RL_course_week_1
Browse files- .gitattributes +1 -0
- Lunar_test.zip +3 -0
- Lunar_test/_stable_baselines3_version +1 -0
- Lunar_test/data +94 -0
- Lunar_test/policy.optimizer.pth +3 -0
- Lunar_test/policy.pth +3 -0
- Lunar_test/pytorch_variables.pth +3 -0
- Lunar_test/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
Lunar_test.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0712e94dbcfb40a41faa9c403a4f13bba20674d7a717ae08ae601f05c4eb681f
|
3 |
+
size 144048
|
Lunar_test/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
Lunar_test/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8f8f0ebf80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8f8f0f2050>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8f8f0f20e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8f8f0f2170>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8f8f0f2200>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8f8f0f2290>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8f8f0f2320>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8f8f0f23b0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8f8f0f2440>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8f8f0f24d0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8f8f0f2560>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f8f8f130c90>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000.0,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652796146.7974308,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIB9u7193G8/WreCve3mCb9YPeG9VIk5vQAAAAAAAAAAQ+PUPkpJMj5iIHq+FzgWvlCoED0SsuO8AAAAAAAAAAAAYcO8mWwsPk5cxD3eUWy+1L2KPGabrjwAAAAAAAAAAIDFWL2ARMA/Xaizvte07j3OjTG95IshvgAAAAAAAAAAGuQ/vvHpXzyldPc6D38ouV6x+r39ryQ6AACAPwAAgD8TpTw+XHxuvPrYojris764R0nfvVWIzrkAAIA/AACAP3MJHD7XTRC7z+4hNFl5hLI3HHq8fAUFtAAAgD8AAIA/020rPo+vSLyIq+86jbcoucBNrb03sRK6AACAPwAAgD/zUqS9rlOKujhSZD3TBye9sSNxu1cXEr4AAAAAAACAP2YHBb09qF277v2FPXmJJr7Mh3I7MnUYPQAAAAAAAIA/M2EwPFIA77mokqO3Ef0/MOeZO7tgj8A2AACAPwAAgD/zNfk9fJU6PTKLTb2aNAe9UJq1u91cDjwAAAAAAAAAAABxOj4boaG8L5ABOmE9RriZMBG+AFQruQAAgD8AAIA/ZpwTPoSEpj+Ppso+7lcRvzUt1j3lom09AAAAAAAAAADNKxg+aFD/PVr3ID1MQzq+YXFlPU7xZr0AAAAAAAAAAFPrOT7o68G8ZXt1uTPQszdfhSq+yPqkOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVTxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqn6l86GWcECUhpRSlIwBbJRNAQGMAXSUR0Cg9rmMwUQDdX2UKGgGaAloD0MIQiJt48/HcECUhpRSlGgVTR8BaBZHQKD3P9LpRoB1fZQoaAZoCWgPQwgNxLKZA71xQJSGlFKUaBVNFQFoFkdAoPdq6cy31HV9lChoBmgJaA9DCNAPI4QH43BAlIaUUpRoFU1JAWgWR0Cg932bG3nZdX2UKGgGaAloD0MIgQabOs9ZcUCUhpRSlGgVS7xoFkdAoPfdcMVk+XV9lChoBmgJaA9DCHh8e9cgo3BAlIaUUpRoFUvmaBZHQKD47OjZcs11fZQoaAZoCWgPQwjHuU24VwpiQJSGlFKUaBVN6ANoFkdAoPj7vG6wuHV9lChoBmgJaA9DCMK+nUQExnFAlIaUUpRoFUv9aBZHQKE+w8BdUsF1fZQoaAZoCWgPQwhTeNDsOohvQJSGlFKUaBVL0mgWR0ChP0ymqHXVdX2UKGgGaAloD0MI3zE89jNBbkCUhpRSlGgVTQ0BaBZHQKE/t9JBgNR1fZQoaAZoCWgPQwjFq6xtykZxQJSGlFKUaBVNBgFoFkdAoUCIkC3gDXV9lChoBmgJaA9DCC7lfLE3HXJAlIaUUpRoFUv2aBZHQKFAjMHKOkt1fZQoaAZoCWgPQwgdHsL46VxxQJSGlFKUaBVNdQFoFkdAoUCUaqCHynV9lChoBmgJaA9DCB2rlJ7pxF1AlIaUUpRoFU3oA2gWR0ChQYSfL9uQdX2UKGgGaAloD0MIoBUYsrqob0CUhpRSlGgVTSEBaBZHQKFC7JyQxN91fZQoaAZoCWgPQwg2BMdlHGdwQJSGlFKUaBVL82gWR0ChQw8L8aXKdX2UKGgGaAloD0MI1jVaDjQBcUCUhpRSlGgVTQcBaBZHQKFDmSdvsJJ1fZQoaAZoCWgPQwicUfNVcoRwQJSGlFKUaBVNZQFoFkdAoUPZ9E1EVnV9lChoBmgJaA9DCE9AE2HDaW9AlIaUUpRoFU2CAWgWR0ChRL2xY7q6dX2UKGgGaAloD0MI/vM0YBCycECUhpRSlGgVS+hoFkdAoUVkiW3Sa3V9lChoBmgJaA9DCPymsFJBnHFAlIaUUpRoFU0WAWgWR0ChRZCKBNEgdX2UKGgGaAloD0MIZeQs7OkmbkCUhpRSlGgVTRMBaBZHQKFGAma6ST11fZQoaAZoCWgPQwjFdvcAXa9yQJSGlFKUaBVL5mgWR0ChRjIjnmq6dX2UKGgGaAloD0MI5bUSuktIcECUhpRSlGgVTQQBaBZHQKFH5e9Ba9t1fZQoaAZoCWgPQwgBa9WuyUZxQJSGlFKUaBVL1GgWR0ChSEfdZaFFdX2UKGgGaAloD0MIJNbiU4ABbkCUhpRSlGgVS+doFkdAoUlg99tuUHV9lChoBmgJaA9DCK6dKAmJw2RAlIaUUpRoFU3oA2gWR0ChSWl6Z6UrdX2UKGgGaAloD0MIFXR7SWNNb0CUhpRSlGgVTWsBaBZHQKFJjs2NvO11fZQoaAZoCWgPQwg8okJ1801tQJSGlFKUaBVNEgFoFkdAoUm+b/ffoHV9lChoBmgJaA9DCACsjhwpHHBAlIaUUpRoFUvhaBZHQKFKU0jTrmh1fZQoaAZoCWgPQwj4im69pitgQJSGlFKUaBVN6ANoFkdAoUpc5GSZB3V9lChoBmgJaA9DCIi85eoHcnBAlIaUUpRoFUv1aBZHQKFLzKWcBlt1fZQoaAZoCWgPQwhbttYXSfBxQJSGlFKUaBVL+GgWR0ChTHWzv7WNdX2UKGgGaAloD0MIhxVu+UibcECUhpRSlGgVTVsBaBZHQKFMhr/sE7p1fZQoaAZoCWgPQwhpGan3VJ9uQJSGlFKUaBVNOAFoFkdAoU0iL/CIlHV9lChoBmgJaA9DCLhzYaQX4nBAlIaUUpRoFUvvaBZHQKFNwupS75F1fZQoaAZoCWgPQwiSQINNHbFyQJSGlFKUaBVNAAFoFkdAoU6BCjUNKHV9lChoBmgJaA9DCNZTq6+ufm5AlIaUUpRoFUvUaBZHQKFOm4oZydZ1fZQoaAZoCWgPQwiph2h0h7RvQJSGlFKUaBVL4WgWR0ChTr4W+GoKdX2UKGgGaAloD0MIvcPt0DD7bECUhpRSlGgVS9hoFkdAoU7f2GqPwXV9lChoBmgJaA9DCOYffZMmrXFAlIaUUpRoFUvTaBZHQKFPS4G2TgV1fZQoaAZoCWgPQwhehCnKpS9yQJSGlFKUaBVNBQFoFkdAoVBqQT238XV9lChoBmgJaA9DCJ90IsGUGXFAlIaUUpRoFU01AWgWR0ChUJUmdAgQdX2UKGgGaAloD0MI2NZP/1lBV0CUhpRSlGgVTegDaBZHQKFQ+lnAZbZ1fZQoaAZoCWgPQwjM64hD9iZxQJSGlFKUaBVL22gWR0ChUVOpCKJmdX2UKGgGaAloD0MIDqDf96+RcECUhpRSlGgVTToBaBZHQKFSr/kvK2d1fZQoaAZoCWgPQwj7zi9KUN5uQJSGlFKUaBVL7GgWR0ChUu109yLidX2UKGgGaAloD0MIgv3XuWlaZkCUhpRSlGgVTegDaBZHQKFTPXSSeRR1fZQoaAZoCWgPQwjx2M9i6bVxQJSGlFKUaBVL5GgWR0ChU6KXfIjodX2UKGgGaAloD0MIaTnQQ+1hcUCUhpRSlGgVS/BoFkdAoVPA5q/M4nV9lChoBmgJaA9DCAtFup8ThXFAlIaUUpRoFUvpaBZHQKFUS8g6ltV1fZQoaAZoCWgPQwhOK4VArvNuQJSGlFKUaBVL8GgWR0ChVYQW3z+WdX2UKGgGaAloD0MI73VSX9axcECUhpRSlGgVS/loFkdAoVZBZ4fOlnV9lChoBmgJaA9DCDV5ymr6aXNAlIaUUpRoFU0QAWgWR0ChVmAr6LwXdX2UKGgGaAloD0MIuhEWFXH9b0CUhpRSlGgVS+5oFkdAoVZmaz/p+3V9lChoBmgJaA9DCA0Zj1KJam1AlIaUUpRoFU3SAmgWR0ChVolMIu5CdX2UKGgGaAloD0MIkszqHe5lcUCUhpRSlGgVTXYBaBZHQKFW2R2bG3p1fZQoaAZoCWgPQwhDcjJxq11jQJSGlFKUaBVN6ANoFkdAoVeXboKUmnV9lChoBmgJaA9DCLh3DfpSCnFAlIaUUpRoFUvgaBZHQKFX3LK3d9F1fZQoaAZoCWgPQwhtjJ3wkuBrQJSGlFKUaBVNBwFoFkdAoVhew1R+B3V9lChoBmgJaA9DCPGcLSA06XJAlIaUUpRoFUvtaBZHQKFYiUB4lhR1fZQoaAZoCWgPQwh1AS8zrE9wQJSGlFKUaBVNAQFoFkdAoVmK6reZX3V9lChoBmgJaA9DCCC0Hr7MH3FAlIaUUpRoFU0dAWgWR0ChWZmQ8wHrdX2UKGgGaAloD0MIiLzl6sf/cECUhpRSlGgVS8xoFkdAoVsKTSsr/nV9lChoBmgJaA9DCAdi2czhoXJAlIaUUpRoFUv2aBZHQKFbWMBp5/t1fZQoaAZoCWgPQwgfSx+64KxwQJSGlFKUaBVL+GgWR0ChW4XWFvhqdX2UKGgGaAloD0MIe/gyUcRnckCUhpRSlGgVS/5oFkdAoVvJkkKNQ3V9lChoBmgJaA9DCD0NGCS9rHFAlIaUUpRoFUvUaBZHQKFcCOQQtjF1fZQoaAZoCWgPQwj6RJ4k3QJxQJSGlFKUaBVNQQFoFkdAoVw2iYb833V9lChoBmgJaA9DCCAkC5jAFHFAlIaUUpRoFU0bAWgWR0ChXD1IAfdRdX2UKGgGaAloD0MIi6Td6OOAbkCUhpRSlGgVS/toFkdAoV0WGIsRQXV9lChoBmgJaA9DCPWdX5Qg5nJAlIaUUpRoFUvsaBZHQKFdchHskY51fZQoaAZoCWgPQwjDmzV4n39xQJSGlFKUaBVL3mgWR0ChXjkrXlKcdX2UKGgGaAloD0MIHSJuTqW0bkCUhpRSlGgVS/NoFkdAoV6+gYgq3HV9lChoBmgJaA9DCALxun5BbXJAlIaUUpRoFUvjaBZHQKFf1iLl3hZ1fZQoaAZoCWgPQwgPQkC+BLFwQJSGlFKUaBVL+GgWR0ChYOwGGEf1dX2UKGgGaAloD0MIQde+gJ4zcECUhpRSlGgVS+JoFkdAoWD7ilzltHV9lChoBmgJaA9DCPpgGRu6d3JAlIaUUpRoFU0OAWgWR0ChYUdtMwlCdX2UKGgGaAloD0MI4nSSre4AcUCUhpRSlGgVS/NoFkdAoWGlYjjaPHV9lChoBmgJaA9DCM8R+S6l5nBAlIaUUpRoFU0OAWgWR0ChYcZXdTHbdX2UKGgGaAloD0MI/UtSmWIRX0CUhpRSlGgVTegDaBZHQKFh/l4C6pZ1fZQoaAZoCWgPQwjoacAgaUxxQJSGlFKUaBVL4WgWR0ChYpxsMy8BdX2UKGgGaAloD0MIpP/lWrSHYkCUhpRSlGgVTegDaBZHQKFirg3Lmp51fZQoaAZoCWgPQwiV8IRefw5wQJSGlFKUaBVL5GgWR0ChY3th3JPqdX2UKGgGaAloD0MIRtCYSVTFYECUhpRSlGgVTegDaBZHQKFj+2/BWPt1fZQoaAZoCWgPQwi9j6M5sgRuQJSGlFKUaBVNdgFoFkdAoWSEEPlMiHV9lChoBmgJaA9DCM8VpYRgkGxAlIaUUpRoFU0RAWgWR0ChZP95yEL6dX2UKGgGaAloD0MILcxCOyfIbkCUhpRSlGgVS/poFkdAoWWRfShJy3V9lChoBmgJaA9DCKwb746MZ21AlIaUUpRoFUvmaBZHQKFmJTCLuQZ1fZQoaAZoCWgPQwjbMAqCR19wQJSGlFKUaBVL92gWR0ChZnhuXNTtdX2UKGgGaAloD0MI8PeL2RIwcUCUhpRSlGgVTQABaBZHQKFnAxB3Roh1fZQoaAZoCWgPQwjrcd9qnWRwQJSGlFKUaBVNAQFoFkdAoWdhGjKxLXV9lChoBmgJaA9DCH2VfOwu2m1AlIaUUpRoFUv/aBZHQKFndSsr/bV1fZQoaAZoCWgPQwjZ7h6g+/RxQJSGlFKUaBVL7GgWR0ChZ944p+c6dX2UKGgGaAloD0MIntMs0O6tYUCUhpRSlGgVTegDaBZHQKFoUVs1sLx1fZQoaAZoCWgPQwhiE5m5wJhwQJSGlFKUaBVNNAFoFkdAoWjQ/iYLLXV9lChoBmgJaA9DCMIU5dJ4pW5AlIaUUpRoFUvlaBZHQKFpGOqebut1fZQoaAZoCWgPQwjTo6mezLhtQJSGlFKUaBVNSgFoFkdAoWrYGjbi63V9lChoBmgJaA9DCHGTUWWYqXFAlIaUUpRoFU0nAWgWR0Chax9+ocaPdX2UKGgGaAloD0MI36RpULStb0CUhpRSlGgVS/RoFkdAoWuhCngpB3VlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 320,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
Lunar_test/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d590e4f228111b97bed9e0b7619828a5d7a947e9e701791f348f6f3352fe129
|
3 |
+
size 84893
|
Lunar_test/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34a7f53290edf7dd93bd1c4ee061bfc0e310e0234f503fe4aacb543bf8548ee2
|
3 |
+
size 43201
|
Lunar_test/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
Lunar_test/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: MlpPolicyPPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 272.58 +/- 18.37
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **MlpPolicyPPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **MlpPolicyPPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8f8f0ebf80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8f8f0f2050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8f8f0f20e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8f8f0f2170>", "_build": "<function ActorCriticPolicy._build at 0x7f8f8f0f2200>", "forward": "<function ActorCriticPolicy.forward at 0x7f8f8f0f2290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8f8f0f2320>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8f8f0f23b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8f8f0f2440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8f8f0f24d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8f8f0f2560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8f8f130c90>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652796146.7974308, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIB9u7193G8/WreCve3mCb9YPeG9VIk5vQAAAAAAAAAAQ+PUPkpJMj5iIHq+FzgWvlCoED0SsuO8AAAAAAAAAAAAYcO8mWwsPk5cxD3eUWy+1L2KPGabrjwAAAAAAAAAAIDFWL2ARMA/Xaizvte07j3OjTG95IshvgAAAAAAAAAAGuQ/vvHpXzyldPc6D38ouV6x+r39ryQ6AACAPwAAgD8TpTw+XHxuvPrYojris764R0nfvVWIzrkAAIA/AACAP3MJHD7XTRC7z+4hNFl5hLI3HHq8fAUFtAAAgD8AAIA/020rPo+vSLyIq+86jbcoucBNrb03sRK6AACAPwAAgD/zUqS9rlOKujhSZD3TBye9sSNxu1cXEr4AAAAAAACAP2YHBb09qF277v2FPXmJJr7Mh3I7MnUYPQAAAAAAAIA/M2EwPFIA77mokqO3Ef0/MOeZO7tgj8A2AACAPwAAgD/zNfk9fJU6PTKLTb2aNAe9UJq1u91cDjwAAAAAAAAAAABxOj4boaG8L5ABOmE9RriZMBG+AFQruQAAgD8AAIA/ZpwTPoSEpj+Ppso+7lcRvzUt1j3lom09AAAAAAAAAADNKxg+aFD/PVr3ID1MQzq+YXFlPU7xZr0AAAAAAAAAAFPrOT7o68G8ZXt1uTPQszdfhSq+yPqkOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVTxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqn6l86GWcECUhpRSlIwBbJRNAQGMAXSUR0Cg9rmMwUQDdX2UKGgGaAloD0MIQiJt48/HcECUhpRSlGgVTR8BaBZHQKD3P9LpRoB1fZQoaAZoCWgPQwgNxLKZA71xQJSGlFKUaBVNFQFoFkdAoPdq6cy31HV9lChoBmgJaA9DCNAPI4QH43BAlIaUUpRoFU1JAWgWR0Cg932bG3nZdX2UKGgGaAloD0MIgQabOs9ZcUCUhpRSlGgVS7xoFkdAoPfdcMVk+XV9lChoBmgJaA9DCHh8e9cgo3BAlIaUUpRoFUvmaBZHQKD47OjZcs11fZQoaAZoCWgPQwjHuU24VwpiQJSGlFKUaBVN6ANoFkdAoPj7vG6wuHV9lChoBmgJaA9DCMK+nUQExnFAlIaUUpRoFUv9aBZHQKE+w8BdUsF1fZQoaAZoCWgPQwhTeNDsOohvQJSGlFKUaBVL0mgWR0ChP0ymqHXVdX2UKGgGaAloD0MI3zE89jNBbkCUhpRSlGgVTQ0BaBZHQKE/t9JBgNR1fZQoaAZoCWgPQwjFq6xtykZxQJSGlFKUaBVNBgFoFkdAoUCIkC3gDXV9lChoBmgJaA9DCC7lfLE3HXJAlIaUUpRoFUv2aBZHQKFAjMHKOkt1fZQoaAZoCWgPQwgdHsL46VxxQJSGlFKUaBVNdQFoFkdAoUCUaqCHynV9lChoBmgJaA9DCB2rlJ7pxF1AlIaUUpRoFU3oA2gWR0ChQYSfL9uQdX2UKGgGaAloD0MIoBUYsrqob0CUhpRSlGgVTSEBaBZHQKFC7JyQxN91fZQoaAZoCWgPQwg2BMdlHGdwQJSGlFKUaBVL82gWR0ChQw8L8aXKdX2UKGgGaAloD0MI1jVaDjQBcUCUhpRSlGgVTQcBaBZHQKFDmSdvsJJ1fZQoaAZoCWgPQwicUfNVcoRwQJSGlFKUaBVNZQFoFkdAoUPZ9E1EVnV9lChoBmgJaA9DCE9AE2HDaW9AlIaUUpRoFU2CAWgWR0ChRL2xY7q6dX2UKGgGaAloD0MI/vM0YBCycECUhpRSlGgVS+hoFkdAoUVkiW3Sa3V9lChoBmgJaA9DCPymsFJBnHFAlIaUUpRoFU0WAWgWR0ChRZCKBNEgdX2UKGgGaAloD0MIZeQs7OkmbkCUhpRSlGgVTRMBaBZHQKFGAma6ST11fZQoaAZoCWgPQwjFdvcAXa9yQJSGlFKUaBVL5mgWR0ChRjIjnmq6dX2UKGgGaAloD0MI5bUSuktIcECUhpRSlGgVTQQBaBZHQKFH5e9Ba9t1fZQoaAZoCWgPQwgBa9WuyUZxQJSGlFKUaBVL1GgWR0ChSEfdZaFFdX2UKGgGaAloD0MIJNbiU4ABbkCUhpRSlGgVS+doFkdAoUlg99tuUHV9lChoBmgJaA9DCK6dKAmJw2RAlIaUUpRoFU3oA2gWR0ChSWl6Z6UrdX2UKGgGaAloD0MIFXR7SWNNb0CUhpRSlGgVTWsBaBZHQKFJjs2NvO11fZQoaAZoCWgPQwg8okJ1801tQJSGlFKUaBVNEgFoFkdAoUm+b/ffoHV9lChoBmgJaA9DCACsjhwpHHBAlIaUUpRoFUvhaBZHQKFKU0jTrmh1fZQoaAZoCWgPQwj4im69pitgQJSGlFKUaBVN6ANoFkdAoUpc5GSZB3V9lChoBmgJaA9DCIi85eoHcnBAlIaUUpRoFUv1aBZHQKFLzKWcBlt1fZQoaAZoCWgPQwhbttYXSfBxQJSGlFKUaBVL+GgWR0ChTHWzv7WNdX2UKGgGaAloD0MIhxVu+UibcECUhpRSlGgVTVsBaBZHQKFMhr/sE7p1fZQoaAZoCWgPQwhpGan3VJ9uQJSGlFKUaBVNOAFoFkdAoU0iL/CIlHV9lChoBmgJaA9DCLhzYaQX4nBAlIaUUpRoFUvvaBZHQKFNwupS75F1fZQoaAZoCWgPQwiSQINNHbFyQJSGlFKUaBVNAAFoFkdAoU6BCjUNKHV9lChoBmgJaA9DCNZTq6+ufm5AlIaUUpRoFUvUaBZHQKFOm4oZydZ1fZQoaAZoCWgPQwiph2h0h7RvQJSGlFKUaBVL4WgWR0ChTr4W+GoKdX2UKGgGaAloD0MIvcPt0DD7bECUhpRSlGgVS9hoFkdAoU7f2GqPwXV9lChoBmgJaA9DCOYffZMmrXFAlIaUUpRoFUvTaBZHQKFPS4G2TgV1fZQoaAZoCWgPQwhehCnKpS9yQJSGlFKUaBVNBQFoFkdAoVBqQT238XV9lChoBmgJaA9DCJ90IsGUGXFAlIaUUpRoFU01AWgWR0ChUJUmdAgQdX2UKGgGaAloD0MI2NZP/1lBV0CUhpRSlGgVTegDaBZHQKFQ+lnAZbZ1fZQoaAZoCWgPQwjM64hD9iZxQJSGlFKUaBVL22gWR0ChUVOpCKJmdX2UKGgGaAloD0MIDqDf96+RcECUhpRSlGgVTToBaBZHQKFSr/kvK2d1fZQoaAZoCWgPQwj7zi9KUN5uQJSGlFKUaBVL7GgWR0ChUu109yLidX2UKGgGaAloD0MIgv3XuWlaZkCUhpRSlGgVTegDaBZHQKFTPXSSeRR1fZQoaAZoCWgPQwjx2M9i6bVxQJSGlFKUaBVL5GgWR0ChU6KXfIjodX2UKGgGaAloD0MIaTnQQ+1hcUCUhpRSlGgVS/BoFkdAoVPA5q/M4nV9lChoBmgJaA9DCAtFup8ThXFAlIaUUpRoFUvpaBZHQKFUS8g6ltV1fZQoaAZoCWgPQwhOK4VArvNuQJSGlFKUaBVL8GgWR0ChVYQW3z+WdX2UKGgGaAloD0MI73VSX9axcECUhpRSlGgVS/loFkdAoVZBZ4fOlnV9lChoBmgJaA9DCDV5ymr6aXNAlIaUUpRoFU0QAWgWR0ChVmAr6LwXdX2UKGgGaAloD0MIuhEWFXH9b0CUhpRSlGgVS+5oFkdAoVZmaz/p+3V9lChoBmgJaA9DCA0Zj1KJam1AlIaUUpRoFU3SAmgWR0ChVolMIu5CdX2UKGgGaAloD0MIkszqHe5lcUCUhpRSlGgVTXYBaBZHQKFW2R2bG3p1fZQoaAZoCWgPQwhDcjJxq11jQJSGlFKUaBVN6ANoFkdAoVeXboKUmnV9lChoBmgJaA9DCLh3DfpSCnFAlIaUUpRoFUvgaBZHQKFX3LK3d9F1fZQoaAZoCWgPQwhtjJ3wkuBrQJSGlFKUaBVNBwFoFkdAoVhew1R+B3V9lChoBmgJaA9DCPGcLSA06XJAlIaUUpRoFUvtaBZHQKFYiUB4lhR1fZQoaAZoCWgPQwh1AS8zrE9wQJSGlFKUaBVNAQFoFkdAoVmK6reZX3V9lChoBmgJaA9DCCC0Hr7MH3FAlIaUUpRoFU0dAWgWR0ChWZmQ8wHrdX2UKGgGaAloD0MIiLzl6sf/cECUhpRSlGgVS8xoFkdAoVsKTSsr/nV9lChoBmgJaA9DCAdi2czhoXJAlIaUUpRoFUv2aBZHQKFbWMBp5/t1fZQoaAZoCWgPQwgfSx+64KxwQJSGlFKUaBVL+GgWR0ChW4XWFvhqdX2UKGgGaAloD0MIe/gyUcRnckCUhpRSlGgVS/5oFkdAoVvJkkKNQ3V9lChoBmgJaA9DCD0NGCS9rHFAlIaUUpRoFUvUaBZHQKFcCOQQtjF1fZQoaAZoCWgPQwj6RJ4k3QJxQJSGlFKUaBVNQQFoFkdAoVw2iYb833V9lChoBmgJaA9DCCAkC5jAFHFAlIaUUpRoFU0bAWgWR0ChXD1IAfdRdX2UKGgGaAloD0MIi6Td6OOAbkCUhpRSlGgVS/toFkdAoV0WGIsRQXV9lChoBmgJaA9DCPWdX5Qg5nJAlIaUUpRoFUvsaBZHQKFdchHskY51fZQoaAZoCWgPQwjDmzV4n39xQJSGlFKUaBVL3mgWR0ChXjkrXlKcdX2UKGgGaAloD0MIHSJuTqW0bkCUhpRSlGgVS/NoFkdAoV6+gYgq3HV9lChoBmgJaA9DCALxun5BbXJAlIaUUpRoFUvjaBZHQKFf1iLl3hZ1fZQoaAZoCWgPQwgPQkC+BLFwQJSGlFKUaBVL+GgWR0ChYOwGGEf1dX2UKGgGaAloD0MIQde+gJ4zcECUhpRSlGgVS+JoFkdAoWD7ilzltHV9lChoBmgJaA9DCPpgGRu6d3JAlIaUUpRoFU0OAWgWR0ChYUdtMwlCdX2UKGgGaAloD0MI4nSSre4AcUCUhpRSlGgVS/NoFkdAoWGlYjjaPHV9lChoBmgJaA9DCM8R+S6l5nBAlIaUUpRoFU0OAWgWR0ChYcZXdTHbdX2UKGgGaAloD0MI/UtSmWIRX0CUhpRSlGgVTegDaBZHQKFh/l4C6pZ1fZQoaAZoCWgPQwjoacAgaUxxQJSGlFKUaBVL4WgWR0ChYpxsMy8BdX2UKGgGaAloD0MIpP/lWrSHYkCUhpRSlGgVTegDaBZHQKFirg3Lmp51fZQoaAZoCWgPQwiV8IRefw5wQJSGlFKUaBVL5GgWR0ChY3th3JPqdX2UKGgGaAloD0MIRtCYSVTFYECUhpRSlGgVTegDaBZHQKFj+2/BWPt1fZQoaAZoCWgPQwi9j6M5sgRuQJSGlFKUaBVNdgFoFkdAoWSEEPlMiHV9lChoBmgJaA9DCM8VpYRgkGxAlIaUUpRoFU0RAWgWR0ChZP95yEL6dX2UKGgGaAloD0MILcxCOyfIbkCUhpRSlGgVS/poFkdAoWWRfShJy3V9lChoBmgJaA9DCKwb746MZ21AlIaUUpRoFUvmaBZHQKFmJTCLuQZ1fZQoaAZoCWgPQwjbMAqCR19wQJSGlFKUaBVL92gWR0ChZnhuXNTtdX2UKGgGaAloD0MI8PeL2RIwcUCUhpRSlGgVTQABaBZHQKFnAxB3Roh1fZQoaAZoCWgPQwjrcd9qnWRwQJSGlFKUaBVNAQFoFkdAoWdhGjKxLXV9lChoBmgJaA9DCH2VfOwu2m1AlIaUUpRoFUv/aBZHQKFndSsr/bV1fZQoaAZoCWgPQwjZ7h6g+/RxQJSGlFKUaBVL7GgWR0ChZ944p+c6dX2UKGgGaAloD0MIntMs0O6tYUCUhpRSlGgVTegDaBZHQKFoUVs1sLx1fZQoaAZoCWgPQwhiE5m5wJhwQJSGlFKUaBVNNAFoFkdAoWjQ/iYLLXV9lChoBmgJaA9DCMIU5dJ4pW5AlIaUUpRoFUvlaBZHQKFpGOqebut1fZQoaAZoCWgPQwjTo6mezLhtQJSGlFKUaBVNSgFoFkdAoWrYGjbi63V9lChoBmgJaA9DCHGTUWWYqXFAlIaUUpRoFU0nAWgWR0Chax9+ocaPdX2UKGgGaAloD0MI36RpULStb0CUhpRSlGgVS/RoFkdAoWuhCngpB3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 320, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c9df83da5cb6aa376797606cc548e3dd32498a7360250f8d2c804e976a6e14f
|
3 |
+
size 231627
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 272.5832699441403, "std_reward": 18.368501085028164, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-17T15:03:13.143693"}
|