JoPmt commited on
Commit
214e272
·
verified ·
1 Parent(s): 58cb5a1

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model:
3
+ - Locutusque/Hyperion-1.5-Mistral-7B
4
+ - Locutusque/Hyperion-3.0-Mistral-7B-alpha
5
+ tags:
6
+ - merge
7
+ - mergekit
8
+ - lazymergekit
9
+ - Locutusque/Hyperion-1.5-Mistral-7B
10
+ - Locutusque/Hyperion-3.0-Mistral-7B-alpha
11
+ ---
12
+
13
+ # Trismal-HyperUnion-7B-Base-v1.5v3A-Ties
14
+
15
+ Trismal-HyperUnion-7B-Base-v1.5v3A-Ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
16
+ * [Locutusque/Hyperion-1.5-Mistral-7B](https://huggingface.co/Locutusque/Hyperion-1.5-Mistral-7B)
17
+ * [Locutusque/Hyperion-3.0-Mistral-7B-alpha](https://huggingface.co/Locutusque/Hyperion-3.0-Mistral-7B-alpha)
18
+
19
+ ## 🧩 Configuration
20
+
21
+ ```yaml
22
+ models:
23
+ - model: Locutusque/Hyperion-1.5-Mistral-7B
24
+ parameters:
25
+ weight: 1
26
+ density: 1
27
+ - model: Locutusque/Hyperion-3.0-Mistral-7B-alpha
28
+ parameters:
29
+ weight: 1
30
+ density: 1
31
+ merge_method: ties
32
+ base_model: Locutusque/Hyperion-1.5-Mistral-7B
33
+ parameters:
34
+ weight: 1
35
+ density: 1
36
+ normalize: true
37
+ int8_mask: false
38
+ dtype: float16
39
+ ```
40
+
41
+ ## 💻 Usage
42
+
43
+ ```python
44
+ !pip install -qU transformers accelerate
45
+
46
+ from transformers import AutoTokenizer
47
+ import transformers
48
+ import torch
49
+
50
+ model = "JoPmt/Trismal-HyperUnion-7B-Base-v1.5v3A-Ties"
51
+ messages = [{"role": "user", "content": "What is a large language model?"}]
52
+
53
+ tokenizer = AutoTokenizer.from_pretrained(model)
54
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
55
+ pipeline = transformers.pipeline(
56
+ "text-generation",
57
+ model=model,
58
+ torch_dtype=torch.float16,
59
+ device_map="auto",
60
+ )
61
+
62
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
63
+ print(outputs[0]["generated_text"])
64
+ ```