JoshuaAAX commited on
Commit
f67e554
·
verified ·
1 Parent(s): 5d731c3

Training complete

Browse files
Files changed (1) hide show
  1. README.md +11 -11
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8347884486232371
29
  - name: Recall
30
  type: recall
31
- value: 0.8568474264705882
32
  - name: F1
33
  type: f1
34
- value: 0.8456741127111919
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9702609719811555
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the conll2002 dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.1589
48
- - Precision: 0.8348
49
- - Recall: 0.8568
50
- - F1: 0.8457
51
- - Accuracy: 0.9703
52
 
53
  ## Model description
54
 
@@ -80,8 +80,8 @@ The following hyperparameters were used during training:
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
  | 0.0499 | 1.0 | 521 | 0.1304 | 0.8278 | 0.8536 | 0.8405 | 0.9704 |
83
- | 0.0272 | 2.0 | 1042 | 0.1510 | 0.8355 | 0.8486 | 0.8420 | 0.9687 |
84
- | 0.0153 | 3.0 | 1563 | 0.1589 | 0.8348 | 0.8568 | 0.8457 | 0.9703 |
85
 
86
 
87
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8340044742729307
29
  - name: Recall
30
  type: recall
31
+ value: 0.8566176470588235
32
  - name: F1
33
  type: f1
34
+ value: 0.8451598277034684
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9701369947929581
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the conll2002 dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.1588
48
+ - Precision: 0.8340
49
+ - Recall: 0.8566
50
+ - F1: 0.8452
51
+ - Accuracy: 0.9701
52
 
53
  ## Model description
54
 
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
  | 0.0499 | 1.0 | 521 | 0.1304 | 0.8278 | 0.8536 | 0.8405 | 0.9704 |
83
+ | 0.0272 | 2.0 | 1042 | 0.1509 | 0.8351 | 0.8483 | 0.8417 | 0.9686 |
84
+ | 0.0153 | 3.0 | 1563 | 0.1588 | 0.8340 | 0.8566 | 0.8452 | 0.9701 |
85
 
86
 
87
  ### Framework versions