JumaRubea commited on
Commit
68ed147
·
verified ·
1 Parent(s): c58911d

push main.ipynb utils.py and model.py

Browse files
Files changed (3) hide show
  1. main.ipynb +0 -0
  2. models.py +40 -0
  3. utils.py +109 -0
main.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
models.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from tensorflow.keras.models import Sequential
2
+ import tensorflow.keras.layers as tfl
3
+
4
+ def cat_dog_model(image_size, image_channel):
5
+ model = Sequential([
6
+ # Block 1
7
+ tfl.Conv2D(32, (3, 3), activation='relu', input_shape=(image_size, image_size, image_channel)),
8
+ tfl.BatchNormalization(),
9
+ tfl.MaxPooling2D(pool_size=(2, 2)),
10
+ tfl.Dropout(0.2),
11
+
12
+ # Block 2
13
+ tfl.Conv2D(64, (3, 3), activation='relu'),
14
+ tfl.BatchNormalization(),
15
+ tfl.MaxPooling2D(pool_size=(2, 2)),
16
+ tfl.Dropout(0.2),
17
+
18
+ # Block 3
19
+ tfl.Conv2D(128, (3, 3), activation='relu'),
20
+ tfl.BatchNormalization(),
21
+ tfl.MaxPooling2D(pool_size=(2, 2)),
22
+ tfl.Dropout(0.2),
23
+
24
+ # Block 4
25
+ tfl.Conv2D(256, (3, 3), activation='relu'),
26
+ tfl.BatchNormalization(),
27
+ tfl.MaxPooling2D(pool_size=(2, 2)),
28
+ tfl.Dropout(0.2),
29
+
30
+ # Fully Connected Layers
31
+ tfl.Flatten(),
32
+ tfl.Dense(512, activation='relu'),
33
+ tfl.BatchNormalization(),
34
+ tfl.Dropout(0.2),
35
+
36
+ # Output Layer (Softmax for multi-class classification)
37
+ tfl.Dense(1, activation='sigmoid')
38
+ ])
39
+
40
+ return model
utils.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image
2
+ import matplotlib.pyplot as plt
3
+ import seaborn as sns
4
+ import pandas as pd
5
+ import numpy as np
6
+
7
+ # for image processing
8
+ from tensorflow.keras.preprocessing.image import load_img, img_to_array
9
+ from sklearn.metrics import confusion_matrix
10
+
11
+
12
+ def validate_image(file_path):
13
+ """Validate image integrity
14
+ Some images are corrupted and cannot be opened by PIL
15
+ Args:
16
+ file_path (str): Image file path
17
+ Returns:
18
+ bool: True if image is valid, False otherwise"""
19
+
20
+ try:
21
+ with Image.open(file_path) as img:
22
+ # Verify image integrity
23
+ img.verify()
24
+ return True
25
+ except Exception as e:
26
+ print(f"Corrupted image: {file_path} - Error: {e}")
27
+ return False
28
+
29
+
30
+ def visualize_image(train_path, class_name="cat"):
31
+ """Display image
32
+ Args:
33
+ file_path (str): Image file path
34
+ class_name (str): Image class name
35
+ Returns:
36
+ 10 images of the specified class"""
37
+
38
+ plt.figure(figsize=(20,20))
39
+ plt.subplots_adjust(hspace=0.4)
40
+
41
+ for i in range(10):
42
+ plt.subplot(1,10,i+1)
43
+ filename = train_path +'\\'+ f'{class_name}.' + str(i) + '.jpg'
44
+ image = Image.open(filename)
45
+ plt.imshow(image)
46
+ plt.title(f'{class_name}',fontsize=12)
47
+ plt.axis('off')
48
+
49
+ plt.show()
50
+
51
+ def visulaize_ouput(history):
52
+ """Visualize model training output
53
+ Args:
54
+ history (tensorflow.python.keras.callbacks.History): Model training history
55
+ Returns:
56
+ plot of Loss and Accuracy"""
57
+
58
+ result_df = pd.DataFrame(history.history)
59
+
60
+ plt.figure(figsize=(18,5),dpi=200)
61
+ sns.set_style('darkgrid')
62
+
63
+ plt.subplot(121)
64
+ plt.title('Cross Entropy Loss',fontsize=15)
65
+ plt.xlabel('Epochs',fontsize=12)
66
+ plt.ylabel('Loss',fontsize=12)
67
+ plt.plot(result_df['loss'])
68
+ plt.plot(result_df['val_loss'])
69
+
70
+ plt.subplot(122)
71
+ plt.title('Classification Accuracy',fontsize=15)
72
+ plt.xlabel('Epochs',fontsize=12)
73
+ plt.ylabel('Accuracy',fontsize=12)
74
+ plt.plot(result_df['accuracy'])
75
+ plt.plot(result_df['val_accuracy'])
76
+
77
+ plt.show()
78
+
79
+
80
+ def predictor(model, image_path, classes, img_size=(128, 128)):
81
+ """Predict image class
82
+ Args:
83
+ model (tensorflow.python.keras.engine.sequential.Sequential): Model
84
+ image_path (str): Image file path
85
+ classes (list): List of class names
86
+ img_size (tuple): Image size
87
+ Returns:
88
+ Image class prediction with plots"""
89
+
90
+ img = load_img(image_path, target_size=img_size)
91
+ img_array = img_to_array(img) / 255.0
92
+ img_array = np.expand_dims(img_array, axis=0)
93
+
94
+ predictions = model.predict(img_array)
95
+ predicted_class = np.argmax(predictions, axis=1)[0]
96
+ print(predictions)
97
+ print(predicted_class)
98
+ confidence = predictions[0][predicted_class]
99
+ print(confidence)
100
+ if confidence > 0.5:
101
+ predicted_class = 1
102
+ else:
103
+ predicted_class = 0
104
+
105
+ plt.imshow(img)
106
+ plt.axis('off')
107
+ plt.title(f"Prediction: {classes[predicted_class]}")
108
+ plt.show()
109
+