update model card README.md
Browse files
README.md
CHANGED
@@ -2,6 +2,8 @@
|
|
2 |
license: cc-by-nc-4.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
|
|
|
|
5 |
model-index:
|
6 |
- name: videomae-base-finetuned-ucf101-subset
|
7 |
results: []
|
@@ -13,6 +15,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
13 |
# videomae-base-finetuned-ucf101-subset
|
14 |
|
15 |
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
|
|
|
|
|
|
|
16 |
|
17 |
## Model description
|
18 |
|
@@ -32,17 +37,31 @@ More information needed
|
|
32 |
|
33 |
The following hyperparameters were used during training:
|
34 |
- learning_rate: 5e-05
|
35 |
-
- train_batch_size:
|
36 |
-
- eval_batch_size:
|
37 |
- seed: 42
|
38 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
39 |
- lr_scheduler_type: linear
|
40 |
- lr_scheduler_warmup_ratio: 0.1
|
41 |
-
- training_steps:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
### Framework versions
|
44 |
|
45 |
-
- Transformers 4.
|
46 |
-
- Pytorch 2.0.
|
47 |
-
- Datasets 2.
|
48 |
- Tokenizers 0.13.3
|
|
|
2 |
license: cc-by-nc-4.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
model-index:
|
8 |
- name: videomae-base-finetuned-ucf101-subset
|
9 |
results: []
|
|
|
15 |
# videomae-base-finetuned-ucf101-subset
|
16 |
|
17 |
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.1658
|
20 |
+
- Accuracy: 0.9548
|
21 |
|
22 |
## Model description
|
23 |
|
|
|
37 |
|
38 |
The following hyperparameters were used during training:
|
39 |
- learning_rate: 5e-05
|
40 |
+
- train_batch_size: 4
|
41 |
+
- eval_batch_size: 4
|
42 |
- seed: 42
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
- lr_scheduler_warmup_ratio: 0.1
|
46 |
+
- training_steps: 600
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
+
| 2.0934 | 0.12 | 75 | 1.7596 | 0.5429 |
|
53 |
+
| 0.9556 | 1.12 | 150 | 1.1258 | 0.6429 |
|
54 |
+
| 0.4154 | 2.12 | 225 | 0.4632 | 0.8571 |
|
55 |
+
| 0.4116 | 3.12 | 300 | 0.5566 | 0.8571 |
|
56 |
+
| 0.021 | 4.12 | 375 | 0.1726 | 0.9714 |
|
57 |
+
| 0.0084 | 5.12 | 450 | 0.1028 | 0.9714 |
|
58 |
+
| 0.0056 | 6.12 | 525 | 0.0352 | 0.9857 |
|
59 |
+
| 0.0051 | 7.12 | 600 | 0.0435 | 0.9714 |
|
60 |
+
|
61 |
|
62 |
### Framework versions
|
63 |
|
64 |
+
- Transformers 4.28.1
|
65 |
+
- Pytorch 2.0.0
|
66 |
+
- Datasets 2.1.0
|
67 |
- Tokenizers 0.13.3
|