Jozaita commited on
Commit
6bc82de
1 Parent(s): a588886

RL_course_week_1

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
Lunar_test.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0712e94dbcfb40a41faa9c403a4f13bba20674d7a717ae08ae601f05c4eb681f
3
+ size 144048
Lunar_test/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
Lunar_test/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8f8f0ebf80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8f8f0f2050>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8f8f0f20e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8f8f0f2170>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8f8f0f2200>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8f8f0f2290>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8f8f0f2320>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8f8f0f23b0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8f8f0f2440>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8f8f0f24d0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8f8f0f2560>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f8f8f130c90>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 524288,
46
+ "_total_timesteps": 500000.0,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652796146.7974308,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIB9u7193G8/WreCve3mCb9YPeG9VIk5vQAAAAAAAAAAQ+PUPkpJMj5iIHq+FzgWvlCoED0SsuO8AAAAAAAAAAAAYcO8mWwsPk5cxD3eUWy+1L2KPGabrjwAAAAAAAAAAIDFWL2ARMA/Xaizvte07j3OjTG95IshvgAAAAAAAAAAGuQ/vvHpXzyldPc6D38ouV6x+r39ryQ6AACAPwAAgD8TpTw+XHxuvPrYojris764R0nfvVWIzrkAAIA/AACAP3MJHD7XTRC7z+4hNFl5hLI3HHq8fAUFtAAAgD8AAIA/020rPo+vSLyIq+86jbcoucBNrb03sRK6AACAPwAAgD/zUqS9rlOKujhSZD3TBye9sSNxu1cXEr4AAAAAAACAP2YHBb09qF277v2FPXmJJr7Mh3I7MnUYPQAAAAAAAIA/M2EwPFIA77mokqO3Ef0/MOeZO7tgj8A2AACAPwAAgD/zNfk9fJU6PTKLTb2aNAe9UJq1u91cDjwAAAAAAAAAAABxOj4boaG8L5ABOmE9RriZMBG+AFQruQAAgD8AAIA/ZpwTPoSEpj+Ppso+7lcRvzUt1j3lom09AAAAAAAAAADNKxg+aFD/PVr3ID1MQzq+YXFlPU7xZr0AAAAAAAAAAFPrOT7o68G8ZXt1uTPQszdfhSq+yPqkOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.04857599999999995,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVTxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqn6l86GWcECUhpRSlIwBbJRNAQGMAXSUR0Cg9rmMwUQDdX2UKGgGaAloD0MIQiJt48/HcECUhpRSlGgVTR8BaBZHQKD3P9LpRoB1fZQoaAZoCWgPQwgNxLKZA71xQJSGlFKUaBVNFQFoFkdAoPdq6cy31HV9lChoBmgJaA9DCNAPI4QH43BAlIaUUpRoFU1JAWgWR0Cg932bG3nZdX2UKGgGaAloD0MIgQabOs9ZcUCUhpRSlGgVS7xoFkdAoPfdcMVk+XV9lChoBmgJaA9DCHh8e9cgo3BAlIaUUpRoFUvmaBZHQKD47OjZcs11fZQoaAZoCWgPQwjHuU24VwpiQJSGlFKUaBVN6ANoFkdAoPj7vG6wuHV9lChoBmgJaA9DCMK+nUQExnFAlIaUUpRoFUv9aBZHQKE+w8BdUsF1fZQoaAZoCWgPQwhTeNDsOohvQJSGlFKUaBVL0mgWR0ChP0ymqHXVdX2UKGgGaAloD0MI3zE89jNBbkCUhpRSlGgVTQ0BaBZHQKE/t9JBgNR1fZQoaAZoCWgPQwjFq6xtykZxQJSGlFKUaBVNBgFoFkdAoUCIkC3gDXV9lChoBmgJaA9DCC7lfLE3HXJAlIaUUpRoFUv2aBZHQKFAjMHKOkt1fZQoaAZoCWgPQwgdHsL46VxxQJSGlFKUaBVNdQFoFkdAoUCUaqCHynV9lChoBmgJaA9DCB2rlJ7pxF1AlIaUUpRoFU3oA2gWR0ChQYSfL9uQdX2UKGgGaAloD0MIoBUYsrqob0CUhpRSlGgVTSEBaBZHQKFC7JyQxN91fZQoaAZoCWgPQwg2BMdlHGdwQJSGlFKUaBVL82gWR0ChQw8L8aXKdX2UKGgGaAloD0MI1jVaDjQBcUCUhpRSlGgVTQcBaBZHQKFDmSdvsJJ1fZQoaAZoCWgPQwicUfNVcoRwQJSGlFKUaBVNZQFoFkdAoUPZ9E1EVnV9lChoBmgJaA9DCE9AE2HDaW9AlIaUUpRoFU2CAWgWR0ChRL2xY7q6dX2UKGgGaAloD0MI/vM0YBCycECUhpRSlGgVS+hoFkdAoUVkiW3Sa3V9lChoBmgJaA9DCPymsFJBnHFAlIaUUpRoFU0WAWgWR0ChRZCKBNEgdX2UKGgGaAloD0MIZeQs7OkmbkCUhpRSlGgVTRMBaBZHQKFGAma6ST11fZQoaAZoCWgPQwjFdvcAXa9yQJSGlFKUaBVL5mgWR0ChRjIjnmq6dX2UKGgGaAloD0MI5bUSuktIcECUhpRSlGgVTQQBaBZHQKFH5e9Ba9t1fZQoaAZoCWgPQwgBa9WuyUZxQJSGlFKUaBVL1GgWR0ChSEfdZaFFdX2UKGgGaAloD0MIJNbiU4ABbkCUhpRSlGgVS+doFkdAoUlg99tuUHV9lChoBmgJaA9DCK6dKAmJw2RAlIaUUpRoFU3oA2gWR0ChSWl6Z6UrdX2UKGgGaAloD0MIFXR7SWNNb0CUhpRSlGgVTWsBaBZHQKFJjs2NvO11fZQoaAZoCWgPQwg8okJ1801tQJSGlFKUaBVNEgFoFkdAoUm+b/ffoHV9lChoBmgJaA9DCACsjhwpHHBAlIaUUpRoFUvhaBZHQKFKU0jTrmh1fZQoaAZoCWgPQwj4im69pitgQJSGlFKUaBVN6ANoFkdAoUpc5GSZB3V9lChoBmgJaA9DCIi85eoHcnBAlIaUUpRoFUv1aBZHQKFLzKWcBlt1fZQoaAZoCWgPQwhbttYXSfBxQJSGlFKUaBVL+GgWR0ChTHWzv7WNdX2UKGgGaAloD0MIhxVu+UibcECUhpRSlGgVTVsBaBZHQKFMhr/sE7p1fZQoaAZoCWgPQwhpGan3VJ9uQJSGlFKUaBVNOAFoFkdAoU0iL/CIlHV9lChoBmgJaA9DCLhzYaQX4nBAlIaUUpRoFUvvaBZHQKFNwupS75F1fZQoaAZoCWgPQwiSQINNHbFyQJSGlFKUaBVNAAFoFkdAoU6BCjUNKHV9lChoBmgJaA9DCNZTq6+ufm5AlIaUUpRoFUvUaBZHQKFOm4oZydZ1fZQoaAZoCWgPQwiph2h0h7RvQJSGlFKUaBVL4WgWR0ChTr4W+GoKdX2UKGgGaAloD0MIvcPt0DD7bECUhpRSlGgVS9hoFkdAoU7f2GqPwXV9lChoBmgJaA9DCOYffZMmrXFAlIaUUpRoFUvTaBZHQKFPS4G2TgV1fZQoaAZoCWgPQwhehCnKpS9yQJSGlFKUaBVNBQFoFkdAoVBqQT238XV9lChoBmgJaA9DCJ90IsGUGXFAlIaUUpRoFU01AWgWR0ChUJUmdAgQdX2UKGgGaAloD0MI2NZP/1lBV0CUhpRSlGgVTegDaBZHQKFQ+lnAZbZ1fZQoaAZoCWgPQwjM64hD9iZxQJSGlFKUaBVL22gWR0ChUVOpCKJmdX2UKGgGaAloD0MIDqDf96+RcECUhpRSlGgVTToBaBZHQKFSr/kvK2d1fZQoaAZoCWgPQwj7zi9KUN5uQJSGlFKUaBVL7GgWR0ChUu109yLidX2UKGgGaAloD0MIgv3XuWlaZkCUhpRSlGgVTegDaBZHQKFTPXSSeRR1fZQoaAZoCWgPQwjx2M9i6bVxQJSGlFKUaBVL5GgWR0ChU6KXfIjodX2UKGgGaAloD0MIaTnQQ+1hcUCUhpRSlGgVS/BoFkdAoVPA5q/M4nV9lChoBmgJaA9DCAtFup8ThXFAlIaUUpRoFUvpaBZHQKFUS8g6ltV1fZQoaAZoCWgPQwhOK4VArvNuQJSGlFKUaBVL8GgWR0ChVYQW3z+WdX2UKGgGaAloD0MI73VSX9axcECUhpRSlGgVS/loFkdAoVZBZ4fOlnV9lChoBmgJaA9DCDV5ymr6aXNAlIaUUpRoFU0QAWgWR0ChVmAr6LwXdX2UKGgGaAloD0MIuhEWFXH9b0CUhpRSlGgVS+5oFkdAoVZmaz/p+3V9lChoBmgJaA9DCA0Zj1KJam1AlIaUUpRoFU3SAmgWR0ChVolMIu5CdX2UKGgGaAloD0MIkszqHe5lcUCUhpRSlGgVTXYBaBZHQKFW2R2bG3p1fZQoaAZoCWgPQwhDcjJxq11jQJSGlFKUaBVN6ANoFkdAoVeXboKUmnV9lChoBmgJaA9DCLh3DfpSCnFAlIaUUpRoFUvgaBZHQKFX3LK3d9F1fZQoaAZoCWgPQwhtjJ3wkuBrQJSGlFKUaBVNBwFoFkdAoVhew1R+B3V9lChoBmgJaA9DCPGcLSA06XJAlIaUUpRoFUvtaBZHQKFYiUB4lhR1fZQoaAZoCWgPQwh1AS8zrE9wQJSGlFKUaBVNAQFoFkdAoVmK6reZX3V9lChoBmgJaA9DCCC0Hr7MH3FAlIaUUpRoFU0dAWgWR0ChWZmQ8wHrdX2UKGgGaAloD0MIiLzl6sf/cECUhpRSlGgVS8xoFkdAoVsKTSsr/nV9lChoBmgJaA9DCAdi2czhoXJAlIaUUpRoFUv2aBZHQKFbWMBp5/t1fZQoaAZoCWgPQwgfSx+64KxwQJSGlFKUaBVL+GgWR0ChW4XWFvhqdX2UKGgGaAloD0MIe/gyUcRnckCUhpRSlGgVS/5oFkdAoVvJkkKNQ3V9lChoBmgJaA9DCD0NGCS9rHFAlIaUUpRoFUvUaBZHQKFcCOQQtjF1fZQoaAZoCWgPQwj6RJ4k3QJxQJSGlFKUaBVNQQFoFkdAoVw2iYb833V9lChoBmgJaA9DCCAkC5jAFHFAlIaUUpRoFU0bAWgWR0ChXD1IAfdRdX2UKGgGaAloD0MIi6Td6OOAbkCUhpRSlGgVS/toFkdAoV0WGIsRQXV9lChoBmgJaA9DCPWdX5Qg5nJAlIaUUpRoFUvsaBZHQKFdchHskY51fZQoaAZoCWgPQwjDmzV4n39xQJSGlFKUaBVL3mgWR0ChXjkrXlKcdX2UKGgGaAloD0MIHSJuTqW0bkCUhpRSlGgVS/NoFkdAoV6+gYgq3HV9lChoBmgJaA9DCALxun5BbXJAlIaUUpRoFUvjaBZHQKFf1iLl3hZ1fZQoaAZoCWgPQwgPQkC+BLFwQJSGlFKUaBVL+GgWR0ChYOwGGEf1dX2UKGgGaAloD0MIQde+gJ4zcECUhpRSlGgVS+JoFkdAoWD7ilzltHV9lChoBmgJaA9DCPpgGRu6d3JAlIaUUpRoFU0OAWgWR0ChYUdtMwlCdX2UKGgGaAloD0MI4nSSre4AcUCUhpRSlGgVS/NoFkdAoWGlYjjaPHV9lChoBmgJaA9DCM8R+S6l5nBAlIaUUpRoFU0OAWgWR0ChYcZXdTHbdX2UKGgGaAloD0MI/UtSmWIRX0CUhpRSlGgVTegDaBZHQKFh/l4C6pZ1fZQoaAZoCWgPQwjoacAgaUxxQJSGlFKUaBVL4WgWR0ChYpxsMy8BdX2UKGgGaAloD0MIpP/lWrSHYkCUhpRSlGgVTegDaBZHQKFirg3Lmp51fZQoaAZoCWgPQwiV8IRefw5wQJSGlFKUaBVL5GgWR0ChY3th3JPqdX2UKGgGaAloD0MIRtCYSVTFYECUhpRSlGgVTegDaBZHQKFj+2/BWPt1fZQoaAZoCWgPQwi9j6M5sgRuQJSGlFKUaBVNdgFoFkdAoWSEEPlMiHV9lChoBmgJaA9DCM8VpYRgkGxAlIaUUpRoFU0RAWgWR0ChZP95yEL6dX2UKGgGaAloD0MILcxCOyfIbkCUhpRSlGgVS/poFkdAoWWRfShJy3V9lChoBmgJaA9DCKwb746MZ21AlIaUUpRoFUvmaBZHQKFmJTCLuQZ1fZQoaAZoCWgPQwjbMAqCR19wQJSGlFKUaBVL92gWR0ChZnhuXNTtdX2UKGgGaAloD0MI8PeL2RIwcUCUhpRSlGgVTQABaBZHQKFnAxB3Roh1fZQoaAZoCWgPQwjrcd9qnWRwQJSGlFKUaBVNAQFoFkdAoWdhGjKxLXV9lChoBmgJaA9DCH2VfOwu2m1AlIaUUpRoFUv/aBZHQKFndSsr/bV1fZQoaAZoCWgPQwjZ7h6g+/RxQJSGlFKUaBVL7GgWR0ChZ944p+c6dX2UKGgGaAloD0MIntMs0O6tYUCUhpRSlGgVTegDaBZHQKFoUVs1sLx1fZQoaAZoCWgPQwhiE5m5wJhwQJSGlFKUaBVNNAFoFkdAoWjQ/iYLLXV9lChoBmgJaA9DCMIU5dJ4pW5AlIaUUpRoFUvlaBZHQKFpGOqebut1fZQoaAZoCWgPQwjTo6mezLhtQJSGlFKUaBVNSgFoFkdAoWrYGjbi63V9lChoBmgJaA9DCHGTUWWYqXFAlIaUUpRoFU0nAWgWR0Chax9+ocaPdX2UKGgGaAloD0MI36RpULStb0CUhpRSlGgVS/RoFkdAoWuhCngpB3VlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 320,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
Lunar_test/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d590e4f228111b97bed9e0b7619828a5d7a947e9e701791f348f6f3352fe129
3
+ size 84893
Lunar_test/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34a7f53290edf7dd93bd1c4ee061bfc0e310e0234f503fe4aacb543bf8548ee2
3
+ size 43201
Lunar_test/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
Lunar_test/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: MlpPolicyPPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 272.58 +/- 18.37
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **MlpPolicyPPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **MlpPolicyPPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8f8f0ebf80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8f8f0f2050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8f8f0f20e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8f8f0f2170>", "_build": "<function ActorCriticPolicy._build at 0x7f8f8f0f2200>", "forward": "<function ActorCriticPolicy.forward at 0x7f8f8f0f2290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8f8f0f2320>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8f8f0f23b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8f8f0f2440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8f8f0f24d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8f8f0f2560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8f8f130c90>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652796146.7974308, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIB9u7193G8/WreCve3mCb9YPeG9VIk5vQAAAAAAAAAAQ+PUPkpJMj5iIHq+FzgWvlCoED0SsuO8AAAAAAAAAAAAYcO8mWwsPk5cxD3eUWy+1L2KPGabrjwAAAAAAAAAAIDFWL2ARMA/Xaizvte07j3OjTG95IshvgAAAAAAAAAAGuQ/vvHpXzyldPc6D38ouV6x+r39ryQ6AACAPwAAgD8TpTw+XHxuvPrYojris764R0nfvVWIzrkAAIA/AACAP3MJHD7XTRC7z+4hNFl5hLI3HHq8fAUFtAAAgD8AAIA/020rPo+vSLyIq+86jbcoucBNrb03sRK6AACAPwAAgD/zUqS9rlOKujhSZD3TBye9sSNxu1cXEr4AAAAAAACAP2YHBb09qF277v2FPXmJJr7Mh3I7MnUYPQAAAAAAAIA/M2EwPFIA77mokqO3Ef0/MOeZO7tgj8A2AACAPwAAgD/zNfk9fJU6PTKLTb2aNAe9UJq1u91cDjwAAAAAAAAAAABxOj4boaG8L5ABOmE9RriZMBG+AFQruQAAgD8AAIA/ZpwTPoSEpj+Ppso+7lcRvzUt1j3lom09AAAAAAAAAADNKxg+aFD/PVr3ID1MQzq+YXFlPU7xZr0AAAAAAAAAAFPrOT7o68G8ZXt1uTPQszdfhSq+yPqkOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVTxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqn6l86GWcECUhpRSlIwBbJRNAQGMAXSUR0Cg9rmMwUQDdX2UKGgGaAloD0MIQiJt48/HcECUhpRSlGgVTR8BaBZHQKD3P9LpRoB1fZQoaAZoCWgPQwgNxLKZA71xQJSGlFKUaBVNFQFoFkdAoPdq6cy31HV9lChoBmgJaA9DCNAPI4QH43BAlIaUUpRoFU1JAWgWR0Cg932bG3nZdX2UKGgGaAloD0MIgQabOs9ZcUCUhpRSlGgVS7xoFkdAoPfdcMVk+XV9lChoBmgJaA9DCHh8e9cgo3BAlIaUUpRoFUvmaBZHQKD47OjZcs11fZQoaAZoCWgPQwjHuU24VwpiQJSGlFKUaBVN6ANoFkdAoPj7vG6wuHV9lChoBmgJaA9DCMK+nUQExnFAlIaUUpRoFUv9aBZHQKE+w8BdUsF1fZQoaAZoCWgPQwhTeNDsOohvQJSGlFKUaBVL0mgWR0ChP0ymqHXVdX2UKGgGaAloD0MI3zE89jNBbkCUhpRSlGgVTQ0BaBZHQKE/t9JBgNR1fZQoaAZoCWgPQwjFq6xtykZxQJSGlFKUaBVNBgFoFkdAoUCIkC3gDXV9lChoBmgJaA9DCC7lfLE3HXJAlIaUUpRoFUv2aBZHQKFAjMHKOkt1fZQoaAZoCWgPQwgdHsL46VxxQJSGlFKUaBVNdQFoFkdAoUCUaqCHynV9lChoBmgJaA9DCB2rlJ7pxF1AlIaUUpRoFU3oA2gWR0ChQYSfL9uQdX2UKGgGaAloD0MIoBUYsrqob0CUhpRSlGgVTSEBaBZHQKFC7JyQxN91fZQoaAZoCWgPQwg2BMdlHGdwQJSGlFKUaBVL82gWR0ChQw8L8aXKdX2UKGgGaAloD0MI1jVaDjQBcUCUhpRSlGgVTQcBaBZHQKFDmSdvsJJ1fZQoaAZoCWgPQwicUfNVcoRwQJSGlFKUaBVNZQFoFkdAoUPZ9E1EVnV9lChoBmgJaA9DCE9AE2HDaW9AlIaUUpRoFU2CAWgWR0ChRL2xY7q6dX2UKGgGaAloD0MI/vM0YBCycECUhpRSlGgVS+hoFkdAoUVkiW3Sa3V9lChoBmgJaA9DCPymsFJBnHFAlIaUUpRoFU0WAWgWR0ChRZCKBNEgdX2UKGgGaAloD0MIZeQs7OkmbkCUhpRSlGgVTRMBaBZHQKFGAma6ST11fZQoaAZoCWgPQwjFdvcAXa9yQJSGlFKUaBVL5mgWR0ChRjIjnmq6dX2UKGgGaAloD0MI5bUSuktIcECUhpRSlGgVTQQBaBZHQKFH5e9Ba9t1fZQoaAZoCWgPQwgBa9WuyUZxQJSGlFKUaBVL1GgWR0ChSEfdZaFFdX2UKGgGaAloD0MIJNbiU4ABbkCUhpRSlGgVS+doFkdAoUlg99tuUHV9lChoBmgJaA9DCK6dKAmJw2RAlIaUUpRoFU3oA2gWR0ChSWl6Z6UrdX2UKGgGaAloD0MIFXR7SWNNb0CUhpRSlGgVTWsBaBZHQKFJjs2NvO11fZQoaAZoCWgPQwg8okJ1801tQJSGlFKUaBVNEgFoFkdAoUm+b/ffoHV9lChoBmgJaA9DCACsjhwpHHBAlIaUUpRoFUvhaBZHQKFKU0jTrmh1fZQoaAZoCWgPQwj4im69pitgQJSGlFKUaBVN6ANoFkdAoUpc5GSZB3V9lChoBmgJaA9DCIi85eoHcnBAlIaUUpRoFUv1aBZHQKFLzKWcBlt1fZQoaAZoCWgPQwhbttYXSfBxQJSGlFKUaBVL+GgWR0ChTHWzv7WNdX2UKGgGaAloD0MIhxVu+UibcECUhpRSlGgVTVsBaBZHQKFMhr/sE7p1fZQoaAZoCWgPQwhpGan3VJ9uQJSGlFKUaBVNOAFoFkdAoU0iL/CIlHV9lChoBmgJaA9DCLhzYaQX4nBAlIaUUpRoFUvvaBZHQKFNwupS75F1fZQoaAZoCWgPQwiSQINNHbFyQJSGlFKUaBVNAAFoFkdAoU6BCjUNKHV9lChoBmgJaA9DCNZTq6+ufm5AlIaUUpRoFUvUaBZHQKFOm4oZydZ1fZQoaAZoCWgPQwiph2h0h7RvQJSGlFKUaBVL4WgWR0ChTr4W+GoKdX2UKGgGaAloD0MIvcPt0DD7bECUhpRSlGgVS9hoFkdAoU7f2GqPwXV9lChoBmgJaA9DCOYffZMmrXFAlIaUUpRoFUvTaBZHQKFPS4G2TgV1fZQoaAZoCWgPQwhehCnKpS9yQJSGlFKUaBVNBQFoFkdAoVBqQT238XV9lChoBmgJaA9DCJ90IsGUGXFAlIaUUpRoFU01AWgWR0ChUJUmdAgQdX2UKGgGaAloD0MI2NZP/1lBV0CUhpRSlGgVTegDaBZHQKFQ+lnAZbZ1fZQoaAZoCWgPQwjM64hD9iZxQJSGlFKUaBVL22gWR0ChUVOpCKJmdX2UKGgGaAloD0MIDqDf96+RcECUhpRSlGgVTToBaBZHQKFSr/kvK2d1fZQoaAZoCWgPQwj7zi9KUN5uQJSGlFKUaBVL7GgWR0ChUu109yLidX2UKGgGaAloD0MIgv3XuWlaZkCUhpRSlGgVTegDaBZHQKFTPXSSeRR1fZQoaAZoCWgPQwjx2M9i6bVxQJSGlFKUaBVL5GgWR0ChU6KXfIjodX2UKGgGaAloD0MIaTnQQ+1hcUCUhpRSlGgVS/BoFkdAoVPA5q/M4nV9lChoBmgJaA9DCAtFup8ThXFAlIaUUpRoFUvpaBZHQKFUS8g6ltV1fZQoaAZoCWgPQwhOK4VArvNuQJSGlFKUaBVL8GgWR0ChVYQW3z+WdX2UKGgGaAloD0MI73VSX9axcECUhpRSlGgVS/loFkdAoVZBZ4fOlnV9lChoBmgJaA9DCDV5ymr6aXNAlIaUUpRoFU0QAWgWR0ChVmAr6LwXdX2UKGgGaAloD0MIuhEWFXH9b0CUhpRSlGgVS+5oFkdAoVZmaz/p+3V9lChoBmgJaA9DCA0Zj1KJam1AlIaUUpRoFU3SAmgWR0ChVolMIu5CdX2UKGgGaAloD0MIkszqHe5lcUCUhpRSlGgVTXYBaBZHQKFW2R2bG3p1fZQoaAZoCWgPQwhDcjJxq11jQJSGlFKUaBVN6ANoFkdAoVeXboKUmnV9lChoBmgJaA9DCLh3DfpSCnFAlIaUUpRoFUvgaBZHQKFX3LK3d9F1fZQoaAZoCWgPQwhtjJ3wkuBrQJSGlFKUaBVNBwFoFkdAoVhew1R+B3V9lChoBmgJaA9DCPGcLSA06XJAlIaUUpRoFUvtaBZHQKFYiUB4lhR1fZQoaAZoCWgPQwh1AS8zrE9wQJSGlFKUaBVNAQFoFkdAoVmK6reZX3V9lChoBmgJaA9DCCC0Hr7MH3FAlIaUUpRoFU0dAWgWR0ChWZmQ8wHrdX2UKGgGaAloD0MIiLzl6sf/cECUhpRSlGgVS8xoFkdAoVsKTSsr/nV9lChoBmgJaA9DCAdi2czhoXJAlIaUUpRoFUv2aBZHQKFbWMBp5/t1fZQoaAZoCWgPQwgfSx+64KxwQJSGlFKUaBVL+GgWR0ChW4XWFvhqdX2UKGgGaAloD0MIe/gyUcRnckCUhpRSlGgVS/5oFkdAoVvJkkKNQ3V9lChoBmgJaA9DCD0NGCS9rHFAlIaUUpRoFUvUaBZHQKFcCOQQtjF1fZQoaAZoCWgPQwj6RJ4k3QJxQJSGlFKUaBVNQQFoFkdAoVw2iYb833V9lChoBmgJaA9DCCAkC5jAFHFAlIaUUpRoFU0bAWgWR0ChXD1IAfdRdX2UKGgGaAloD0MIi6Td6OOAbkCUhpRSlGgVS/toFkdAoV0WGIsRQXV9lChoBmgJaA9DCPWdX5Qg5nJAlIaUUpRoFUvsaBZHQKFdchHskY51fZQoaAZoCWgPQwjDmzV4n39xQJSGlFKUaBVL3mgWR0ChXjkrXlKcdX2UKGgGaAloD0MIHSJuTqW0bkCUhpRSlGgVS/NoFkdAoV6+gYgq3HV9lChoBmgJaA9DCALxun5BbXJAlIaUUpRoFUvjaBZHQKFf1iLl3hZ1fZQoaAZoCWgPQwgPQkC+BLFwQJSGlFKUaBVL+GgWR0ChYOwGGEf1dX2UKGgGaAloD0MIQde+gJ4zcECUhpRSlGgVS+JoFkdAoWD7ilzltHV9lChoBmgJaA9DCPpgGRu6d3JAlIaUUpRoFU0OAWgWR0ChYUdtMwlCdX2UKGgGaAloD0MI4nSSre4AcUCUhpRSlGgVS/NoFkdAoWGlYjjaPHV9lChoBmgJaA9DCM8R+S6l5nBAlIaUUpRoFU0OAWgWR0ChYcZXdTHbdX2UKGgGaAloD0MI/UtSmWIRX0CUhpRSlGgVTegDaBZHQKFh/l4C6pZ1fZQoaAZoCWgPQwjoacAgaUxxQJSGlFKUaBVL4WgWR0ChYpxsMy8BdX2UKGgGaAloD0MIpP/lWrSHYkCUhpRSlGgVTegDaBZHQKFirg3Lmp51fZQoaAZoCWgPQwiV8IRefw5wQJSGlFKUaBVL5GgWR0ChY3th3JPqdX2UKGgGaAloD0MIRtCYSVTFYECUhpRSlGgVTegDaBZHQKFj+2/BWPt1fZQoaAZoCWgPQwi9j6M5sgRuQJSGlFKUaBVNdgFoFkdAoWSEEPlMiHV9lChoBmgJaA9DCM8VpYRgkGxAlIaUUpRoFU0RAWgWR0ChZP95yEL6dX2UKGgGaAloD0MILcxCOyfIbkCUhpRSlGgVS/poFkdAoWWRfShJy3V9lChoBmgJaA9DCKwb746MZ21AlIaUUpRoFUvmaBZHQKFmJTCLuQZ1fZQoaAZoCWgPQwjbMAqCR19wQJSGlFKUaBVL92gWR0ChZnhuXNTtdX2UKGgGaAloD0MI8PeL2RIwcUCUhpRSlGgVTQABaBZHQKFnAxB3Roh1fZQoaAZoCWgPQwjrcd9qnWRwQJSGlFKUaBVNAQFoFkdAoWdhGjKxLXV9lChoBmgJaA9DCH2VfOwu2m1AlIaUUpRoFUv/aBZHQKFndSsr/bV1fZQoaAZoCWgPQwjZ7h6g+/RxQJSGlFKUaBVL7GgWR0ChZ944p+c6dX2UKGgGaAloD0MIntMs0O6tYUCUhpRSlGgVTegDaBZHQKFoUVs1sLx1fZQoaAZoCWgPQwhiE5m5wJhwQJSGlFKUaBVNNAFoFkdAoWjQ/iYLLXV9lChoBmgJaA9DCMIU5dJ4pW5AlIaUUpRoFUvlaBZHQKFpGOqebut1fZQoaAZoCWgPQwjTo6mezLhtQJSGlFKUaBVNSgFoFkdAoWrYGjbi63V9lChoBmgJaA9DCHGTUWWYqXFAlIaUUpRoFU0nAWgWR0Chax9+ocaPdX2UKGgGaAloD0MI36RpULStb0CUhpRSlGgVS/RoFkdAoWuhCngpB3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 320, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c9df83da5cb6aa376797606cc548e3dd32498a7360250f8d2c804e976a6e14f
3
+ size 231627
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 272.5832699441403, "std_reward": 18.368501085028164, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-17T15:03:13.143693"}