LunarLander-v2 / config.json
Joel-Jeffrey's picture
Done
4545000 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78fd9012c550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78fd9012c5e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78fd9012c670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78fd9012c700>", "_build": "<function ActorCriticPolicy._build at 0x78fd9012c790>", "forward": "<function ActorCriticPolicy.forward at 0x78fd9012c820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78fd9012c8b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78fd9012c940>", "_predict": "<function ActorCriticPolicy._predict at 0x78fd9012c9d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78fd9012ca60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78fd9012caf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78fd9012cb80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78fd900ce440>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710866101321275063, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoE/zwp+A+6j7XDutFvB7WlDqe6UBPnOQAAgD8AAIA/MxnXvI+2QbqgPF+6If5wtgdvC7qKWn85AACAPwAAgD+a6W+8XPtwuuNsKLoREja1uqFWO9b/RDkAAIA/AACAP2aMdjzDoT+68/tgO3OfM7aabsi65tQstQAAgD8AAIA/zVDgPLheorkiWCW7WujJtd8lFbs/CkY6AACAPwAAgD8AEVg9wxkQupsh1zswJiu2yKoXuqTvK7UAAIA/AACAP7OpGj1cFz26+f+jukRiLrQDKye70qe/OQAAgD8AAIA/mu6ePFxrN7qGcPk5HdZJtrB5Zrp4bw65AACAPwAAgD9mJI09FKyFuoXlTLmTpkC0f8+cORLPbjgAAIA/AACAP02CYT1cX1u6033TuiZCgbWDdQW7Fo31OQAAgD8AAIA/5resPfaEb7pDw9e5iY2mtgJl/bkeEv44AACAPwAAgD8AEL47SDeGurpDSLozr2g1aVGUujOBZTkAAIA/AACAP7MDGj1h3oI+I7HivDbpk74JNVu9Ft8tPAAAAAAAAAAAZoCMPY8mAroB85O7xoXqtpZ7i7swZ7E6AACAPwAAgD/Nvx49rvmJuhWzJbk87g+08HGxuRyvQDgAAIA/AACAPwBWRrwD+ng9JVKMPQakQL4hcOc9/jlBvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGW6eF10T12MAWyUTegDjAF0lEdAlgPjv3JxN3V9lChoBkdAYmtwH7gsLGgHTegDaAhHQJYHdpztCzF1fZQoaAZHQEA59d/rjYJoB00ZAWgIR0CWHt31jAi3dX2UKGgGR0BhKSG8EmpmaAdN6ANoCEdAlh8sVtXPq3V9lChoBkdAOik3sHB1tGgHTToBaAhHQJYr0qVhTfl1fZQoaAZHQGSfldcB2fVoB03oA2gIR0CWMIMxGlQ/dX2UKGgGR0BjEKXdCVrzaAdN6ANoCEdAljKlLOAy23V9lChoBkdAZKDLnLaEjGgHTegDaAhHQJYy/pgTh5x1fZQoaAZHQGKgenqFAVxoB03oA2gIR0CWNY4VRDTjdX2UKGgGR0BlAb0QK8cuaAdN6ANoCEdAljhB6fJ3gXV9lChoBkdAYjKHmA9V3mgHTegDaAhHQJY5kLRa5gB1fZQoaAZHQGVe7oKUmlZoB03oA2gIR0CWPUTR6WxAdX2UKGgGR0Bev7RSgoPTaAdN6ANoCEdAlj47dWQwK3V9lChoBkdAYDZcnE2pAGgHTegDaAhHQJY/Q+4b0e51fZQoaAZHQF3Bgr6LwWpoB03oA2gIR0CWR2bwjMV2dX2UKGgGR0BicAC+10DEaAdN6ANoCEdAlkkap1ie/nV9lChoBkdAYVFiIcinpGgHTegDaAhHQJZQHrIHTql1fZQoaAZHQGOPMbNr0rdoB03oA2gIR0CWUzQRwqAjdX2UKGgGR0BhGetITXaraAdN6ANoCEdAlm/kgOjIrHV9lChoBkdAYaz6cAimmGgHTegDaAhHQJZwOJqIrOJ1fZQoaAZHQGO1lkhA4XJoB03oA2gIR0CWfRARkEs8dX2UKGgGR0BlJ/SncclxaAdN6ANoCEdAloErSE12q3V9lChoBkdAY800elsP8WgHTegDaAhHQJaCrP+n62x1fZQoaAZHQGXl84HX2/VoB03oA2gIR0CWgu3dbgTAdX2UKGgGR0A4XLhrFfiQaAdNNgFoCEdAloOAlnh86XV9lChoBkdAWn6oaUA1emgHTegDaAhHQJaEuOyVv/B1fZQoaAZHQGHoHUtqYZ5oB03oA2gIR0CWhuI5HVgAdX2UKGgGR0BmlRew9q1xaAdN6ANoCEdAlogUFB6a9nV9lChoBkdAXPJQ66reZWgHTegDaAhHQJaLcUCaJAN1fZQoaAZHQGPSauW8h9toB03oA2gIR0CWjFZmZmZmdX2UKGgGR0BjEGFUQ04zaAdN6ANoCEdAlo1/ddmg8XV9lChoBkdAZF8XGff4y2gHTegDaAhHQJaXZG5MDfZ1fZQoaAZHQGGTpT/ACXBoB03oA2gIR0CWmS+FDfFadX2UKGgGR0Beo/Uz9CNTaAdN6ANoCEdAlqCuNPxhD3V9lChoBkdAYwve4TbnHWgHTegDaAhHQJajzB1s+FF1fZQoaAZHQGRt4XfqHGloB03oA2gIR0CWwBrJ8v25dX2UKGgGR0Bjf4Xwb2lEaAdN6ANoCEdAls3BWgezU3V9lChoBkdAYyioE0SAY2gHTegDaAhHQJbRphoduHh1fZQoaAZHQGM7ktdzGPxoB03oA2gIR0CW0xFr2xptdX2UKGgGR0BmIA+OfdylaAdN6ANoCEdAltNRH5Jsf3V9lChoBkdAZOXWzWwu/WgHTegDaAhHQJbT3OVxCIF1fZQoaAZHQGOany/bj95oB03oA2gIR0CW1PCbc45tdX2UKGgGR0Bh5jM3ZPEbaAdN6ANoCEdAltb98Rcu8XV9lChoBkdAY0qVh1DBuWgHTegDaAhHQJbYB7F85S51fZQoaAZHQGIcbSRbKRxoB03oA2gIR0CW2vY8+zMSdX2UKGgGR0BllRBE8aGYaAdN6ANoCEdAltuzmfXf7HV9lChoBkdAYPjoQnQY12gHTegDaAhHQJbcjkvK2a51fZQoaAZHQGTY8580DU5oB03oA2gIR0CW48Sq2jO+dX2UKGgGR0BkDTposZpBaAdN6ANoCEdAluVyGetjkXV9lChoBkdAYOt9Wp6yB2gHTegDaAhHQJbtcWTHKfZ1fZQoaAZHQF290SRKYiRoB03oA2gIR0CW8Z8cdYGMdX2UKGgGR0Bmn5IxxkupaAdN6ANoCEdAlw43yZrpJXV9lChoBkdAZa42itaIN2gHTegDaAhHQJcdoFKTSst1fZQoaAZHQF3ischkiEBoB03oA2gIR0CXI18KohpydX2UKGgGR0Bj355cC5mRaAdN6ANoCEdAlyUAiFCb+nV9lChoBkdAZFmUC7sfJWgHTegDaAhHQJclRGDtgKF1fZQoaAZHQGZDVNpM6BBoB03oA2gIR0CXJduW8h9tdX2UKGgGR0BHGq+rU9ZBaAdNNAFoCEdAlyYN9H+ZPXV9lChoBkdAYhnW5H3DemgHTegDaAhHQJcnHhrFfiR1fZQoaAZHQGYhUGu9vjxoB03oA2gIR0CXKUBX0XgtdX2UKGgGR0BhPGj7ALy+aAdN6ANoCEdAlypaMrEtNHV9lChoBkdAZhezN2TxG2gHTegDaAhHQJctgna37UJ1fZQoaAZHQF8AtmL9/BpoB03oA2gIR0CXLlhrWRRudX2UKGgGR0Bbi3meUY8/aAdN6ANoCEdAly9MQiA2AHV9lChoBkdAW5gir1dxAGgHTegDaAhHQJc3wAPuogp1fZQoaAZHQGcV67EpAlhoB03oA2gIR0CXOZ2eQMhHdX2UKGgGR0BjRV9Sde6aaAdN6ANoCEdAl0Egiu+yq3V9lChoBkdAYYpXbuc+aGgHTegDaAhHQJdEkkNWluZ1fZQoaAZHQGKKv557gKpoB03oA2gIR0CXcdIInjQzdX2UKGgGR0BkAw++ueSTaAdN6ANoCEdAl3ZRas6q83V9lChoBkdAZwjFId2gWmgHTegDaAhHQJd30FmnO0N1fZQoaAZHQF97KDkELYxoB03oA2gIR0CXeBCPIXCTdX2UKGgGR0BnbT9KmKqGaAdN6ANoCEdAl3ibmp2lmHV9lChoBkdAYUDrP+n622gHTegDaAhHQJd4yDwpe/p1fZQoaAZHQGOvgtFrl/9oB03oA2gIR0CXedUc4o7WdX2UKGgGR0BgynVbzK9xaAdN6ANoCEdAl3ytTkyULXV9lChoBkdAZOCFkhA4XGgHTegDaAhHQJd+EOEug6F1fZQoaAZHQGW8O3+dbxFoB03oA2gIR0CXgeN+so2GdX2UKGgGR0BfL4acZtN0aAdN6ANoCEdAl4K6IznA7HV9lChoBkdAZcsI1tO2zGgHTegDaAhHQJeDnLeQ+2V1fZQoaAZHQGFo5jYqXnhoB03oA2gIR0CXiyWdVea8dX2UKGgGR0BnskdPtUn5aAdN6ANoCEdAl4zNrO7g9HV9lChoBkdAYMbo0Q9RrWgHTegDaAhHQJeT2Oq//Nt1fZQoaAZHQGSfi8WbgCRoB03oA2gIR0CXlvJ0nw5OdX2UKGgGR0Bl7eom5UcXaAdN6ANoCEdAl8TP0qYqonV9lChoBkdAXVe0Xxe9jGgHTegDaAhHQJfKAetCAtp1fZQoaAZHQGSLrS3LFGZoB03oA2gIR0CXy93i704BdX2UKGgGR0BlqQntv4ucaAdN6ANoCEdAl8wqaPS2IHV9lChoBkdAZ7+rZrYXf2gHTegDaAhHQJfM23ocJdB1fZQoaAZHQGQk3juKGcpoB03oA2gIR0CXzQ8D0UXYdX2UKGgGR0BhcJO8CgbqaAdN6ANoCEdAl84kGqxTsXV9lChoBkdAYqDs0HhS+GgHTegDaAhHQJfQaBas6q91fZQoaAZHQGMhfzJ6po9oB03oA2gIR0CX0Zt5D7ZWdX2UKGgGR0BgTJGhEjPfaAdN6ANoCEdAl9UcJMQEp3V9lChoBkdAZBHMr3CbdGgHTegDaAhHQJfWAZ88cMp1fZQoaAZHQGYsk8A7xNJoB03oA2gIR0CX1wPiDM/ydX2UKGgGR0BgWHe1rqMWaAdN6ANoCEdAl+FtadMCcXV9lChoBkdAYoCMglnh9GgHTegDaAhHQJfjJ2IO6NF1fZQoaAZHQGYwE0zj3mFoB03oA2gIR0CX6kJyQxN7dX2UKGgGR0BgizxXnyNGaAdN6ANoCEdAl+1Oqebut3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}