JoshuaAAX commited on
Commit
f774c9f
1 Parent(s): 584e967

Training complete

Browse files
Files changed (1) hide show
  1. README.md +13 -11
README.md CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.1564
24
- - Precision: 0.75
25
- - Recall: 0.8045
26
- - F1: 0.7763
27
- - Accuracy: 0.9682
28
 
29
  ## Model description
30
 
@@ -44,20 +44,22 @@ More information needed
44
 
45
  The following hyperparameters were used during training:
46
  - learning_rate: 2e-05
47
- - train_batch_size: 8
48
- - eval_batch_size: 8
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
- - num_epochs: 3
53
 
54
  ### Training results
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
- | 0.0439 | 1.0 | 1041 | 0.1419 | 0.7464 | 0.7918 | 0.7684 | 0.9674 |
59
- | 0.0458 | 2.0 | 2082 | 0.1414 | 0.7493 | 0.8028 | 0.7752 | 0.9677 |
60
- | 0.0261 | 3.0 | 3123 | 0.1564 | 0.75 | 0.8045 | 0.7763 | 0.9682 |
 
 
61
 
62
 
63
  ### Framework versions
 
20
 
21
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.1705
24
+ - Precision: 0.7588
25
+ - Recall: 0.8038
26
+ - F1: 0.7806
27
+ - Accuracy: 0.9680
28
 
29
  ## Model description
30
 
 
44
 
45
  The following hyperparameters were used during training:
46
  - learning_rate: 2e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 16
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
+ - num_epochs: 5
53
 
54
  ### Training results
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.0281 | 1.0 | 521 | 0.1800 | 0.7135 | 0.7578 | 0.7350 | 0.9610 |
59
+ | 0.0413 | 2.0 | 1042 | 0.1418 | 0.7279 | 0.7937 | 0.7594 | 0.9657 |
60
+ | 0.026 | 3.0 | 1563 | 0.1476 | 0.7575 | 0.8077 | 0.7818 | 0.9678 |
61
+ | 0.0172 | 4.0 | 2084 | 0.1660 | 0.7503 | 0.8022 | 0.7753 | 0.9676 |
62
+ | 0.0117 | 5.0 | 2605 | 0.1705 | 0.7588 | 0.8038 | 0.7806 | 0.9680 |
63
 
64
 
65
  ### Framework versions