Transformers
Safetensors
Inference Endpoints
Johndfm commited on
Commit
f20b29c
1 Parent(s): d79a709

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -158
README.md CHANGED
@@ -1,199 +1,95 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
  Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
- ## Evaluation
 
 
 
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
 
 
 
 
 
106
 
107
- ### Testing Data, Factors & Metrics
 
 
 
 
 
108
 
109
- #### Testing Data
 
 
 
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
 
 
112
 
113
- [More Information Needed]
 
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
 
173
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: cc-by-4.0
4
+ datasets:
5
+ - Johndfm/genrescoh
6
+ language:
7
+ - en
8
+ - zh
9
+ - de
10
+ - it
11
  ---
12
 
13
  # Model Card for Model ID
14
 
15
  <!-- Provide a quick summary of what the model is/does. -->
16
 
17
+ ECoh is a family of transformer-based decoder-only language model finetuned to assess the coherence of responses in dialogue systems.
18
 
19
 
20
  ## Model Details
21
 
 
22
 
23
+ ### Model Sources
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
  <!-- Provide the basic links for the model. -->
26
 
27
+ - **Repository:** https://github.com/johndmendonca/Ecoh
28
+ - **Paper:** https://arxiv.org/abs/2407.11660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
 
 
 
 
 
30
 
31
  ## How to Get Started with the Model
32
 
33
  Use the code below to get started with the model.
34
 
35
+ ```python
36
+ from transformers import AutoModelForCausalLM, AutoTokenizer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
+ # load model
39
+ model_path="Johndfm/ECoh-7B"
40
+ tokenizer = AutoTokenizer.from_pretrained(model_path,padding_side="left")
41
+ base_model = AutoModelForCausalLM.from_pretrained(model_path).to("cuda")
42
 
43
+ # prepare example
44
+ example = "Context:\nA: Dahua's Market . How can I help you ? \nB: Where is your store located ? \n\nResponse:\nA: Our store is located on 123 Main Street, in the city center."
45
+ messages = [
46
+ {"role": "system", "content": "You are a Coherence evaluator."}
47
+ {"role": "user", "content": f"{example}\n\nGiven the context, is the response Coherent (Yes/No)? Explain your reasoning."}
48
+ ]
49
 
50
+ text = tokenizer.apply_chat_template(
51
+ messages,
52
+ tokenize=False,
53
+ add_generation_prompt=True
54
+ )
55
+ model_inputs = tokenizer([text], return_tensors="pt").to("cuda")
56
 
57
+ generated_ids = base_model.generate(
58
+ model_inputs.input_ids,
59
+ max_new_tokens=64
60
+ )
61
 
62
+ generated_ids = [
63
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
64
+ ]
65
 
66
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
67
+ ```
68
 
69
+ ## Training and Evaluation Details
70
 
71
+ Please refer to the original paper.
72
 
 
73
 
74
+ ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
77
 
78
  **BibTeX:**
79
 
80
+ ```
81
+ @misc{mendonça2024ecoh,
82
+ title={ECoh: Turn-level Coherence Evaluation for Multilingual Dialogues},
83
+ author={John Mendonça and Isabel Trancoso and Alon Lavie},
84
+ year={2024},
85
+ eprint={2407.11660},
86
+ archivePrefix={arXiv},
87
+ primaryClass={cs.CL},
88
+ url={https://arxiv.org/abs/2407.11660},
89
+ }
90
+ ```
 
 
 
 
 
 
91
 
 
92
 
93
  ## Model Card Contact
94
 
95
+ john.mendonca@inesc.id.pt