JiajingChen commited on
Commit
b35bb01
1 Parent(s): 22b1fc0

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +35 -16
README.md CHANGED
@@ -1,37 +1,56 @@
1
  ---
2
- library_name: stable-baselines3
3
  tags:
4
- - PandaReachDense-v3
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
- - stable-baselines3
8
  model-index:
9
- - name: A2C
10
  results:
11
  - task:
12
  type: reinforcement-learning
13
  name: reinforcement-learning
14
  dataset:
15
- name: PandaReachDense-v3
16
- type: PandaReachDense-v3
17
  metrics:
18
  - type: mean_reward
19
- value: -0.21 +/- 0.08
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
- # **A2C** Agent playing **PandaReachDense-v3**
25
- This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
- using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
- ## Usage (with Stable-baselines3)
29
- TODO: Add your code
30
 
31
 
32
- ```python
33
- from stable_baselines3 import ...
34
- from huggingface_sb3 import load_from_hub
35
 
36
- ...
37
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: sample-factory
3
  tags:
 
4
  - deep-reinforcement-learning
5
  - reinforcement-learning
6
+ - sample-factory
7
  model-index:
8
+ - name: APPO
9
  results:
10
  - task:
11
  type: reinforcement-learning
12
  name: reinforcement-learning
13
  dataset:
14
+ name: doom_health_gathering_supreme
15
+ type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
+ value: 9.92 +/- 2.85
19
  name: mean_reward
20
  verified: false
21
  ---
22
 
23
+ A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
 
 
24
 
25
+ This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
26
+ Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
27
 
28
 
29
+ ## Downloading the model
 
 
30
 
31
+ After installing Sample-Factory, download the model with:
32
  ```
33
+ python -m sample_factory.huggingface.load_from_hub -r JiajingChen/1
34
+ ```
35
+
36
+
37
+ ## Using the model
38
+
39
+ To run the model after download, use the `enjoy` script corresponding to this environment:
40
+ ```
41
+ python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=1
42
+ ```
43
+
44
+
45
+ You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
46
+ See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
47
+
48
+ ## Training with this model
49
+
50
+ To continue training with this model, use the `train` script corresponding to this environment:
51
+ ```
52
+ python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=1 --restart_behavior=resume --train_for_env_steps=10000000000
53
+ ```
54
+
55
+ Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
56
+