Jonathan-Zhou
commited on
Commit
•
b992d20
1
Parent(s):
7b21717
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,65 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
'''python3
|
5 |
+
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
|
6 |
+
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
|
7 |
+
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
|
8 |
+
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
9 |
+
import torch
|
10 |
+
from huggingface_hub import hf_hub_download
|
11 |
+
from torchao.quantization.quant_api import (
|
12 |
+
quantize_,
|
13 |
+
int8_weight_only
|
14 |
+
)
|
15 |
+
dtype = torch.bfloat16
|
16 |
+
flux_repo = "black-forest-labs/FLUX.1-schnell"
|
17 |
+
revision = "refs/pr/1"
|
18 |
+
|
19 |
+
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
|
20 |
+
tokenizer_2 = T5TokenizerFast.from_pretrained(flux_repo, subfolder="tokenizer_2", torch_dtype=dtype, revision=revision)
|
21 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(flux_repo, subfolder="scheduler", revision=revision)
|
22 |
+
transformer = FluxTransformer2DModel.from_pretrained(flux_repo, subfolder="transformer", torch_dtype=dtype, revision=revision)
|
23 |
+
lora_file_path = hf_hub_download(repo_id = "Jonathan-Zhou/Flux-GameLabel-Lora", filename = "lora.safetensors")
|
24 |
+
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
|
25 |
+
text_encoder_2 = T5EncoderModel.from_pretrained(flux_repo, subfolder="text_encoder_2", torch_dtype=dtype, revision=revision)
|
26 |
+
vae = AutoencoderKL.from_pretrained(flux_repo, subfolder="vae", torch_dtype=dtype, revision=revision)
|
27 |
+
|
28 |
+
|
29 |
+
pipe = FluxPipeline(
|
30 |
+
scheduler=scheduler,
|
31 |
+
text_encoder=text_encoder,
|
32 |
+
tokenizer=tokenizer,
|
33 |
+
text_encoder_2=text_encoder_2,
|
34 |
+
tokenizer_2=tokenizer_2,
|
35 |
+
vae=vae,
|
36 |
+
transformer=transformer,
|
37 |
+
)
|
38 |
+
|
39 |
+
# If you want to compare the lora with the bsae model, you can comment out these two lines
|
40 |
+
pipe.load_lora_weights(lora_file_path, adapter_name="lora1")
|
41 |
+
pipe.fuse_lora()
|
42 |
+
|
43 |
+
# Quantization needed if run on a GPU with 24 GB VRAM
|
44 |
+
quantize_(transformer, int8_weight_only())
|
45 |
+
quantize_(text_encoder, int8_weight_only())
|
46 |
+
quantize_(text_encoder_2, int8_weight_only())
|
47 |
+
quantize_(vae, int8_weight_only())
|
48 |
+
|
49 |
+
|
50 |
+
pipe.to("cuda")
|
51 |
+
torch.cuda.empty_cache()
|
52 |
+
generator = torch.Generator().manual_seed(12345)
|
53 |
+
output = pipe(
|
54 |
+
prompt="a man showing off his cool new t shirt at the beach, a shark is jumping out of the water in the background",
|
55 |
+
width=1024,
|
56 |
+
height=1024,
|
57 |
+
num_inference_steps=6,
|
58 |
+
num_images_per_prompt = 1,
|
59 |
+
generator=generator,
|
60 |
+
guidance_scale=3.5,
|
61 |
+
)
|
62 |
+
image = output.images[0]
|
63 |
+
image.show()
|
64 |
+
|
65 |
+
'''
|