Training complete
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the conll2002 dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -80,8 +80,8 @@ The following hyperparameters were used during training:
|
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
| 0.0499 | 1.0 | 521 | 0.1304 | 0.8278 | 0.8536 | 0.8405 | 0.9704 |
|
83 |
-
| 0.0272 | 2.0 | 1042 | 0.
|
84 |
-
| 0.0153 | 3.0 | 1563 | 0.
|
85 |
|
86 |
|
87 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.8340044742729307
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.8566176470588235
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.8451598277034684
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9701369947929581
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the conll2002 dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.1588
|
48 |
+
- Precision: 0.8340
|
49 |
+
- Recall: 0.8566
|
50 |
+
- F1: 0.8452
|
51 |
+
- Accuracy: 0.9701
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
| 0.0499 | 1.0 | 521 | 0.1304 | 0.8278 | 0.8536 | 0.8405 | 0.9704 |
|
83 |
+
| 0.0272 | 2.0 | 1042 | 0.1509 | 0.8351 | 0.8483 | 0.8417 | 0.9686 |
|
84 |
+
| 0.0153 | 3.0 | 1563 | 0.1588 | 0.8340 | 0.8566 | 0.8452 | 0.9701 |
|
85 |
|
86 |
|
87 |
### Framework versions
|