JoshuaChak's picture
Upload folder using huggingface_hub
7c071a8 verified
//===----------------------------------------------------------------------===//
//
// Copyright (C) 2023 Sophgo Technologies Inc. All rights reserved.
//
// TPU-MLIR is licensed under the 2-Clause BSD License except for the
// third-party components.
//
//===----------------------------------------------------------------------===//
#include "bmruntime_interface.h"
#include "memory.h"
#include <algorithm>
#include <assert.h>
#include <chrono>
#include <cstdlib>
#include <getopt.h>
#include <inttypes.h>
#include <iostream>
#include <numeric>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <random>
#include <stdio.h>
#include <vector>
static const uint16_t ATTENTION_MASK = 0xF0E2;
class Qwen {
public:
void init(const std::vector<int> &devid, std::string model_path);
void deinit();
int forward_first(std::vector<int> &tokens);
int forward_next();
std::vector<int> generate(std::vector<int> &history_tokens, int EOS);
std::mt19937 sgen;
Qwen() : sgen(std::random_device()()){};
private:
void net_launch(const bm_net_info_t *net, int stage_idx = 0);
inline void d2d(bm_device_mem_t &dst, bm_device_mem_t &src);
void head_launch(const bm_net_info_t *net, bm_device_mem_t &logits_mem);
int greedy_search(const bm_net_info_t *net, bm_device_mem_t &logits_mem);
int penalty_sample(const bm_net_info_t *net, bm_device_mem_t &logits_mem);
public:
int token_length;
int SEQLEN; // read from bmodel
int NUM_LAYERS; // read from bmodel
bool io_alone;
std::vector<int> visited_tokens;
// generation
float temperature;
float top_p;
float repeat_penalty;
int repeat_last_n;
int max_new_tokens;
std::string generation_mode;
std::string prompt_mode;
private:
std::vector<bm_handle_t> handles;
bm_handle_t bm_handle;
void *p_bmrt;
std::vector<const bm_net_info_t *> net_blocks;
std::vector<const bm_net_info_t *> net_blocks_cache;
const bm_net_info_t *net_embed;
const bm_net_info_t *net_embed_cache;
const bm_net_info_t *net_lm, *net_greedy_head, *net_penalty_sample_head;
std::vector<bm_device_mem_t> past_key;
std::vector<bm_device_mem_t> past_value;
};
void Qwen::net_launch(const bm_net_info_t *net, int stage_idx) {
std::vector<bm_tensor_t> in_tensors(net->input_num);
std::vector<bm_tensor_t> out_tensors(net->output_num);
for (int i = 0; i < net->input_num; i++) {
bmrt_tensor_with_device(
&in_tensors[i], net->stages[stage_idx].input_mems[i],
net->input_dtypes[i], net->stages[stage_idx].input_shapes[i]);
}
for (int i = 0; i < net->output_num; i++) {
bmrt_tensor_with_device(
&out_tensors[i], net->stages[stage_idx].output_mems[i],
net->output_dtypes[i], net->stages[stage_idx].output_shapes[i]);
}
auto ret = bmrt_launch_tensor_ex(p_bmrt, net->name, in_tensors.data(),
net->input_num, out_tensors.data(),
net->output_num, true, false);
assert(ret);
bm_thread_sync(bm_handle);
}
void Qwen::d2d(bm_device_mem_t &dst, bm_device_mem_t &src) {
bm_memcpy_d2d_byte(bm_handle, dst, 0, src, 0, bm_mem_get_device_size(src));
}
void Qwen::init(const std::vector<int> &devices, std::string model_path) {
// request bm_handle
std::cout << "Device [ ";
for (auto d : devices) {
std::cout << d << " ";
}
std::cout << "] loading ....\n";
for (auto d : devices) {
bm_handle_t h;
bm_status_t status = bm_dev_request(&h, d);
assert(BM_SUCCESS == status);
handles.push_back(h);
}
bm_handle = handles[0];
// create bmruntime
#ifdef SOC_TARGET
p_bmrt = bmrt_create(handles[0]);
#else
p_bmrt = bmrt_create_ex(handles.data(), handles.size());
#endif
assert(NULL != p_bmrt);
// load bmodel by file
printf("Model[%s] loading ....\n", model_path.c_str());
bool ret = bmrt_load_bmodel(p_bmrt, model_path.c_str());
assert(true == ret);
printf("Done!\n");
// net embed and lm_head
net_embed = bmrt_get_network_info(p_bmrt, "embedding");
net_embed_cache = bmrt_get_network_info(p_bmrt, "embedding_cache");
net_lm = bmrt_get_network_info(p_bmrt, "lm_head");
net_greedy_head = bmrt_get_network_info(p_bmrt, "greedy_head");
net_penalty_sample_head = bmrt_get_network_info(p_bmrt, "penalty_sample_head");
SEQLEN = net_embed->stages[0].input_shapes[0].dims[1]; // real seqlen
auto num_nets = bmrt_get_network_number(p_bmrt);
NUM_LAYERS = (num_nets - 5) / 2;
// resize
visited_tokens.resize(SEQLEN);
// net blocks
for (int i = 0; i < NUM_LAYERS; i++) {
auto block_name = "block_" + std::to_string(i);
auto cache_name = "block_cache_" + std::to_string(i);
net_blocks.emplace_back(bmrt_get_network_info(p_bmrt, block_name.c_str()));
net_blocks_cache.emplace_back(
bmrt_get_network_info(p_bmrt, cache_name.c_str()));
}
// kv cache
past_key.resize(NUM_LAYERS);
past_value.resize(NUM_LAYERS);
auto addr_mode = net_blocks_cache[0]->addr_mode;
io_alone = addr_mode == 1;
for (int i = 0; i < NUM_LAYERS; i++) {
assert(addr_mode == net_blocks_cache[i]->addr_mode);
if (io_alone) {
past_key[i] = net_blocks_cache[i]->stages[0].input_mems[3];
past_value[i] = net_blocks_cache[i]->stages[0].input_mems[4];
} else {
auto ret = bm_malloc_device_byte(bm_handle, &past_key[i],
net_blocks_cache[i]->max_input_bytes[3]);
assert(BM_SUCCESS == ret);
ret = bm_malloc_device_byte(bm_handle, &past_value[i],
net_blocks_cache[i]->max_input_bytes[4]);
assert(BM_SUCCESS == ret);
}
}
}
void Qwen::deinit() {
if (false == io_alone) {
for (int i = 0; i < NUM_LAYERS; i++) {
bm_free_device(bm_handle, past_key[i]);
bm_free_device(bm_handle, past_value[i]);
}
}
bmrt_destroy(p_bmrt);
for (auto h : handles) {
bm_dev_free(h);
}
}
void Qwen::head_launch(const bm_net_info_t *net, bm_device_mem_t &logits_mem) {
std::vector<bm_tensor_t> in_tensors(net->input_num);
std::vector<bm_tensor_t> out_tensors(net->output_num);
bmrt_tensor_with_device(
&in_tensors[0], logits_mem,
net->input_dtypes[0], net->stages[0].input_shapes[0]);
for (int i = 1; i < net->input_num; i++) {
bmrt_tensor_with_device(
&in_tensors[i], net->stages[0].input_mems[i],
net->input_dtypes[i], net->stages[0].input_shapes[i]);
}
for (int i = 0; i < net->output_num; i++) {
bmrt_tensor_with_device(
&out_tensors[i], net->stages[0].output_mems[i],
net->output_dtypes[i], net->stages[0].output_shapes[i]);
}
auto ret = bmrt_launch_tensor_ex(p_bmrt, net->name, in_tensors.data(),
net->input_num, out_tensors.data(),
net->output_num, true, false);
assert(ret);
bm_thread_sync(bm_handle);
}
int Qwen::greedy_search(const bm_net_info_t *net, bm_device_mem_t &logits_mem) {
auto &out_mem = net->stages[0].output_mems[0];
head_launch(net, logits_mem);
int token = 0;
bm_memcpy_d2s(bm_handle, (void *)&token, out_mem);
return token;
}
int Qwen::penalty_sample(const bm_net_info_t *net, bm_device_mem_t &logits_mem) {
auto &in1_mem = net->stages[0].input_mems[1];
auto &in2_mem = net->stages[0].input_mems[2];
auto &in3_mem = net->stages[0].input_mems[3];
auto &in4_mem = net->stages[0].input_mems[4];
auto &out0_mem = net->stages[0].output_mems[0];
auto &out1_mem = net->stages[0].output_mems[1];
// repeat_penalty + top_p + top_k + temperature
std::vector<int> generated_tokens(SEQLEN, visited_tokens[token_length - 1]);
repeat_last_n = std::min(repeat_last_n, token_length);
std::copy(visited_tokens.begin() + token_length - repeat_last_n,
visited_tokens.begin() + token_length,
generated_tokens.begin());
bm_memcpy_s2d(bm_handle, in1_mem, (void *)generated_tokens.data());
bm_memcpy_s2d(bm_handle, in2_mem, (void *)&top_p);
bm_memcpy_s2d(bm_handle, in3_mem, (void *)&temperature);
bm_memcpy_s2d(bm_handle, in4_mem, (void *)&repeat_penalty);
// inference
head_launch(net, logits_mem);
// get logit & token
int candidate_num = net->stages[0].output_shapes[0].dims[1];
std::vector<float> probs(candidate_num);
bm_memcpy_d2s(bm_handle, probs.data(), out0_mem);
std::vector<int> tokens(candidate_num);
bm_memcpy_d2s(bm_handle, tokens.data(), out1_mem);
// penalty_sample
std::discrete_distribution<> dist(probs.begin(), probs.end());
return tokens[dist(sgen)];
}
int Qwen::forward_first(std::vector<int> &tokens) {
std::vector<int> position_id(SEQLEN, 0);
std::vector<uint16_t> attention_mask(SEQLEN * SEQLEN, ATTENTION_MASK);
std::copy(tokens.begin(), tokens.end(), visited_tokens.data());
token_length = tokens.size();
for (int i = 0; i < token_length; i++) {
position_id[i] = i;
}
for (int i = 0; i < token_length; i++) {
for (int j = 0; j < SEQLEN; j++) {
if (j <= i) {
attention_mask[i * SEQLEN + j] = 0;
}
}
}
// forward embeding
auto &in_mem = net_embed->stages[0].input_mems[0];
auto &out_mem = net_embed->stages[0].output_mems[0];
bm_memcpy_s2d(bm_handle, in_mem, (void *)visited_tokens.data());
net_launch(net_embed); // prefil embedding
// forward blocks
for (int idx = 0; idx < NUM_LAYERS; idx++) {
auto &in0_mem = net_blocks[idx]->stages[0].input_mems[0];
auto &in1_mem = net_blocks[idx]->stages[0].input_mems[1];
auto &in2_mem = net_blocks[idx]->stages[0].input_mems[2];
d2d(in0_mem, out_mem);
if (idx == 0) {
// only first time need copy
bm_memcpy_s2d(bm_handle, in1_mem, (void *)position_id.data());
bm_memcpy_s2d(bm_handle, in2_mem, (void *)attention_mask.data());
}
net_launch(net_blocks[idx]);
out_mem = net_blocks[idx]->stages[0].output_mems[0];
d2d(past_key[idx], net_blocks[idx]->stages[0].output_mems[1]);
d2d(past_value[idx], net_blocks[idx]->stages[0].output_mems[2]);
}
// forward lmhead
int bytes = out_mem.size / SEQLEN;
auto &lm_in_mem = net_lm->stages[0].input_mems[0];
auto &lm_out_mem = net_lm->stages[0].output_mems[0];
bm_memcpy_d2d_byte(bm_handle, lm_in_mem, 0, out_mem,
(token_length - 1) * bytes, bytes);
net_launch(net_lm);
int token = 0;
if (generation_mode == "greedy") {
token = greedy_search(net_greedy_head, lm_out_mem);
} else if (generation_mode == "penalty_sample") {
token = penalty_sample(net_penalty_sample_head, lm_out_mem);
}
visited_tokens[token_length] = token;
token_length += 1;
return token;
}
int Qwen::forward_next() {
int cur_token = visited_tokens[token_length - 1];
std::vector<uint16_t> attention_mask(SEQLEN + 1, 0);
for (int i = token_length - 1; i < SEQLEN; i++) {
attention_mask[i] = ATTENTION_MASK;
}
int32_t position_id = token_length - 1;
// embedding
auto &in_mem = net_embed_cache->stages[0].input_mems[0];
auto &out_mem = net_embed_cache->stages[0].output_mems[0];
bm_memcpy_s2d(bm_handle, in_mem, (void *)&cur_token);
net_launch(net_embed_cache);
// blocks
int bytes =
bm_mem_get_device_size(net_blocks_cache[0]->stages[0].output_mems[1]);
int token_offset = (token_length - 1) * bytes;
for (int idx = 0; idx < NUM_LAYERS; idx++) {
auto &in0_mem = net_blocks_cache[idx]->stages[0].input_mems[0];
auto &in1_mem = net_blocks_cache[idx]->stages[0].input_mems[1];
auto &in2_mem = net_blocks_cache[idx]->stages[0].input_mems[2];
auto &in3_mem = net_blocks_cache[idx]->stages[0].input_mems[3];
auto &in4_mem = net_blocks_cache[idx]->stages[0].input_mems[4];
auto &out0_mem = net_blocks_cache[idx]->stages[0].output_mems[0];
auto &out1_mem = net_blocks_cache[idx]->stages[0].output_mems[1];
auto &out2_mem = net_blocks_cache[idx]->stages[0].output_mems[2];
d2d(in0_mem, out_mem);
if (io_alone) {
if (idx == 0) {
bm_memcpy_s2d(bm_handle, in1_mem, (void *)&position_id);
bm_memcpy_s2d(bm_handle, in2_mem, (void *)attention_mask.data());
} else {
d2d(in1_mem, net_blocks_cache[0]->stages[0].input_mems[1]);
d2d(in2_mem, net_blocks_cache[0]->stages[0].input_mems[2]);
}
} else {
if (idx == 0) {
bm_memcpy_s2d(bm_handle, in1_mem, (void *)&position_id);
bm_memcpy_s2d(bm_handle, in2_mem, (void *)attention_mask.data());
}
d2d(in3_mem, past_key[idx]);
d2d(in4_mem, past_value[idx]);
}
net_launch(net_blocks_cache[idx]);
out_mem = out0_mem;
bm_memcpy_d2d_byte(bm_handle, past_key[idx], token_offset, out1_mem, 0,
bytes);
bm_memcpy_d2d_byte(bm_handle, past_value[idx], token_offset, out2_mem, 0,
bytes);
}
// forward lmhead
auto &lm_in_mem = net_lm->stages[0].input_mems[0];
auto &lm_out_mem = net_lm->stages[0].output_mems[0];
d2d(lm_in_mem, out_mem);
net_launch(net_lm);
int token = 0;
if (generation_mode == "greedy") {
token = greedy_search(net_greedy_head, lm_out_mem);
} else if (generation_mode == "penalty_sample") {
token = penalty_sample(net_penalty_sample_head, lm_out_mem);
}
visited_tokens[token_length] = token;
token_length += 1;
return token;
}
std::vector<int> Qwen::generate(std::vector<int> &history_tokens, int EOS) {
if (history_tokens.empty()) {
printf("Sorry: your question is empty!!\n");
history_tokens.clear();
return {};
}
// make sure token not too large
if ((int)history_tokens.size() > SEQLEN - 10) {
history_tokens.clear();
printf("Error: your question is too large!\n");
return {};
}
std::vector<int> result_tokens;
int token = forward_first(history_tokens);
while (token != EOS && token_length < SEQLEN) {
result_tokens.emplace_back(token);
token = forward_next();
}
return result_tokens;
}
PYBIND11_MODULE(chat, m) {
pybind11::class_<Qwen>(m, "Qwen")
.def(pybind11::init<>())
.def("init", &Qwen::init)
.def("forward_first", &Qwen::forward_first)
.def("forward_next", &Qwen::forward_next)
.def("generate", &Qwen::generate)
.def("deinit", &Qwen::deinit)
.def_readwrite("SEQLEN", &Qwen::SEQLEN) // read SEQLEN in pipeline.py
.def_readwrite("token_length", &Qwen::token_length)
.def_readwrite("temperature", &Qwen::temperature)
.def_readwrite("top_p", &Qwen::top_p)
.def_readwrite("repeat_penalty", &Qwen::repeat_penalty)
.def_readwrite("repeat_last_n", &Qwen::repeat_last_n)
.def_readwrite("max_new_tokens", &Qwen::max_new_tokens)
.def_readwrite("generation_mode", &Qwen::generation_mode)
.def_readwrite("prompt_mode", &Qwen::prompt_mode);
}