Training complete
Browse files
README.md
CHANGED
@@ -3,6 +3,8 @@ license: apache-2.0
|
|
3 |
base_model: bert-base-cased
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
|
|
6 |
metrics:
|
7 |
- precision
|
8 |
- recall
|
@@ -10,7 +12,29 @@ metrics:
|
|
10 |
- accuracy
|
11 |
model-index:
|
12 |
- name: bert-finetuned-ner
|
13 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -18,13 +42,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
# bert-finetuned-ner
|
20 |
|
21 |
-
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Precision: 0.
|
25 |
-
- Recall: 0.
|
26 |
-
- F1: 0.
|
27 |
-
- Accuracy: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -49,22 +73,27 @@ The following hyperparameters were used during training:
|
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
-
- num_epochs:
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.05 | 3.0 | 1563 | 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
|
65 |
### Framework versions
|
66 |
|
67 |
-
- Transformers 4.
|
68 |
-
- Pytorch 2.
|
69 |
- Datasets 2.19.1
|
70 |
- Tokenizers 0.19.1
|
|
|
3 |
base_model: bert-base-cased
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- conll2002
|
8 |
metrics:
|
9 |
- precision
|
10 |
- recall
|
|
|
12 |
- accuracy
|
13 |
model-index:
|
14 |
- name: bert-finetuned-ner
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Token Classification
|
18 |
+
type: token-classification
|
19 |
+
dataset:
|
20 |
+
name: conll2002
|
21 |
+
type: conll2002
|
22 |
+
config: es
|
23 |
+
split: validation
|
24 |
+
args: es
|
25 |
+
metrics:
|
26 |
+
- name: Precision
|
27 |
+
type: precision
|
28 |
+
value: 0.7640546993705232
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 0.8088235294117647
|
32 |
+
- name: F1
|
33 |
+
type: f1
|
34 |
+
value: 0.7858019868288871
|
35 |
+
- name: Accuracy
|
36 |
+
type: accuracy
|
37 |
+
value: 0.9676902769959431
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
42 |
|
43 |
# bert-finetuned-ner
|
44 |
|
45 |
+
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2002 dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.1912
|
48 |
+
- Precision: 0.7641
|
49 |
+
- Recall: 0.8088
|
50 |
+
- F1: 0.7858
|
51 |
+
- Accuracy: 0.9677
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 10
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.1713 | 1.0 | 521 | 0.1404 | 0.6859 | 0.7387 | 0.7114 | 0.9599 |
|
83 |
+
| 0.0761 | 2.0 | 1042 | 0.1404 | 0.6822 | 0.7693 | 0.7231 | 0.9623 |
|
84 |
+
| 0.05 | 3.0 | 1563 | 0.1304 | 0.7488 | 0.7937 | 0.7706 | 0.9672 |
|
85 |
+
| 0.0355 | 4.0 | 2084 | 0.1454 | 0.7585 | 0.7960 | 0.7768 | 0.9664 |
|
86 |
+
| 0.0253 | 5.0 | 2605 | 0.1501 | 0.7549 | 0.8095 | 0.7812 | 0.9677 |
|
87 |
+
| 0.0184 | 6.0 | 3126 | 0.1726 | 0.7581 | 0.7992 | 0.7781 | 0.9662 |
|
88 |
+
| 0.0138 | 7.0 | 3647 | 0.1743 | 0.7524 | 0.8042 | 0.7774 | 0.9676 |
|
89 |
+
| 0.0112 | 8.0 | 4168 | 0.1853 | 0.7576 | 0.8022 | 0.7792 | 0.9674 |
|
90 |
+
| 0.0082 | 9.0 | 4689 | 0.1914 | 0.7595 | 0.8061 | 0.7821 | 0.9667 |
|
91 |
+
| 0.0073 | 10.0 | 5210 | 0.1912 | 0.7641 | 0.8088 | 0.7858 | 0.9677 |
|
92 |
|
93 |
|
94 |
### Framework versions
|
95 |
|
96 |
+
- Transformers 4.41.0
|
97 |
+
- Pytorch 2.3.0+cu121
|
98 |
- Datasets 2.19.1
|
99 |
- Tokenizers 0.19.1
|