Jiahuita
commited on
Commit
·
9a2d08e
1
Parent(s):
7532efb
Fix deployment issues
Browse files- README.md +0 -1
- __pycache__/pipeline.cpython-39.pyc +0 -0
- pipeline.py +10 -10
- requirements.txt +0 -4
README.md
CHANGED
@@ -3,7 +3,6 @@ language: en
|
|
3 |
license: mit
|
4 |
tags:
|
5 |
- text-classification
|
6 |
-
- news-classification
|
7 |
pipeline_tag: text-classification
|
8 |
inference: true
|
9 |
widget:
|
|
|
3 |
license: mit
|
4 |
tags:
|
5 |
- text-classification
|
|
|
6 |
pipeline_tag: text-classification
|
7 |
inference: true
|
8 |
widget:
|
__pycache__/pipeline.cpython-39.pyc
CHANGED
Binary files a/__pycache__/pipeline.cpython-39.pyc and b/__pycache__/pipeline.cpython-39.pyc differ
|
|
pipeline.py
CHANGED
@@ -7,23 +7,23 @@ import tensorflow as tf
|
|
7 |
import json
|
8 |
|
9 |
class NewsClassifierPipeline(Pipeline):
|
10 |
-
def __init__(self
|
11 |
super().__init__()
|
12 |
-
self.model = load_model(
|
13 |
-
with open(
|
14 |
tokenizer_data = json.load(f)
|
15 |
self.tokenizer = tokenizer_from_json(tokenizer_data)
|
16 |
|
17 |
-
def preprocess(self,
|
18 |
-
|
19 |
-
|
|
|
20 |
|
21 |
def _forward(self, inputs):
|
22 |
-
|
23 |
-
predictions = self.model.predict(preprocessed)
|
24 |
scores = tf.nn.softmax(predictions, axis=1).numpy()
|
25 |
-
label = np.argmax(scores)
|
26 |
-
return [{"label": "foxnews" if label == 0 else "nbc", "score": float(scores[0
|
27 |
|
28 |
def postprocess(self, model_outputs):
|
29 |
return model_outputs
|
|
|
7 |
import json
|
8 |
|
9 |
class NewsClassifierPipeline(Pipeline):
|
10 |
+
def __init__(self):
|
11 |
super().__init__()
|
12 |
+
self.model = load_model('./news_classifier.h5')
|
13 |
+
with open('./tokenizer.json', 'r') as f:
|
14 |
tokenizer_data = json.load(f)
|
15 |
self.tokenizer = tokenizer_from_json(tokenizer_data)
|
16 |
|
17 |
+
def preprocess(self, text):
|
18 |
+
sequence = self.tokenizer.texts_to_sequences([text])
|
19 |
+
padded = pad_sequences(sequence, maxlen=128)
|
20 |
+
return padded
|
21 |
|
22 |
def _forward(self, inputs):
|
23 |
+
predictions = self.model.predict(inputs)
|
|
|
24 |
scores = tf.nn.softmax(predictions, axis=1).numpy()
|
25 |
+
label = np.argmax(scores, axis=1)[0]
|
26 |
+
return [{"label": "foxnews" if label == 0 else "nbc", "score": float(scores[0][label])}]
|
27 |
|
28 |
def postprocess(self, model_outputs):
|
29 |
return model_outputs
|
requirements.txt
CHANGED
@@ -1,9 +1,5 @@
|
|
1 |
-
#tensorflow-macos>=2.10.0
|
2 |
tensorflow>=2.10.0
|
3 |
transformers>=4.30.0
|
4 |
torch>=2.0.0
|
5 |
numpy>=1.19.2
|
6 |
scikit-learn>=0.24.2
|
7 |
-
fastapi==0.68.1
|
8 |
-
uvicorn==0.15.0
|
9 |
-
pydantic==1.8.2
|
|
|
|
|
1 |
tensorflow>=2.10.0
|
2 |
transformers>=4.30.0
|
3 |
torch>=2.0.0
|
4 |
numpy>=1.19.2
|
5 |
scikit-learn>=0.24.2
|
|
|
|
|
|