Julia0408 commited on
Commit
28910b7
1 Parent(s): 5cd7c92

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -6
README.md CHANGED
@@ -2,6 +2,8 @@
2
  license: cc-by-nc-4.0
3
  tags:
4
  - generated_from_trainer
 
 
5
  model-index:
6
  - name: videomae-base-finetuned-ucf101-subset
7
  results: []
@@ -13,6 +15,9 @@ should probably proofread and complete it, then remove this comment. -->
13
  # videomae-base-finetuned-ucf101-subset
14
 
15
  This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
 
 
 
16
 
17
  ## Model description
18
 
@@ -32,17 +37,31 @@ More information needed
32
 
33
  The following hyperparameters were used during training:
34
  - learning_rate: 5e-05
35
- - train_batch_size: 8
36
- - eval_batch_size: 8
37
  - seed: 42
38
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
39
  - lr_scheduler_type: linear
40
  - lr_scheduler_warmup_ratio: 0.1
41
- - training_steps: 148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
  ### Framework versions
44
 
45
- - Transformers 4.29.2
46
- - Pytorch 2.0.1+cu118
47
- - Datasets 2.12.0
48
  - Tokenizers 0.13.3
 
2
  license: cc-by-nc-4.0
3
  tags:
4
  - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
  model-index:
8
  - name: videomae-base-finetuned-ucf101-subset
9
  results: []
 
15
  # videomae-base-finetuned-ucf101-subset
16
 
17
  This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.1658
20
+ - Accuracy: 0.9548
21
 
22
  ## Model description
23
 
 
37
 
38
  The following hyperparameters were used during training:
39
  - learning_rate: 5e-05
40
+ - train_batch_size: 4
41
+ - eval_batch_size: 4
42
  - seed: 42
43
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
  - lr_scheduler_type: linear
45
  - lr_scheduler_warmup_ratio: 0.1
46
+ - training_steps: 600
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | 2.0934 | 0.12 | 75 | 1.7596 | 0.5429 |
53
+ | 0.9556 | 1.12 | 150 | 1.1258 | 0.6429 |
54
+ | 0.4154 | 2.12 | 225 | 0.4632 | 0.8571 |
55
+ | 0.4116 | 3.12 | 300 | 0.5566 | 0.8571 |
56
+ | 0.021 | 4.12 | 375 | 0.1726 | 0.9714 |
57
+ | 0.0084 | 5.12 | 450 | 0.1028 | 0.9714 |
58
+ | 0.0056 | 6.12 | 525 | 0.0352 | 0.9857 |
59
+ | 0.0051 | 7.12 | 600 | 0.0435 | 0.9714 |
60
+
61
 
62
  ### Framework versions
63
 
64
+ - Transformers 4.28.1
65
+ - Pytorch 2.0.0
66
+ - Datasets 2.1.0
67
  - Tokenizers 0.13.3