Jiahuita
commited on
Commit
•
b2de734
1
Parent(s):
c356db2
Attempt to resolve deployment issue
Browse files- README.md +11 -29
- app.py +15 -0
- pipeline.py +24 -41
- requirements.txt +3 -0
README.md
CHANGED
@@ -1,4 +1,12 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
language: en
|
3 |
license: mit
|
4 |
tags:
|
@@ -43,40 +51,14 @@ This model classifies news headlines as either Fox News or NBC News using an LST
|
|
43 |
|
44 |
## Usage
|
45 |
|
46 |
-
You can use this model
|
47 |
|
48 |
```python
|
49 |
import requests
|
50 |
|
51 |
# Make a prediction
|
52 |
response = requests.post(
|
53 |
-
"https://huggingface.co/Jiahuita/NewsSourceClassification
|
54 |
json={"text": "Your news headline here"}
|
55 |
)
|
56 |
-
print(response.json())
|
57 |
-
```
|
58 |
-
|
59 |
-
Or use it locally:
|
60 |
-
|
61 |
-
```python
|
62 |
-
from transformers import pipeline
|
63 |
-
|
64 |
-
classifier = pipeline("text-classification", model="Jiahuita/NewsSourceClassification")
|
65 |
-
result = classifier("Your news headline here")
|
66 |
-
print(result)
|
67 |
-
```
|
68 |
-
|
69 |
-
## Limitations and Bias
|
70 |
-
|
71 |
-
This model has been trained on news headlines from specific sources and time periods, which may introduce certain biases. Users should be aware of these limitations when using the model.
|
72 |
-
|
73 |
-
## Training
|
74 |
-
|
75 |
-
The model was trained using:
|
76 |
-
- TensorFlow 2.13.0
|
77 |
-
- LSTM architecture
|
78 |
-
- Binary cross-entropy loss
|
79 |
-
- Adam optimizer
|
80 |
-
|
81 |
-
## License
|
82 |
-
This project is licensed under the MIT License.
|
|
|
1 |
---
|
2 |
+
title: News Source Classifier
|
3 |
+
emoji: 📰
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: red
|
6 |
+
sdk: fastapi
|
7 |
+
sdk_version: 0.95.2
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
language: en
|
11 |
license: mit
|
12 |
tags:
|
|
|
51 |
|
52 |
## Usage
|
53 |
|
54 |
+
You can use this model through the FastAPI endpoint:
|
55 |
|
56 |
```python
|
57 |
import requests
|
58 |
|
59 |
# Make a prediction
|
60 |
response = requests.post(
|
61 |
+
"https://huggingface.co/Jiahuita/NewsSourceClassification",
|
62 |
json={"text": "Your news headline here"}
|
63 |
)
|
64 |
+
print(response.json())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
from fastapi import FastAPI
|
3 |
+
from pydantic import BaseModel
|
4 |
+
|
5 |
+
app = FastAPI()
|
6 |
+
|
7 |
+
class TextInput(BaseModel):
|
8 |
+
text: str
|
9 |
+
|
10 |
+
classifier = pipeline("text-classification", model="./")
|
11 |
+
|
12 |
+
@app.post("/predict")
|
13 |
+
async def predict(input_data: TextInput):
|
14 |
+
result = classifier(input_data.text)
|
15 |
+
return result
|
pipeline.py
CHANGED
@@ -1,52 +1,35 @@
|
|
1 |
-
from transformers import
|
2 |
-
|
3 |
-
from tensorflow.keras.preprocessing.text import tokenizer_from_json
|
4 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
5 |
-
import os
|
6 |
-
import numpy as np
|
7 |
import json
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
def __init__(self, max_length=128, **kwargs):
|
13 |
-
self.max_length = max_length
|
14 |
-
super().__init__(**kwargs)
|
15 |
|
16 |
-
class
|
17 |
-
|
18 |
-
|
19 |
-
def __init__(self, config):
|
20 |
-
super().__init__(config)
|
21 |
model_path = os.path.join(os.path.dirname(__file__), 'news_classifier.h5')
|
|
|
|
|
22 |
tokenizer_path = os.path.join(os.path.dirname(__file__), 'tokenizer.json')
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
self.tokenizer = tokenizer_from_json(tokenizer_data)
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
else:
|
33 |
-
sequences = self.tokenizer.texts_to_sequences(text_input)
|
34 |
-
|
35 |
-
padded = pad_sequences(sequences, maxlen=self.config.max_length)
|
36 |
predictions = self.model.predict(padded)
|
37 |
|
38 |
results = []
|
39 |
-
for
|
40 |
-
label = "foxnews" if
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
return results[0] if isinstance(text_input, str) else results
|
47 |
-
|
48 |
-
@classmethod
|
49 |
-
def from_pretrained(cls, model_path, **kwargs):
|
50 |
-
config = NewsClassifierConfig.from_pretrained(model_path)
|
51 |
-
model = cls(config)
|
52 |
-
return model
|
|
|
1 |
+
from transformers import Pipeline
|
2 |
+
import tensorflow as tf
|
|
|
3 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
|
|
|
|
4 |
import json
|
5 |
+
import os
|
6 |
|
7 |
+
def load_tokenizer(tokenizer_path):
|
8 |
+
with open(tokenizer_path, 'r') as f:
|
9 |
+
return json.load(f)
|
|
|
|
|
|
|
10 |
|
11 |
+
class NewsClassificationPipeline(Pipeline):
|
12 |
+
def __init__(self, model=None, tokenizer=None, **kwargs):
|
13 |
+
super().__init__(**kwargs)
|
|
|
|
|
14 |
model_path = os.path.join(os.path.dirname(__file__), 'news_classifier.h5')
|
15 |
+
self.model = tf.keras.models.load_model(model_path)
|
16 |
+
|
17 |
tokenizer_path = os.path.join(os.path.dirname(__file__), 'tokenizer.json')
|
18 |
+
self.tokenizer_config = load_tokenizer(tokenizer_path)
|
19 |
|
20 |
+
def __call__(self, texts, **kwargs):
|
21 |
+
if isinstance(texts, str):
|
22 |
+
texts = [texts]
|
|
|
23 |
|
24 |
+
sequences = self.tokenizer.texts_to_sequences(texts)
|
25 |
+
padded = pad_sequences(sequences, maxlen=128)
|
26 |
+
|
|
|
|
|
|
|
|
|
27 |
predictions = self.model.predict(padded)
|
28 |
|
29 |
results = []
|
30 |
+
for pred in predictions:
|
31 |
+
label = "foxnews" if pred[0] > 0.5 else "nbc"
|
32 |
+
score = float(pred[0] if label == "foxnews" else 1 - pred[0])
|
33 |
+
results.append({"label": label, "score": score})
|
34 |
+
|
35 |
+
return results[0] if isinstance(texts, str) else results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -2,3 +2,6 @@ tensorflow>=2.10.0
|
|
2 |
transformers>=4.46.3
|
3 |
numpy>=1.19.2
|
4 |
scikit-learn>=0.24.2
|
|
|
|
|
|
|
|
2 |
transformers>=4.46.3
|
3 |
numpy>=1.19.2
|
4 |
scikit-learn>=0.24.2
|
5 |
+
fastapi>=0.68.0
|
6 |
+
uvicorn>=0.15.0
|
7 |
+
pydantic>=1.8.2
|