
+
("co", "companhia"),
|
| 235 |
+
("jr", "júnior"),
|
| 236 |
+
("ltd", "limitada"),
|
| 237 |
+
]
|
| 238 |
+
],
|
| 239 |
+
"it": [
|
| 240 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 241 |
+
for x in [
|
| 242 |
+
# ("sig.ra", "signora"),
|
| 243 |
+
("sig", "signore"),
|
| 244 |
+
("dr", "dottore"),
|
| 245 |
+
("st", "santo"),
|
| 246 |
+
("co", "compagnia"),
|
| 247 |
+
("jr", "junior"),
|
| 248 |
+
("ltd", "limitata"),
|
| 249 |
+
]
|
| 250 |
+
],
|
| 251 |
+
"pl": [
|
| 252 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 253 |
+
for x in [
|
| 254 |
+
("p", "pani"),
|
| 255 |
+
("m", "pan"),
|
| 256 |
+
("dr", "doktor"),
|
| 257 |
+
("sw", "święty"),
|
| 258 |
+
("jr", "junior"),
|
| 259 |
+
]
|
| 260 |
+
],
|
| 261 |
+
"ar": [
|
| 262 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 263 |
+
for x in [
|
| 264 |
+
# There are not many common abbreviations in Arabic as in English.
|
| 265 |
+
]
|
| 266 |
+
],
|
| 267 |
+
"zh": [
|
| 268 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 269 |
+
for x in [
|
| 270 |
+
# Chinese doesn't typically use abbreviations in the same way as Latin-based scripts.
|
| 271 |
+
]
|
| 272 |
+
],
|
| 273 |
+
"cs": [
|
| 274 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 275 |
+
for x in [
|
| 276 |
+
("dr", "doktor"), # doctor
|
| 277 |
+
("ing", "inženýr"), # engineer
|
| 278 |
+
("p", "pan"), # Could also map to pani for woman but no easy way to do it
|
| 279 |
+
# Other abbreviations would be specialized and not as common.
|
| 280 |
+
]
|
| 281 |
+
],
|
| 282 |
+
"ru": [
|
| 283 |
+
(re.compile("\\b%s\\b" % x[0], re.IGNORECASE), x[1])
|
| 284 |
+
for x in [
|
| 285 |
+
("г-жа", "госпожа"), # Mrs.
|
| 286 |
+
("г-н", "господин"), # Mr.
|
| 287 |
+
("д-р", "доктор"), # doctor
|
| 288 |
+
# Other abbreviations are less common or specialized.
|
| 289 |
+
]
|
| 290 |
+
],
|
| 291 |
+
"nl": [
|
| 292 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 293 |
+
for x in [
|
| 294 |
+
("dhr", "de heer"), # Mr.
|
| 295 |
+
("mevr", "mevrouw"), # Mrs.
|
| 296 |
+
("dr", "dokter"), # doctor
|
| 297 |
+
("jhr", "jonkheer"), # young lord or nobleman
|
| 298 |
+
# Dutch uses more abbreviations, but these are the most common ones.
|
| 299 |
+
]
|
| 300 |
+
],
|
| 301 |
+
"tr": [
|
| 302 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 303 |
+
for x in [
|
| 304 |
+
("b", "bay"), # Mr.
|
| 305 |
+
("byk", "büyük"), # büyük
|
| 306 |
+
("dr", "doktor"), # doctor
|
| 307 |
+
# Add other Turkish abbreviations here if needed.
|
| 308 |
+
]
|
| 309 |
+
],
|
| 310 |
+
"hu": [
|
| 311 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 312 |
+
for x in [
|
| 313 |
+
("dr", "doktor"), # doctor
|
| 314 |
+
("b", "bácsi"), # Mr.
|
| 315 |
+
("nőv", "nővér"), # nurse
|
| 316 |
+
# Add other Hungarian abbreviations here if needed.
|
| 317 |
+
]
|
| 318 |
+
],
|
| 319 |
+
"ko": [
|
| 320 |
+
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
|
| 321 |
+
for x in [
|
| 322 |
+
# Korean doesn't typically use abbreviations in the same way as Latin-based scripts.
|
| 323 |
+
]
|
| 324 |
+
],
|
| 325 |
+
}
|
| 326 |
+
|
| 327 |
+
def expand_abbreviations_multilingual(text, lang="en"):
|
| 328 |
+
if lang in _abbreviations:
|
| 329 |
+
for regex, replacement in _abbreviations[lang]:
|
| 330 |
+
text = re.sub(regex, replacement, text)
|
| 331 |
+
return text
|
| 332 |
+
|
| 333 |
+
_symbols_multilingual = {
|
| 334 |
+
"en": [
|
| 335 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 336 |
+
for x in [
|
| 337 |
+
("&", " and "),
|
| 338 |
+
("@", " at "),
|
| 339 |
+
("%", " percent "),
|
| 340 |
+
("#", " hash "),
|
| 341 |
+
("$", " dollar "),
|
| 342 |
+
("£", " pound "),
|
| 343 |
+
("°", " degree "),
|
| 344 |
+
]
|
| 345 |
+
],
|
| 346 |
+
"es": [
|
| 347 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 348 |
+
for x in [
|
| 349 |
+
("&", " y "),
|
| 350 |
+
("@", " arroba "),
|
| 351 |
+
("%", " por ciento "),
|
| 352 |
+
("#", " numeral "),
|
| 353 |
+
("$", " dolar "),
|
| 354 |
+
("£", " libra "),
|
| 355 |
+
("°", " grados "),
|
| 356 |
+
]
|
| 357 |
+
],
|
| 358 |
+
"fr": [
|
| 359 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 360 |
+
for x in [
|
| 361 |
+
("&", " et "),
|
| 362 |
+
("@", " arobase "),
|
| 363 |
+
("%", " pour cent "),
|
| 364 |
+
("#", " dièse "),
|
| 365 |
+
("$", " dollar "),
|
| 366 |
+
("£", " livre "),
|
| 367 |
+
("°", " degrés "),
|
| 368 |
+
]
|
| 369 |
+
],
|
| 370 |
+
"de": [
|
| 371 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 372 |
+
for x in [
|
| 373 |
+
("&", " und "),
|
| 374 |
+
("@", " at "),
|
| 375 |
+
("%", " prozent "),
|
| 376 |
+
("#", " raute "),
|
| 377 |
+
("$", " dollar "),
|
| 378 |
+
("£", " pfund "),
|
| 379 |
+
("°", " grad "),
|
| 380 |
+
]
|
| 381 |
+
],
|
| 382 |
+
"pt": [
|
| 383 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 384 |
+
for x in [
|
| 385 |
+
("&", " e "),
|
| 386 |
+
("@", " arroba "),
|
| 387 |
+
("%", " por cento "),
|
| 388 |
+
("#", " cardinal "),
|
| 389 |
+
("$", " dólar "),
|
| 390 |
+
("£", " libra "),
|
| 391 |
+
("°", " graus "),
|
| 392 |
+
]
|
| 393 |
+
],
|
| 394 |
+
"it": [
|
| 395 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 396 |
+
for x in [
|
| 397 |
+
("&", " e "),
|
| 398 |
+
("@", " chiocciola "),
|
| 399 |
+
("%", " per cento "),
|
| 400 |
+
("#", " cancelletto "),
|
| 401 |
+
("$", " dollaro "),
|
| 402 |
+
("£", " sterlina "),
|
| 403 |
+
("°", " gradi "),
|
| 404 |
+
]
|
| 405 |
+
],
|
| 406 |
+
"pl": [
|
| 407 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 408 |
+
for x in [
|
| 409 |
+
("&", " i "),
|
| 410 |
+
("@", " małpa "),
|
| 411 |
+
("%", " procent "),
|
| 412 |
+
("#", " krzyżyk "),
|
| 413 |
+
("$", " dolar "),
|
| 414 |
+
("£", " funt "),
|
| 415 |
+
("°", " stopnie "),
|
| 416 |
+
]
|
| 417 |
+
],
|
| 418 |
+
"ar": [
|
| 419 |
+
# Arabic
|
| 420 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 421 |
+
for x in [
|
| 422 |
+
("&", " و "),
|
| 423 |
+
("@", " على "),
|
| 424 |
+
("%", " في المئة "),
|
| 425 |
+
("#", " رقم "),
|
| 426 |
+
("$", " دولار "),
|
| 427 |
+
("£", " جنيه "),
|
| 428 |
+
("°", " درجة "),
|
| 429 |
+
]
|
| 430 |
+
],
|
| 431 |
+
"zh": [
|
| 432 |
+
# Chinese
|
| 433 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 434 |
+
for x in [
|
| 435 |
+
("&", " 和 "),
|
| 436 |
+
("@", " 在 "),
|
| 437 |
+
("%", " 百分之 "),
|
| 438 |
+
("#", " 号 "),
|
| 439 |
+
("$", " 美元 "),
|
| 440 |
+
("£", " 英镑 "),
|
| 441 |
+
("°", " 度 "),
|
| 442 |
+
]
|
| 443 |
+
],
|
| 444 |
+
"cs": [
|
| 445 |
+
# Czech
|
| 446 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 447 |
+
for x in [
|
| 448 |
+
("&", " a "),
|
| 449 |
+
("@", " na "),
|
| 450 |
+
("%", " procento "),
|
| 451 |
+
("#", " křížek "),
|
| 452 |
+
("$", " dolar "),
|
| 453 |
+
("£", " libra "),
|
| 454 |
+
("°", " stupně "),
|
| 455 |
+
]
|
| 456 |
+
],
|
| 457 |
+
"ru": [
|
| 458 |
+
# Russian
|
| 459 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 460 |
+
for x in [
|
| 461 |
+
("&", " и "),
|
| 462 |
+
("@", " собака "),
|
| 463 |
+
("%", " процентов "),
|
| 464 |
+
("#", " номер "),
|
| 465 |
+
("$", " доллар "),
|
| 466 |
+
("£", " фунт "),
|
| 467 |
+
("°", " градус "),
|
| 468 |
+
]
|
| 469 |
+
],
|
| 470 |
+
"nl": [
|
| 471 |
+
# Dutch
|
| 472 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 473 |
+
for x in [
|
| 474 |
+
("&", " en "),
|
| 475 |
+
("@", " bij "),
|
| 476 |
+
("%", " procent "),
|
| 477 |
+
("#", " hekje "),
|
| 478 |
+
("$", " dollar "),
|
| 479 |
+
("£", " pond "),
|
| 480 |
+
("°", " graden "),
|
| 481 |
+
]
|
| 482 |
+
],
|
| 483 |
+
"tr": [
|
| 484 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 485 |
+
for x in [
|
| 486 |
+
("&", " ve "),
|
| 487 |
+
("@", " at "),
|
| 488 |
+
("%", " yüzde "),
|
| 489 |
+
("#", " diyez "),
|
| 490 |
+
("$", " dolar "),
|
| 491 |
+
("£", " sterlin "),
|
| 492 |
+
("°", " derece "),
|
| 493 |
+
]
|
| 494 |
+
],
|
| 495 |
+
"hu": [
|
| 496 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 497 |
+
for x in [
|
| 498 |
+
("&", " és "),
|
| 499 |
+
("@", " kukac "),
|
| 500 |
+
("%", " százalék "),
|
| 501 |
+
("#", " kettőskereszt "),
|
| 502 |
+
("$", " dollár "),
|
| 503 |
+
("£", " font "),
|
| 504 |
+
("°", " fok "),
|
| 505 |
+
]
|
| 506 |
+
],
|
| 507 |
+
"ko": [
|
| 508 |
+
# Korean
|
| 509 |
+
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
|
| 510 |
+
for x in [
|
| 511 |
+
("&", " 그리고 "),
|
| 512 |
+
("@", " 에 "),
|
| 513 |
+
("%", " 퍼센트 "),
|
| 514 |
+
("#", " 번호 "),
|
| 515 |
+
("$", " 달러 "),
|
| 516 |
+
("£", " 파운드 "),
|
| 517 |
+
("°", " 도 "),
|
| 518 |
+
]
|
| 519 |
+
],
|
| 520 |
+
}
|
| 521 |
+
|
| 522 |
+
def expand_symbols_multilingual(text, lang="en"):
|
| 523 |
+
if lang in _symbols_multilingual:
|
| 524 |
+
for regex, replacement in _symbols_multilingual[lang]:
|
| 525 |
+
text = re.sub(regex, replacement, text)
|
| 526 |
+
text = text.replace(" ", " ") # Ensure there are no double spaces
|
| 527 |
+
return text.strip()
|
| 528 |
+
|
| 529 |
+
_ordinal_re = {
|
| 530 |
+
"en": re.compile(r"([0-9]+)(st|nd|rd|th)"),
|
| 531 |
+
"es": re.compile(r"([0-9]+)(º|ª|er|o|a|os|as)"),
|
| 532 |
+
"fr": re.compile(r"([0-9]+)(º|ª|er|re|e|ème)"),
|
| 533 |
+
"de": re.compile(r"([0-9]+)(st|nd|rd|th|º|ª|\.(?=\s|$))"),
|
| 534 |
+
"pt": re.compile(r"([0-9]+)(º|ª|o|a|os|as)"),
|
| 535 |
+
"it": re.compile(r"([0-9]+)(º|°|ª|o|a|i|e)"),
|
| 536 |
+
"pl": re.compile(r"([0-9]+)(º|ª|st|nd|rd|th)"),
|
| 537 |
+
"ar": re.compile(r"([0-9]+)(ون|ين|ث|ر|ى)"),
|
| 538 |
+
"cs": re.compile(r"([0-9]+)\.(?=\s|$)"), # In Czech, a dot is often used after the number to indicate ordinals.
|
| 539 |
+
"ru": re.compile(r"([0-9]+)(-й|-я|-е|-ое|-ье|-го)"),
|
| 540 |
+
"nl": re.compile(r"([0-9]+)(de|ste|e)"),
|
| 541 |
+
"tr": re.compile(r"([0-9]+)(\.|inci|nci|uncu|üncü|\.)"),
|
| 542 |
+
"hu": re.compile(r"([0-9]+)(\.|adik|edik|odik|edik|ödik|ödike|ik)"),
|
| 543 |
+
"ko": re.compile(r"([0-9]+)(번째|번|차|째)"),
|
| 544 |
+
}
|
| 545 |
+
_number_re = re.compile(r"[0-9]+")
|
| 546 |
+
# noinspection Annotator
|
| 547 |
+
_currency_re = {
|
| 548 |
+
"USD": re.compile(r"((\$[0-9\.\,]*[0-9]+)|([0-9\.\,]*[0-9]+\$))"),
|
| 549 |
+
"GBP": re.compile(r"((£[0-9\.\,]*[0-9]+)|([0-9\.\,]*[0-9]+£))"),
|
| 550 |
+
"EUR": re.compile(r"(([0-9\.\,]*[0-9]+€)|((€[0-9\.\,]*[0-9]+)))"),
|
| 551 |
+
}
|
| 552 |
+
|
| 553 |
+
_comma_number_re = re.compile(r"\b\d{1,3}(,\d{3})*(\.\d+)?\b")
|
| 554 |
+
_dot_number_re = re.compile(r"\b\d{1,3}(\.\d{3})*(\,\d+)?\b")
|
| 555 |
+
_decimal_number_re = re.compile(r"([0-9]+[.,][0-9]+)")
|
| 556 |
+
|
| 557 |
+
def _remove_commas(m):
|
| 558 |
+
text = m.group(0)
|
| 559 |
+
if "," in text:
|
| 560 |
+
text = text.replace(",", "")
|
| 561 |
+
return text
|
| 562 |
+
|
| 563 |
+
def _remove_dots(m):
|
| 564 |
+
text = m.group(0)
|
| 565 |
+
if "." in text:
|
| 566 |
+
text = text.replace(".", "")
|
| 567 |
+
return text
|
| 568 |
+
|
| 569 |
+
def _expand_decimal_point(m, lang="en"):
|
| 570 |
+
amount = m.group(1).replace(",", ".")
|
| 571 |
+
return num2words(float(amount), lang=lang if lang != "cs" else "cz")
|
| 572 |
+
|
| 573 |
+
def _expand_currency(m, lang="en", currency="USD"):
|
| 574 |
+
amount = float((re.sub(r"[^\d.]", "", m.group(0).replace(",", "."))))
|
| 575 |
+
full_amount = num2words(amount, to="currency", currency=currency, lang=lang if lang != "cs" else "cz")
|
| 576 |
+
|
| 577 |
+
and_equivalents = {
|
| 578 |
+
"en": ", ",
|
| 579 |
+
"es": " con ",
|
| 580 |
+
"fr": " et ",
|
| 581 |
+
"de": " und ",
|
| 582 |
+
"pt": " e ",
|
| 583 |
+
"it": " e ",
|
| 584 |
+
"pl": ", ",
|
| 585 |
+
"cs": ", ",
|
| 586 |
+
"ru": ", ",
|
| 587 |
+
"nl": ", ",
|
| 588 |
+
"ar": ", ",
|
| 589 |
+
"tr": ", ",
|
| 590 |
+
"hu": ", ",
|
| 591 |
+
"ko": ", ",
|
| 592 |
+
}
|
| 593 |
+
|
| 594 |
+
if amount.is_integer():
|
| 595 |
+
last_and = full_amount.rfind(and_equivalents.get(lang, ", "))
|
| 596 |
+
if last_and != -1:
|
| 597 |
+
full_amount = full_amount[:last_and]
|
| 598 |
+
|
| 599 |
+
return full_amount
|
| 600 |
+
|
| 601 |
+
def _expand_ordinal(m, lang="en"):
|
| 602 |
+
return num2words(int(m.group(1)), ordinal=True, lang=lang if lang != "cs" else "cz")
|
| 603 |
+
|
| 604 |
+
def _expand_number(m, lang="en"):
|
| 605 |
+
return num2words(int(m.group(0)), lang=lang if lang != "cs" else "cz")
|
| 606 |
+
|
| 607 |
+
def expand_numbers_multilingual(text, lang="en"):
|
| 608 |
+
if lang == "zh":
|
| 609 |
+
text = zh_num2words()(text)
|
| 610 |
+
else:
|
| 611 |
+
if lang in ["en", "ru"]:
|
| 612 |
+
text = re.sub(_comma_number_re, _remove_commas, text)
|
| 613 |
+
else:
|
| 614 |
+
text = re.sub(_dot_number_re, _remove_dots, text)
|
| 615 |
+
try:
|
| 616 |
+
text = re.sub(_currency_re["GBP"], lambda m: _expand_currency(m, lang, "GBP"), text)
|
| 617 |
+
text = re.sub(_currency_re["USD"], lambda m: _expand_currency(m, lang, "USD"), text)
|
| 618 |
+
text = re.sub(_currency_re["EUR"], lambda m: _expand_currency(m, lang, "EUR"), text)
|
| 619 |
+
except Exception as e:
|
| 620 |
+
pass
|
| 621 |
+
if lang != "tr":
|
| 622 |
+
text = re.sub(_decimal_number_re, lambda m: _expand_decimal_point(m, lang), text)
|
| 623 |
+
if lang in _ordinal_re:
|
| 624 |
+
text = re.sub(_ordinal_re[lang], lambda m: _expand_ordinal(m, lang), text)
|
| 625 |
+
text = re.sub(_number_re, lambda m: _expand_number(m, lang), text)
|
| 626 |
+
return text
|
| 627 |
+
|
| 628 |
+
def lowercase(text):
|
| 629 |
+
return text.lower()
|
| 630 |
+
|
| 631 |
+
def collapse_whitespace(text):
|
| 632 |
+
return re.sub(_whitespace_re, " ", text)
|
| 633 |
+
|
| 634 |
+
def multilingual_cleaners(text, lang):
|
| 635 |
+
text = text.replace('"', "")
|
| 636 |
+
if lang == "tr":
|
| 637 |
+
text = text.replace("İ", "i")
|
| 638 |
+
text = text.replace("��", "ö")
|
| 639 |
+
text = text.replace("Ü", "ü")
|
| 640 |
+
text = lowercase(text)
|
| 641 |
+
text = expand_numbers_multilingual(text, lang)
|
| 642 |
+
text = expand_abbreviations_multilingual(text, lang)
|
| 643 |
+
text = expand_symbols_multilingual(text, lang=lang)
|
| 644 |
+
text = collapse_whitespace(text)
|
| 645 |
+
return text
|
| 646 |
+
|
| 647 |
+
def basic_cleaners(text):
|
| 648 |
+
"""Basic pipeline that lowercases and collapses whitespace without transliteration."""
|
| 649 |
+
text = lowercase(text)
|
| 650 |
+
text = collapse_whitespace(text)
|
| 651 |
+
return text
|
| 652 |
+
|
| 653 |
+
def chinese_transliterate(text):
|
| 654 |
+
return "".join(
|
| 655 |
+
[p[0] for p in pypinyin.pinyin(text, style=pypinyin.Style.TONE3, heteronym=False, neutral_tone_with_five=True)]
|
| 656 |
+
)
|
| 657 |
+
|
| 658 |
+
def japanese_cleaners(text, katsu):
|
| 659 |
+
text = katsu.romaji(text)
|
| 660 |
+
text = lowercase(text)
|
| 661 |
+
return text
|
| 662 |
+
|
| 663 |
+
def korean_transliterate(text, transliter):
|
| 664 |
+
return transliter.translit(text)
|
| 665 |
+
|
| 666 |
+
# Fast Tokenizer Class
|
| 667 |
+
|
| 668 |
+
class XTTSTokenizerFast(PreTrainedTokenizerFast):
|
| 669 |
+
"""
|
| 670 |
+
Fast Tokenizer implementation for XTTS model using HuggingFace's PreTrainedTokenizerFast
|
| 671 |
+
"""
|
| 672 |
+
|
| 673 |
+
def __init__(
|
| 674 |
+
self,
|
| 675 |
+
vocab_file: str = None,
|
| 676 |
+
tokenizer_object: Optional[Tokenizer] = None,
|
| 677 |
+
unk_token: str = "[UNK]",
|
| 678 |
+
pad_token: str = "[PAD]",
|
| 679 |
+
bos_token: str = "[START]",
|
| 680 |
+
eos_token: str = "[STOP]",
|
| 681 |
+
auto_map: dict = {"AutoTokenizer": ["AstraMindAI/xtts2-gpt--tokenizer.XTTSTokenizerFast", None]},
|
| 682 |
+
clean_up_tokenization_spaces: bool = True,
|
| 683 |
+
**kwargs
|
| 684 |
+
):
|
| 685 |
+
if tokenizer_object is None and vocab_file is not None:
|
| 686 |
+
tokenizer_object = Tokenizer.from_file(vocab_file)
|
| 687 |
+
|
| 688 |
+
if tokenizer_object is not None:
|
| 689 |
+
# Configure the tokenizer
|
| 690 |
+
tokenizer_object.pre_tokenizer = WhitespaceSplit()
|
| 691 |
+
tokenizer_object.post_processor = TemplateProcessing(
|
| 692 |
+
single=f"{bos_token} $A {eos_token}",
|
| 693 |
+
special_tokens=[
|
| 694 |
+
(bos_token, tokenizer_object.token_to_id(bos_token)),
|
| 695 |
+
(eos_token, tokenizer_object.token_to_id(eos_token)),
|
| 696 |
+
],
|
| 697 |
+
)
|
| 698 |
+
|
| 699 |
+
super().__init__(
|
| 700 |
+
tokenizer_object=tokenizer_object,
|
| 701 |
+
unk_token=unk_token,
|
| 702 |
+
pad_token=pad_token,
|
| 703 |
+
bos_token=bos_token,
|
| 704 |
+
eos_token=eos_token,
|
| 705 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 706 |
+
**kwargs
|
| 707 |
+
)
|
| 708 |
+
|
| 709 |
+
# Character limits per language
|
| 710 |
+
self.char_limits = {
|
| 711 |
+
"en": 250, "de": 253, "fr": 273, "es": 239,
|
| 712 |
+
"it": 213, "pt": 203, "pl": 224, "zh": 82,
|
| 713 |
+
"ar": 166, "cs": 186, "ru": 182, "nl": 251,
|
| 714 |
+
"tr": 226, "ja": 71, "hu": 224, "ko": 95,
|
| 715 |
+
}
|
| 716 |
+
|
| 717 |
+
# Initialize language tools
|
| 718 |
+
self._katsu = None
|
| 719 |
+
self._korean_transliter = Transliter(academic)
|
| 720 |
+
|
| 721 |
+
# Ensure pad_token_id is set
|
| 722 |
+
if self.pad_token_id is None:
|
| 723 |
+
self.pad_token_id = self.tokenizer.token_to_id(self.pad_token)
|
| 724 |
+
|
| 725 |
+
@cached_property
|
| 726 |
+
def katsu(self):
|
| 727 |
+
if self._katsu is None:
|
| 728 |
+
self._katsu = cutlet.Cutlet()
|
| 729 |
+
return self._katsu
|
| 730 |
+
|
| 731 |
+
def preprocess_text(self, text: str, lang: str) -> str:
|
| 732 |
+
"""Apply text preprocessing for language"""
|
| 733 |
+
base_lang = lang.split("-")[0] # remove region
|
| 734 |
+
if base_lang in {"ar", "cs", "de", "en", "es", "fr", "hu", "it",
|
| 735 |
+
"nl", "pl", "pt", "ru", "tr", "zh", "ko"}:
|
| 736 |
+
text = multilingual_cleaners(text, base_lang)
|
| 737 |
+
if base_lang == "zh":
|
| 738 |
+
text = chinese_transliterate(text)
|
| 739 |
+
if base_lang == "ko":
|
| 740 |
+
text = korean_transliterate(text, self._korean_transliter)
|
| 741 |
+
elif base_lang == "ja":
|
| 742 |
+
text = japanese_cleaners(text, self.katsu)
|
| 743 |
+
else:
|
| 744 |
+
text = basic_cleaners(text)
|
| 745 |
+
return text
|
| 746 |
+
|
| 747 |
+
def batch_encode_with_split(self, texts: Union[str, List[str]], lang: Union[str, List[str]],
|
| 748 |
+
**kwargs) -> torch.Tensor:
|
| 749 |
+
"""
|
| 750 |
+
Split texts into smaller chunks based on language character limits and encode them using HuggingFace fast tokenizer.
|
| 751 |
+
strictly mimic the xttsv2 tokenizer
|
| 752 |
+
"""
|
| 753 |
+
# Convert single inputs to lists
|
| 754 |
+
if isinstance(texts, str):
|
| 755 |
+
texts = [texts]
|
| 756 |
+
if isinstance(lang, str):
|
| 757 |
+
lang = [lang]
|
| 758 |
+
# Ensure lang list matches texts list
|
| 759 |
+
if len(lang) == 1 and len(texts) > 1:
|
| 760 |
+
lang = lang * len(texts)
|
| 761 |
+
|
| 762 |
+
# Check if texts and lang have the same length
|
| 763 |
+
if len(texts) != len(lang):
|
| 764 |
+
raise ValueError(f"Number of texts ({len(texts)}) does not match number of languages ({len(lang)}).")
|
| 765 |
+
|
| 766 |
+
chunk_list = []
|
| 767 |
+
max_splits = 0
|
| 768 |
+
|
| 769 |
+
# For each text, split into chunks based on character limit
|
| 770 |
+
for text, text_lang in zip(texts, lang):
|
| 771 |
+
# Get language character limit
|
| 772 |
+
base_lang = text_lang.split("-")[0]
|
| 773 |
+
char_limit = self.char_limits.get(base_lang, 250)
|
| 774 |
+
|
| 775 |
+
# Clean and preprocess
|
| 776 |
+
#text = self.preprocess_text(text, text_lang) we do this in the hidden function
|
| 777 |
+
|
| 778 |
+
# Split text into sentences/chunks based on language
|
| 779 |
+
chunk_list = split_sentence(text, base_lang, text_split_length=char_limit)
|
| 780 |
+
|
| 781 |
+
# Ensure the tokenizer is a fast tokenizer
|
| 782 |
+
if not self.is_fast:
|
| 783 |
+
raise ValueError("The tokenizer must be a fast tokenizer.")
|
| 784 |
+
|
| 785 |
+
# Encode all chunks using the fast tokenizer
|
| 786 |
+
encoding: BatchEncoding = self(
|
| 787 |
+
chunk_list,
|
| 788 |
+
lang = lang,
|
| 789 |
+
add_special_tokens=False,
|
| 790 |
+
padding=False,
|
| 791 |
+
**kwargs
|
| 792 |
+
)
|
| 793 |
+
|
| 794 |
+
# The 'input_ids' tensor will have shape [total_chunks, max_sequence_length]
|
| 795 |
+
return encoding['input_ids'] # Tensor of shape [total_chunks, sequence_length]
|
| 796 |
+
|
| 797 |
+
def _batch_encode_plus(
|
| 798 |
+
self,
|
| 799 |
+
batch_text_or_text_pairs,
|
| 800 |
+
add_special_tokens: bool = True,
|
| 801 |
+
padding_strategy=PaddingStrategy.DO_NOT_PAD,
|
| 802 |
+
truncation_strategy=TruncationStrategy.DO_NOT_TRUNCATE,
|
| 803 |
+
max_length: Optional[int] = None,
|
| 804 |
+
stride: int = 0,
|
| 805 |
+
is_split_into_words: bool = False,
|
| 806 |
+
pad_to_multiple_of: Optional[int] = None,
|
| 807 |
+
return_tensors: Optional[str] = None,
|
| 808 |
+
return_token_type_ids: Optional[bool] = None,
|
| 809 |
+
return_attention_mask: Optional[bool] = None,
|
| 810 |
+
return_overflowing_tokens: bool = False,
|
| 811 |
+
return_special_tokens_mask: bool = False,
|
| 812 |
+
return_offsets_mapping: bool = False,
|
| 813 |
+
return_length: bool = False,
|
| 814 |
+
verbose: bool = True,
|
| 815 |
+
**kwargs
|
| 816 |
+
) -> Dict[str, Any]:
|
| 817 |
+
"""
|
| 818 |
+
Override batch encoding to handle language-specific preprocessing
|
| 819 |
+
"""
|
| 820 |
+
lang = kwargs.pop("lang", ["en"] * len(batch_text_or_text_pairs))
|
| 821 |
+
if isinstance(lang, str):
|
| 822 |
+
lang = [lang]
|
| 823 |
+
# Ensure lang list matches texts list
|
| 824 |
+
if len(lang) == 1 and len(batch_text_or_text_pairs) > 1:
|
| 825 |
+
lang = lang * len(batch_text_or_text_pairs)
|
| 826 |
+
|
| 827 |
+
# Check if batch_text_or_text_pairs and lang have the same length
|
| 828 |
+
if len(batch_text_or_text_pairs) != len(lang):
|
| 829 |
+
raise ValueError(f"Number of texts ({len(batch_text_or_text_pairs)}) does not match number of languages ({len(lang)}).")
|
| 830 |
+
|
| 831 |
+
# Preprocess each text in the batch with its corresponding language
|
| 832 |
+
processed_texts = []
|
| 833 |
+
for text, text_lang in zip(batch_text_or_text_pairs, lang):
|
| 834 |
+
if isinstance(text, str):
|
| 835 |
+
# Check length and preprocess
|
| 836 |
+
#self.check_input_length(text, text_lang)
|
| 837 |
+
processed_text = self.preprocess_text(text, text_lang)
|
| 838 |
+
|
| 839 |
+
# Format text with language tag and spaces
|
| 840 |
+
base_lang = text_lang.split("-")[0]
|
| 841 |
+
lang_code = "zh-cn" if base_lang == "zh" else base_lang
|
| 842 |
+
processed_text = f"[{lang_code}]{processed_text}"
|
| 843 |
+
processed_text = processed_text.replace(" ", "[SPACE]")
|
| 844 |
+
|
| 845 |
+
processed_texts.append(processed_text)
|
| 846 |
+
else:
|
| 847 |
+
processed_texts.append(text)
|
| 848 |
+
|
| 849 |
+
# Call the parent class's encoding method with processed texts
|
| 850 |
+
return super()._batch_encode_plus(
|
| 851 |
+
processed_texts,
|
| 852 |
+
add_special_tokens=add_special_tokens,
|
| 853 |
+
padding_strategy=padding_strategy,
|
| 854 |
+
truncation_strategy=truncation_strategy,
|
| 855 |
+
max_length=max_length,
|
| 856 |
+
stride=stride,
|
| 857 |
+
is_split_into_words=is_split_into_words,
|
| 858 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
| 859 |
+
return_tensors=return_tensors,
|
| 860 |
+
return_token_type_ids=return_token_type_ids,
|
| 861 |
+
return_attention_mask=return_attention_mask,
|
| 862 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
| 863 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
| 864 |
+
return_offsets_mapping=return_offsets_mapping,
|
| 865 |
+
return_length=return_length,
|
| 866 |
+
verbose=verbose,
|
| 867 |
+
**kwargs
|
| 868 |
+
)
|
| 869 |
+
|
| 870 |
+
|
| 871 |
+
def __call__(
|
| 872 |
+
self,
|
| 873 |
+
text: Union[str, List[str]],
|
| 874 |
+
lang: Union[str, List[str]] = "en",
|
| 875 |
+
add_special_tokens: bool = True,
|
| 876 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
| 877 |
+
truncation: Union[bool, str, TruncationStrategy] = False,
|
| 878 |
+
max_length: Optional[int] = None,
|
| 879 |
+
stride: int = 0,
|
| 880 |
+
return_tensors: Optional[str] = None,
|
| 881 |
+
return_token_type_ids: Optional[bool] = None,
|
| 882 |
+
return_attention_mask: Optional[bool] = True,
|
| 883 |
+
**kwargs
|
| 884 |
+
):
|
| 885 |
+
"""
|
| 886 |
+
Main tokenization method
|
| 887 |
+
"""
|
| 888 |
+
# Convert single string to list for batch processing
|
| 889 |
+
if isinstance(text, str):
|
| 890 |
+
text = [text]
|
| 891 |
+
if isinstance(lang, str):
|
| 892 |
+
lang = [lang]
|
| 893 |
+
# Ensure lang list matches texts list
|
| 894 |
+
if len(lang) == 1 and len(text) > 1:
|
| 895 |
+
lang = lang * len(text)
|
| 896 |
+
|
| 897 |
+
# Ensure text and lang lists have same length
|
| 898 |
+
if len(text) != len(lang):
|
| 899 |
+
raise ValueError(f"Number of texts ({len(text)}) does not match number of languages ({len(lang)}).")
|
| 900 |
+
|
| 901 |
+
# Convert padding strategy
|
| 902 |
+
if isinstance(padding, bool):
|
| 903 |
+
padding_strategy = PaddingStrategy.LONGEST if padding else PaddingStrategy.DO_NOT_PAD
|
| 904 |
+
else:
|
| 905 |
+
padding_strategy = PaddingStrategy(padding)
|
| 906 |
+
|
| 907 |
+
# Convert truncation strategy
|
| 908 |
+
if isinstance(truncation, bool):
|
| 909 |
+
truncation_strategy = TruncationStrategy.LONGEST_FIRST if truncation else TruncationStrategy.DO_NOT_TRUNCATE
|
| 910 |
+
else:
|
| 911 |
+
truncation_strategy = TruncationStrategy(truncation)
|
| 912 |
+
|
| 913 |
+
# Use the batch encoding method
|
| 914 |
+
encoded = self._batch_encode_plus(
|
| 915 |
+
text,
|
| 916 |
+
add_special_tokens=add_special_tokens,
|
| 917 |
+
padding_strategy=padding_strategy,
|
| 918 |
+
truncation_strategy=truncation_strategy,
|
| 919 |
+
max_length=max_length,
|
| 920 |
+
stride=stride,
|
| 921 |
+
return_tensors=return_tensors,
|
| 922 |
+
return_token_type_ids=return_token_type_ids,
|
| 923 |
+
return_attention_mask=return_attention_mask,
|
| 924 |
+
lang=lang,
|
| 925 |
+
**kwargs
|
| 926 |
+
)
|
| 927 |
+
|
| 928 |
+
return encoded
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[STOP]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "[SPACE]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"259": {
|
| 28 |
+
"content": "[en]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"260": {
|
| 36 |
+
"content": "[de]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"261": {
|
| 44 |
+
"content": "[START]",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
"262": {
|
| 52 |
+
"content": "[fr]",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": false,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": true
|
| 58 |
+
},
|
| 59 |
+
"267": {
|
| 60 |
+
"content": "[ru]",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": false,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false,
|
| 65 |
+
"special": true
|
| 66 |
+
},
|
| 67 |
+
"284": {
|
| 68 |
+
"content": "[es]",
|
| 69 |
+
"lstrip": false,
|
| 70 |
+
"normalized": false,
|
| 71 |
+
"rstrip": false,
|
| 72 |
+
"single_word": false,
|
| 73 |
+
"special": true
|
| 74 |
+
},
|
| 75 |
+
"285": {
|
| 76 |
+
"content": "[it]",
|
| 77 |
+
"lstrip": false,
|
| 78 |
+
"normalized": false,
|
| 79 |
+
"rstrip": false,
|
| 80 |
+
"single_word": false,
|
| 81 |
+
"special": true
|
| 82 |
+
},
|
| 83 |
+
"286": {
|
| 84 |
+
"content": "[pt]",
|
| 85 |
+
"lstrip": false,
|
| 86 |
+
"normalized": false,
|
| 87 |
+
"rstrip": false,
|
| 88 |
+
"single_word": false,
|
| 89 |
+
"special": true
|
| 90 |
+
},
|
| 91 |
+
"293": {
|
| 92 |
+
"content": "[cs]",
|
| 93 |
+
"lstrip": false,
|
| 94 |
+
"normalized": false,
|
| 95 |
+
"rstrip": false,
|
| 96 |
+
"single_word": false,
|
| 97 |
+
"special": true
|
| 98 |
+
},
|
| 99 |
+
"294": {
|
| 100 |
+
"content": "[pl]",
|
| 101 |
+
"lstrip": false,
|
| 102 |
+
"normalized": false,
|
| 103 |
+
"rstrip": false,
|
| 104 |
+
"single_word": false,
|
| 105 |
+
"special": true
|
| 106 |
+
},
|
| 107 |
+
"295": {
|
| 108 |
+
"content": "[tr]",
|
| 109 |
+
"lstrip": false,
|
| 110 |
+
"normalized": false,
|
| 111 |
+
"rstrip": false,
|
| 112 |
+
"single_word": false,
|
| 113 |
+
"special": true
|
| 114 |
+
},
|
| 115 |
+
"297": {
|
| 116 |
+
"content": "[nl]",
|
| 117 |
+
"lstrip": false,
|
| 118 |
+
"normalized": false,
|
| 119 |
+
"rstrip": false,
|
| 120 |
+
"single_word": false,
|
| 121 |
+
"special": true
|
| 122 |
+
},
|
| 123 |
+
"5022": {
|
| 124 |
+
"content": "[ar]",
|
| 125 |
+
"lstrip": false,
|
| 126 |
+
"normalized": false,
|
| 127 |
+
"rstrip": false,
|
| 128 |
+
"single_word": false,
|
| 129 |
+
"special": true
|
| 130 |
+
},
|
| 131 |
+
"5023": {
|
| 132 |
+
"content": "[zh-cn]",
|
| 133 |
+
"lstrip": false,
|
| 134 |
+
"normalized": false,
|
| 135 |
+
"rstrip": false,
|
| 136 |
+
"single_word": false,
|
| 137 |
+
"special": true
|
| 138 |
+
},
|
| 139 |
+
"5412": {
|
| 140 |
+
"content": "[ja]",
|
| 141 |
+
"lstrip": false,
|
| 142 |
+
"normalized": false,
|
| 143 |
+
"rstrip": false,
|
| 144 |
+
"single_word": false,
|
| 145 |
+
"special": true
|
| 146 |
+
},
|
| 147 |
+
"5753": {
|
| 148 |
+
"content": "[hu]",
|
| 149 |
+
"lstrip": false,
|
| 150 |
+
"normalized": false,
|
| 151 |
+
"rstrip": false,
|
| 152 |
+
"single_word": false,
|
| 153 |
+
"special": true
|
| 154 |
+
},
|
| 155 |
+
"6152": {
|
| 156 |
+
"content": "[ko]",
|
| 157 |
+
"lstrip": false,
|
| 158 |
+
"normalized": false,
|
| 159 |
+
"rstrip": false,
|
| 160 |
+
"single_word": false,
|
| 161 |
+
"special": true
|
| 162 |
+
},
|
| 163 |
+
"6680": {
|
| 164 |
+
"content": "[hi]",
|
| 165 |
+
"lstrip": false,
|
| 166 |
+
"normalized": false,
|
| 167 |
+
"rstrip": false,
|
| 168 |
+
"single_word": false,
|
| 169 |
+
"special": true
|
| 170 |
+
},
|
| 171 |
+
"6681": {
|
| 172 |
+
"content": "[PAD]",
|
| 173 |
+
"lstrip": false,
|
| 174 |
+
"normalized": false,
|
| 175 |
+
"rstrip": false,
|
| 176 |
+
"single_word": false,
|
| 177 |
+
"special": true
|
| 178 |
+
}
|
| 179 |
+
},
|
| 180 |
+
"auto_map": {"AutoTokenizer": ["AstraMindAI/xtts2-gpt--tokenizer.XTTSTokenizerFast", null]},
|
| 181 |
+
"bos_token": "[START]",
|
| 182 |
+
"clean_up_tokenization_spaces": true,
|
| 183 |
+
"eos_token": "[STOP]",
|
| 184 |
+
"max_length": null,
|
| 185 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 186 |
+
"pad_to_multiple_of": null,
|
| 187 |
+
"pad_token": "[PAD]",
|
| 188 |
+
"pad_token_type_id": 0,
|
| 189 |
+
"padding_side": "right",
|
| 190 |
+
"tokenizer_class": "XTTSTokenizerFast",
|
| 191 |
+
"unk_token": "[UNK]"
|
| 192 |
+
}
|
xtts2_gpt_modeling.py
ADDED
|
@@ -0,0 +1,460 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import functools
|
| 2 |
+
import math
|
| 3 |
+
from array import array
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from torch.nn import functional as F
|
| 8 |
+
from typing import List, Optional, Union, Iterable, Tuple, Mapping
|
| 9 |
+
|
| 10 |
+
from transformers import PretrainedConfig
|
| 11 |
+
from vllm.attention import AttentionMetadata, Attention
|
| 12 |
+
from vllm.config import CacheConfig, MultiModalConfig
|
| 13 |
+
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
|
| 14 |
+
from vllm.inputs import InputContext, INPUT_REGISTRY
|
| 15 |
+
from vllm.model_executor.layers.activation import get_act_fn
|
| 16 |
+
from vllm.model_executor.layers.linear import ColumnParallelLinear, QKVParallelLinear, RowParallelLinear
|
| 17 |
+
from vllm.model_executor.layers.quantization import QuantizationConfig
|
| 18 |
+
from vllm.model_executor.layers.sampler import Sampler, SamplerOutput
|
| 19 |
+
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding
|
| 20 |
+
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
| 21 |
+
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
| 22 |
+
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalInputs
|
| 23 |
+
from vllm.sequence import IntermediateTensors, SequenceData, VLLM_TOKEN_ID_ARRAY_TYPE
|
| 24 |
+
from vllm.model_executor.models.interfaces import SupportsMultiModal, SupportsPP
|
| 25 |
+
|
| 26 |
+
from TTS.tts.layers.xtts.latent_encoder import ConditioningEncoder # noqa
|
| 27 |
+
from TTS.tts.layers.xtts.perceiver_encoder import PerceiverResampler # noqa
|
| 28 |
+
|
| 29 |
+
from TTS.TTS.tts.layers.xtts.gpt import LearnedPositionEmbeddings
|
| 30 |
+
|
| 31 |
+
# Constants for token calculation
|
| 32 |
+
_AUDIO_PLACEHOLDER_TOKEN = 8192 # Using XTTS start_audio_token as placeholder
|
| 33 |
+
_AUDIO_TOKENS_PER_SECOND = 6.25
|
| 34 |
+
_CODE_STRIDE_LEN = 1024
|
| 35 |
+
|
| 36 |
+
class GPT2Attention(nn.Module):
|
| 37 |
+
def __init__(
|
| 38 |
+
self,
|
| 39 |
+
config: PretrainedConfig,
|
| 40 |
+
cache_config: Optional[CacheConfig] = None,
|
| 41 |
+
quant_config: Optional[QuantizationConfig] = None,
|
| 42 |
+
prefix: str = "",
|
| 43 |
+
):
|
| 44 |
+
super().__init__()
|
| 45 |
+
total_num_heads = config.num_attention_heads
|
| 46 |
+
self.hidden_size = config.hidden_size
|
| 47 |
+
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
|
| 48 |
+
assert total_num_heads % tensor_model_parallel_world_size == 0
|
| 49 |
+
self.num_heads = total_num_heads // tensor_model_parallel_world_size
|
| 50 |
+
self.head_dim = self.hidden_size // total_num_heads
|
| 51 |
+
self.scale = self.head_dim**-0.5
|
| 52 |
+
|
| 53 |
+
self.c_attn = QKVParallelLinear(
|
| 54 |
+
self.hidden_size,
|
| 55 |
+
self.head_dim,
|
| 56 |
+
total_num_heads,
|
| 57 |
+
bias=True,
|
| 58 |
+
quant_config=quant_config,
|
| 59 |
+
prefix=f"{prefix}.c_attn",
|
| 60 |
+
)
|
| 61 |
+
self.c_proj = RowParallelLinear(
|
| 62 |
+
self.hidden_size,
|
| 63 |
+
self.hidden_size,
|
| 64 |
+
bias=True,
|
| 65 |
+
quant_config=quant_config,
|
| 66 |
+
prefix=f"{prefix}.c_proj",
|
| 67 |
+
)
|
| 68 |
+
self.attn = Attention(
|
| 69 |
+
self.num_heads,
|
| 70 |
+
self.head_dim,
|
| 71 |
+
scale=self.scale,
|
| 72 |
+
cache_config=cache_config,
|
| 73 |
+
quant_config=quant_config
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
def forward(
|
| 77 |
+
self,
|
| 78 |
+
hidden_states: torch.Tensor,
|
| 79 |
+
kv_cache: torch.Tensor,
|
| 80 |
+
attn_metadata: AttentionMetadata,
|
| 81 |
+
) -> torch.Tensor:
|
| 82 |
+
qkv, _ = self.c_attn(hidden_states)
|
| 83 |
+
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
| 84 |
+
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
| 85 |
+
attn_output, _ = self.c_proj(attn_output)
|
| 86 |
+
return attn_output
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
class GPT2MLP(nn.Module):
|
| 90 |
+
def __init__(
|
| 91 |
+
self,
|
| 92 |
+
intermediate_size: int,
|
| 93 |
+
config: PretrainedConfig,
|
| 94 |
+
quant_config: Optional[QuantizationConfig] = None,
|
| 95 |
+
prefix: str = "",
|
| 96 |
+
):
|
| 97 |
+
super().__init__()
|
| 98 |
+
hidden_size = config.hidden_size
|
| 99 |
+
|
| 100 |
+
self.c_fc = ColumnParallelLinear(
|
| 101 |
+
hidden_size,
|
| 102 |
+
intermediate_size,
|
| 103 |
+
bias=True,
|
| 104 |
+
quant_config=quant_config,
|
| 105 |
+
prefix=f"{prefix}.c_fc",
|
| 106 |
+
)
|
| 107 |
+
self.c_proj = RowParallelLinear(
|
| 108 |
+
intermediate_size,
|
| 109 |
+
hidden_size,
|
| 110 |
+
bias=True,
|
| 111 |
+
quant_config=quant_config,
|
| 112 |
+
prefix=f"{prefix}.c_proj",
|
| 113 |
+
)
|
| 114 |
+
self.act = get_act_fn(config.activation_function, quant_config, intermediate_size)
|
| 115 |
+
|
| 116 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 117 |
+
hidden_states, _ = self.c_fc(hidden_states)
|
| 118 |
+
hidden_states = self.act(hidden_states)
|
| 119 |
+
hidden_states, _ = self.c_proj(hidden_states)
|
| 120 |
+
return hidden_states
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
class GPT2Block(nn.Module):
|
| 124 |
+
def __init__(
|
| 125 |
+
self,
|
| 126 |
+
config: PretrainedConfig,
|
| 127 |
+
cache_config: Optional[CacheConfig] = None,
|
| 128 |
+
quant_config: Optional[QuantizationConfig] = None,
|
| 129 |
+
prefix: str = "",
|
| 130 |
+
):
|
| 131 |
+
super().__init__()
|
| 132 |
+
hidden_size = config.hidden_size
|
| 133 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
| 134 |
+
|
| 135 |
+
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 136 |
+
self.attn = GPT2Attention(
|
| 137 |
+
config,
|
| 138 |
+
cache_config,
|
| 139 |
+
quant_config,
|
| 140 |
+
prefix=f"{prefix}.attn"
|
| 141 |
+
)
|
| 142 |
+
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 143 |
+
self.mlp = GPT2MLP(
|
| 144 |
+
inner_dim,
|
| 145 |
+
config,
|
| 146 |
+
quant_config,
|
| 147 |
+
prefix=f"{prefix}.mlp"
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
def forward(
|
| 151 |
+
self,
|
| 152 |
+
hidden_states: torch.Tensor,
|
| 153 |
+
kv_cache: torch.Tensor,
|
| 154 |
+
attn_metadata: AttentionMetadata,
|
| 155 |
+
) -> torch.Tensor:
|
| 156 |
+
residual = hidden_states
|
| 157 |
+
hidden_states = self.ln_1(hidden_states)
|
| 158 |
+
attn_output = self.attn(
|
| 159 |
+
hidden_states=hidden_states,
|
| 160 |
+
kv_cache=kv_cache,
|
| 161 |
+
attn_metadata=attn_metadata,
|
| 162 |
+
)
|
| 163 |
+
hidden_states = attn_output + residual
|
| 164 |
+
|
| 165 |
+
residual = hidden_states
|
| 166 |
+
hidden_states = self.ln_2(hidden_states)
|
| 167 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
| 168 |
+
hidden_states = residual + feed_forward_hidden_states
|
| 169 |
+
return hidden_states
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def get_xtts_max_audio_tokens(ctx: InputContext) -> int:
|
| 174 |
+
"""Calculate maximum audio tokens based on text context and audio duration."""
|
| 175 |
+
# Based on GPT config and XTTSv2 settings
|
| 176 |
+
return 608
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
def dummy_seq_data_for_xtts(
|
| 180 |
+
ctx: InputContext,
|
| 181 |
+
seq_len: int,
|
| 182 |
+
audio_count: int,
|
| 183 |
+
) -> SequenceData:
|
| 184 |
+
"""Create dummy sequence data for XTTS profiling."""
|
| 185 |
+
# Calculate audio token space needed
|
| 186 |
+
audio_len_tokens = math.ceil(_AUDIO_TOKENS_PER_SECOND * 5) # Assume 5s per chunk
|
| 187 |
+
audio_placeholder = array(
|
| 188 |
+
VLLM_TOKEN_ID_ARRAY_TYPE,
|
| 189 |
+
[_AUDIO_PLACEHOLDER_TOKEN]
|
| 190 |
+
) * audio_len_tokens
|
| 191 |
+
|
| 192 |
+
# Add separator between chunks
|
| 193 |
+
audio_token_ids = (audio_placeholder + array(VLLM_TOKEN_ID_ARRAY_TYPE, [0])) * audio_count
|
| 194 |
+
|
| 195 |
+
# Fill remaining sequence with padding
|
| 196 |
+
other_token_ids = array(VLLM_TOKEN_ID_ARRAY_TYPE, [0]) * (seq_len - len(audio_token_ids))
|
| 197 |
+
|
| 198 |
+
return SequenceData(audio_token_ids + other_token_ids)
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def dummy_conditioning_for_xtts(
|
| 202 |
+
ctx: InputContext,
|
| 203 |
+
audio_count: int,
|
| 204 |
+
) -> dict:
|
| 205 |
+
"""Create dummy conditioning data for XTTS."""
|
| 206 |
+
return {
|
| 207 |
+
"audio": [(torch.zeros(80, 1024), 22050) for _ in range(audio_count)]
|
| 208 |
+
}
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
def dummy_data_for_xtts(
|
| 212 |
+
ctx: InputContext,
|
| 213 |
+
seq_len: int,
|
| 214 |
+
mm_counts: Mapping[str, int],
|
| 215 |
+
) -> Tuple[SequenceData, dict]:
|
| 216 |
+
"""Create complete dummy data for XTTS profiling."""
|
| 217 |
+
audio_count = mm_counts["audio"]
|
| 218 |
+
seq_data = dummy_seq_data_for_xtts(ctx, seq_len, audio_count)
|
| 219 |
+
cond_data = dummy_conditioning_for_xtts(ctx, audio_count)
|
| 220 |
+
return (seq_data, cond_data)
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
def input_mapper_for_xtts(ctx: InputContext, data: object) -> MultiModalInputs:
|
| 224 |
+
"""Map input data to XTTS format."""
|
| 225 |
+
if not isinstance(data, list):
|
| 226 |
+
data = [data]
|
| 227 |
+
|
| 228 |
+
# Each item should be a tuple of (mel_spec, sample_rate)
|
| 229 |
+
for audio_input in data:
|
| 230 |
+
if not isinstance(audio_input, tuple):
|
| 231 |
+
raise NotImplementedError(f"Unsupported data type: {type(audio_input)}")
|
| 232 |
+
|
| 233 |
+
return MultiModalInputs({"cond_latents": data})
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
@MULTIMODAL_REGISTRY.register_input_mapper("audio", input_mapper_for_xtts)
|
| 238 |
+
@MULTIMODAL_REGISTRY.register_max_multimodal_tokens("audio", get_xtts_max_audio_tokens)
|
| 239 |
+
@INPUT_REGISTRY.register_dummy_data(dummy_data_for_xtts)
|
| 240 |
+
class XttsGPT(nn.Module, SupportsMultiModal, SupportsPP):
|
| 241 |
+
def __init__(
|
| 242 |
+
self,
|
| 243 |
+
config: PretrainedConfig,
|
| 244 |
+
multimodal_config: MultiModalConfig,
|
| 245 |
+
cache_config: Optional[CacheConfig] = None,
|
| 246 |
+
quant_config: Optional["QuantizationConfig"] = None,
|
| 247 |
+
):
|
| 248 |
+
super().__init__()
|
| 249 |
+
self.config = config
|
| 250 |
+
self.quant_config = quant_config
|
| 251 |
+
|
| 252 |
+
# XTTS specific components
|
| 253 |
+
self.conditioning_encoder = ConditioningEncoder(
|
| 254 |
+
config.audio_config.mel_channels,
|
| 255 |
+
config.hidden_size,
|
| 256 |
+
num_attn_heads=config.num_attention_heads
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
if config.use_perceiver_resampler:
|
| 260 |
+
self.conditioning_perceiver = PerceiverResampler(
|
| 261 |
+
dim=config.hidden_size,
|
| 262 |
+
depth=2,
|
| 263 |
+
dim_context=config.hidden_size,
|
| 264 |
+
num_latents=32,
|
| 265 |
+
dim_head=64,
|
| 266 |
+
heads=8,
|
| 267 |
+
ff_mult=4,
|
| 268 |
+
use_flash_attn=False,
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
# Core GPT components following VLLM pattern
|
| 272 |
+
self.gpt = XttsGPT2Model(
|
| 273 |
+
config,
|
| 274 |
+
cache_config,
|
| 275 |
+
quant_config,
|
| 276 |
+
prefix="gpt"
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
# Prediction heads
|
| 280 |
+
self.text_head = ColumnParallelLinear(
|
| 281 |
+
config.hidden_size,
|
| 282 |
+
config.vocab_size,
|
| 283 |
+
bias=False,
|
| 284 |
+
quant_config=quant_config,
|
| 285 |
+
prefix="text_head"
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
self.mel_head = ColumnParallelLinear(
|
| 289 |
+
config.hidden_size,
|
| 290 |
+
config.num_audio_tokens,
|
| 291 |
+
bias=False,
|
| 292 |
+
quant_config=quant_config,
|
| 293 |
+
prefix="mel_head"
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
self.sampler = Sampler()
|
| 297 |
+
|
| 298 |
+
def get_style_emb(self, cond_input: torch.Tensor, return_latent: bool = False) -> torch.Tensor:
|
| 299 |
+
"""Get conditioning embeddings from mel spectrograms."""
|
| 300 |
+
if not return_latent:
|
| 301 |
+
if cond_input.ndim == 4:
|
| 302 |
+
cond_input = cond_input.squeeze(1)
|
| 303 |
+
conds = self.conditioning_encoder(cond_input)
|
| 304 |
+
|
| 305 |
+
if hasattr(self, 'conditioning_perceiver'):
|
| 306 |
+
conds = self.conditioning_perceiver(
|
| 307 |
+
conds.permute(0, 2, 1)
|
| 308 |
+
).transpose(1, 2)
|
| 309 |
+
else:
|
| 310 |
+
conds = cond_input.unsqueeze(1)
|
| 311 |
+
return conds
|
| 312 |
+
|
| 313 |
+
def forward(self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor],
|
| 314 |
+
attn_metadata: AttentionMetadata, intermediate_tensors: Optional[IntermediateTensors] = None,
|
| 315 |
+
cond_latents: Optional[torch.Tensor] = None ) -> torch.Tensor:
|
| 316 |
+
"""Forward pass following VLLM pattern."""
|
| 317 |
+
if cond_latents is not None:
|
| 318 |
+
# Combine conditioning with input embeddings
|
| 319 |
+
input_embeds = self.gpt.get_input_embeddings()(input_ids)
|
| 320 |
+
combined_embeds = torch.cat([cond_latents, input_embeds], dim=1)
|
| 321 |
+
hidden_states = self.gpt(
|
| 322 |
+
inputs_embeds=combined_embeds,
|
| 323 |
+
positions=positions,
|
| 324 |
+
kv_caches=kv_caches,
|
| 325 |
+
attn_metadata=attn_metadata,
|
| 326 |
+
intermediate_tensors=intermediate_tensors,
|
| 327 |
+
)
|
| 328 |
+
else:
|
| 329 |
+
hidden_states = self.gpt(
|
| 330 |
+
input_ids=input_ids,
|
| 331 |
+
positions=positions,
|
| 332 |
+
kv_caches=kv_caches,
|
| 333 |
+
attn_metadata=attn_metadata,
|
| 334 |
+
intermediate_tensors=intermediate_tensors,
|
| 335 |
+
)
|
| 336 |
+
return hidden_states
|
| 337 |
+
|
| 338 |
+
def compute_logits( # useless but kept for compatibility
|
| 339 |
+
self,
|
| 340 |
+
hidden_states: torch.Tensor,
|
| 341 |
+
sampling_metadata: SamplingMetadata,
|
| 342 |
+
) -> torch.Tensor:
|
| 343 |
+
"""Compute output logits."""
|
| 344 |
+
text_logits = self.text_head(hidden_states[sampling_metadata.selected_token_indices])
|
| 345 |
+
mel_logits = self.mel_head(hidden_states[sampling_metadata.selected_token_indices])
|
| 346 |
+
return torch.cat([text_logits, mel_logits], dim=1)
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
def sample(
|
| 350 |
+
self,
|
| 351 |
+
logits: torch.Tensor,
|
| 352 |
+
sampling_metadata: SamplingMetadata,
|
| 353 |
+
) -> Optional[SamplerOutput]:
|
| 354 |
+
"""Sample next tokens using VLLM sampler."""
|
| 355 |
+
return self.sampler(logits, sampling_metadata)
|
| 356 |
+
|
| 357 |
+
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
| 358 |
+
"""Load weights following VLLM pattern."""
|
| 359 |
+
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
| 360 |
+
|
| 361 |
+
for name, loaded_weight in weights:
|
| 362 |
+
if name not in params_dict:
|
| 363 |
+
continue
|
| 364 |
+
|
| 365 |
+
param = params_dict[name]
|
| 366 |
+
if "c_attn" in name or "c_proj" in name or "c_fc" in name:
|
| 367 |
+
if name.endswith(".weight"):
|
| 368 |
+
loaded_weight = loaded_weight.t()
|
| 369 |
+
|
| 370 |
+
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
| 371 |
+
weight_loader(param, loaded_weight)
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
class XttsGPT2Model(nn.Module):
|
| 375 |
+
"""VLLM-style implementation of GPT2 core architecture."""
|
| 376 |
+
|
| 377 |
+
def __init__(
|
| 378 |
+
self,
|
| 379 |
+
config: PretrainedConfig,
|
| 380 |
+
cache_config: Optional[CacheConfig] = None,
|
| 381 |
+
quant_config: Optional[QuantizationConfig] = None,
|
| 382 |
+
prefix: str = "",
|
| 383 |
+
):
|
| 384 |
+
super().__init__()
|
| 385 |
+
self.config = config
|
| 386 |
+
|
| 387 |
+
self.text_embedding = VocabParallelEmbedding(
|
| 388 |
+
config.number_text_tokens,
|
| 389 |
+
config.hidden_size
|
| 390 |
+
)
|
| 391 |
+
self.mel_embedding = VocabParallelEmbedding(
|
| 392 |
+
config.num_audio_tokens,
|
| 393 |
+
config.hidden_size
|
| 394 |
+
)
|
| 395 |
+
|
| 396 |
+
self.text_pos_embedding = (
|
| 397 |
+
LearnedPositionEmbeddings(
|
| 398 |
+
config.max_text_tokens + 2,
|
| 399 |
+
config.hidden_size
|
| 400 |
+
)
|
| 401 |
+
if config.max_audio_tokens != -1
|
| 402 |
+
else functools.partial(config.null_position_embeddings, dim=config.hidden_size)
|
| 403 |
+
)
|
| 404 |
+
|
| 405 |
+
self.mel_pos_embedding = (
|
| 406 |
+
LearnedPositionEmbeddings(
|
| 407 |
+
config.max_audio_tokens + 3,
|
| 408 |
+
config.hidden_size
|
| 409 |
+
)
|
| 410 |
+
if config.max_audio_tokens != -1
|
| 411 |
+
else functools.partial(config.null_position_embeddings, dim=config.hidden_size)
|
| 412 |
+
)
|
| 413 |
+
|
| 414 |
+
self.h = nn.ModuleList([
|
| 415 |
+
GPT2Block(
|
| 416 |
+
config,
|
| 417 |
+
cache_config,
|
| 418 |
+
quant_config,
|
| 419 |
+
prefix=f"{prefix}.h.{i}"
|
| 420 |
+
) for i in range(config.num_hidden_layers)
|
| 421 |
+
])
|
| 422 |
+
|
| 423 |
+
self.ln_f = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
| 424 |
+
|
| 425 |
+
def get_input_embeddings(self):
|
| 426 |
+
return self.text_embedding
|
| 427 |
+
|
| 428 |
+
def forward(
|
| 429 |
+
self,
|
| 430 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 431 |
+
positions: Optional[torch.Tensor] = None,
|
| 432 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 433 |
+
kv_caches: List[torch.Tensor] = None,
|
| 434 |
+
attn_metadata: AttentionMetadata = None,
|
| 435 |
+
intermediate_tensors: Optional[IntermediateTensors] = None,
|
| 436 |
+
) -> Union[torch.Tensor, IntermediateTensors]:
|
| 437 |
+
if get_pp_group().is_first_rank:
|
| 438 |
+
if inputs_embeds is None:
|
| 439 |
+
inputs_embeds = self.text_embedding(input_ids)
|
| 440 |
+
hidden_states = inputs_embeds
|
| 441 |
+
|
| 442 |
+
if positions is not None:
|
| 443 |
+
position_embeds = self.text_pos_embedding(positions)
|
| 444 |
+
hidden_states = hidden_states + position_embeds
|
| 445 |
+
else:
|
| 446 |
+
assert intermediate_tensors is not None
|
| 447 |
+
hidden_states = intermediate_tensors["hidden_states"]
|
| 448 |
+
|
| 449 |
+
for i, block in enumerate(self.h):
|
| 450 |
+
hidden_states = block(
|
| 451 |
+
hidden_states,
|
| 452 |
+
kv_caches[i],
|
| 453 |
+
attn_metadata
|
| 454 |
+
)
|
| 455 |
+
|
| 456 |
+
if not get_pp_group().is_last_rank:
|
| 457 |
+
return IntermediateTensors({"hidden_states": hidden_states})
|
| 458 |
+
|
| 459 |
+
hidden_states = self.ln_f(hidden_states)
|
| 460 |
+
return hidden_states
|