Jiahuita
Restructured files
de435e1
raw
history blame
1.2 kB
from transformers import Pipeline
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.text import tokenizer_from_json
from tensorflow.keras.preprocessing.sequence import pad_sequences
import json
import numpy as np
class NewsClassifierPipeline(Pipeline):
def __init__(self):
super().__init__()
self.model = load_model('./news_classifier.h5')
with open('tokenizer.json') as f:
tokenizer_data = json.load(f)
self.tokenizer = tokenizer_from_json(tokenizer_data)
def preprocess(self, text):
sequence = self.tokenizer.texts_to_sequences([text])
padded = pad_sequences(sequence)
return padded
def _forward(self, texts):
processed = self.preprocess(texts)
predictions = self.model.predict(processed)
scores = tf.nn.softmax(predictions, axis=1)
predicted_class = np.argmax(predictions)
score = float(np.max(scores))
label = 'foxnews' if predicted_class == 0 else 'nbc'
return [{'label': label, 'score': score}]
def postprocess(self, model_outputs):
return model_outputs