JhonMR commited on
Commit
2a9e475
·
verified ·
1 Parent(s): b8f8803

End of training

Browse files
Files changed (7) hide show
  1. README.md +45 -179
  2. all_results.json +21 -0
  3. config.json +1 -1
  4. eval_results.json +11 -0
  5. train_results.json +8 -0
  6. trainer_state.json +230 -0
  7. training_args.bin +3 -0
README.md CHANGED
@@ -1,199 +1,65 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
 
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
 
 
 
 
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ base_model: PlanTL-GOB-ES/RoBERTalex
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ - precision
11
+ - recall
12
+ model-index:
13
+ - name: RoBertaLex_v10
14
+ results: []
15
  ---
16
 
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
 
20
+ # RoBertaLex_v10
21
 
22
+ This model is a fine-tuned version of [PlanTL-GOB-ES/RoBERTalex](https://huggingface.co/PlanTL-GOB-ES/RoBERTalex) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Accuracy: 0.8979
25
+ - F1: 0.8975
26
+ - Precision: 0.8983
27
+ - Recall: 0.8982
28
+ - Loss: 0.4829
29
 
30
+ ## Model description
31
 
32
+ More information needed
33
 
34
+ ## Intended uses & limitations
35
 
36
+ More information needed
37
 
38
+ ## Training and evaluation data
39
 
40
+ More information needed
 
 
 
 
 
 
41
 
42
+ ## Training procedure
43
 
44
+ ### Training hyperparameters
45
 
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 2e-05
48
+ - train_batch_size: 8
49
+ - eval_batch_size: 8
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: cosine
53
+ - lr_scheduler_warmup_steps: 500
54
+ - num_epochs: 12
55
 
56
+ ### Training results
57
 
 
58
 
 
59
 
60
+ ### Framework versions
61
 
62
+ - Transformers 4.44.2
63
+ - Pytorch 2.5.0+cu121
64
+ - Datasets 3.1.0
65
+ - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
all_results.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 6.0,
3
+ "eval_accuracy": 0.8978835978835978,
4
+ "eval_f1": 0.8974625900835275,
5
+ "eval_loss": 0.48289522528648376,
6
+ "eval_precision": 0.8983196617688776,
7
+ "eval_recall": 0.8981742359077385,
8
+ "eval_runtime": 113.6522,
9
+ "eval_samples_per_second": 33.259,
10
+ "eval_steps_per_second": 4.162,
11
+ "total_flos": 1.39288377102336e+16,
12
+ "train_eval_accuracy": 0.9667800453514739,
13
+ "train_eval_f1": 0.9665532935289809,
14
+ "train_eval_loss": 0.13728319108486176,
15
+ "train_eval_precision": 0.9668769668275939,
16
+ "train_eval_recall": 0.9665372917440072,
17
+ "train_loss": 0.7601337173475748,
18
+ "train_runtime": 7219.9118,
19
+ "train_samples_per_second": 14.659,
20
+ "train_steps_per_second": 1.833
21
+ }
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "RoBertaLex_v10",
3
  "architectures": [
4
  "RobertaForSequenceClassification"
5
  ],
 
1
  {
2
+ "_name_or_path": "PlanTL-GOB-ES/RoBERTalex",
3
  "architectures": [
4
  "RobertaForSequenceClassification"
5
  ],
eval_results.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 6.0,
3
+ "eval_accuracy": 0.8978835978835978,
4
+ "eval_f1": 0.8974625900835275,
5
+ "eval_loss": 0.48289522528648376,
6
+ "eval_precision": 0.8983196617688776,
7
+ "eval_recall": 0.8981742359077385,
8
+ "eval_runtime": 113.6522,
9
+ "eval_samples_per_second": 33.259,
10
+ "eval_steps_per_second": 4.162
11
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 6.0,
3
+ "total_flos": 1.39288377102336e+16,
4
+ "train_loss": 0.7601337173475748,
5
+ "train_runtime": 7219.9118,
6
+ "train_samples_per_second": 14.659,
7
+ "train_steps_per_second": 1.833
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,230 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 6.0,
5
+ "eval_steps": 500,
6
+ "global_step": 6618,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "step": 1103,
14
+ "train_eval_accuracy": 0.7038548752834467,
15
+ "train_eval_f1": 0.6632307531732782,
16
+ "train_eval_loss": 1.0848891735076904,
17
+ "train_eval_precision": 0.7168947655115439,
18
+ "train_eval_recall": 0.7035581415926491,
19
+ "train_loss": 1.0848891735076904,
20
+ "train_runtime": 264.7926,
21
+ "train_samples_per_second": 33.309,
22
+ "train_steps_per_second": 4.166
23
+ },
24
+ {
25
+ "epoch": 1.0,
26
+ "eval_accuracy": 0.6907407407407408,
27
+ "eval_f1": 0.650349099447679,
28
+ "eval_loss": 1.1183524131774902,
29
+ "eval_precision": 0.6921232992073287,
30
+ "eval_recall": 0.6915906491164756,
31
+ "eval_runtime": 113.5601,
32
+ "eval_samples_per_second": 33.286,
33
+ "eval_steps_per_second": 4.165,
34
+ "step": 1103
35
+ },
36
+ {
37
+ "epoch": 2.0,
38
+ "step": 2206,
39
+ "train_eval_accuracy": 0.8954648526077098,
40
+ "train_eval_f1": 0.8862104131213615,
41
+ "train_eval_loss": 0.3707798719406128,
42
+ "train_eval_precision": 0.9098024890839804,
43
+ "train_eval_recall": 0.8944939716644009,
44
+ "train_loss": 0.370779812335968,
45
+ "train_runtime": 265.6336,
46
+ "train_samples_per_second": 33.204,
47
+ "train_steps_per_second": 4.152
48
+ },
49
+ {
50
+ "epoch": 2.0,
51
+ "eval_accuracy": 0.8669312169312169,
52
+ "eval_f1": 0.8584639708159391,
53
+ "eval_loss": 0.4698329567909241,
54
+ "eval_precision": 0.8609250931703862,
55
+ "eval_recall": 0.8686962380593306,
56
+ "eval_runtime": 113.5652,
57
+ "eval_samples_per_second": 33.285,
58
+ "eval_steps_per_second": 4.165,
59
+ "step": 2206
60
+ },
61
+ {
62
+ "epoch": 3.0,
63
+ "step": 3309,
64
+ "train_eval_accuracy": 0.9257369614512472,
65
+ "train_eval_f1": 0.9252576803169037,
66
+ "train_eval_loss": 0.28054898977279663,
67
+ "train_eval_precision": 0.9277462662521301,
68
+ "train_eval_recall": 0.9257165963161775,
69
+ "train_loss": 0.28054898977279663,
70
+ "train_runtime": 265.9318,
71
+ "train_samples_per_second": 33.166,
72
+ "train_steps_per_second": 4.148
73
+ },
74
+ {
75
+ "epoch": 3.0,
76
+ "eval_accuracy": 0.8891534391534391,
77
+ "eval_f1": 0.8871334294657096,
78
+ "eval_loss": 0.43829405307769775,
79
+ "eval_precision": 0.8905971669580465,
80
+ "eval_recall": 0.8885704350266709,
81
+ "eval_runtime": 113.7207,
82
+ "eval_samples_per_second": 33.239,
83
+ "eval_steps_per_second": 4.159,
84
+ "step": 3309
85
+ },
86
+ {
87
+ "epoch": 4.0,
88
+ "step": 4412,
89
+ "train_eval_accuracy": 0.9454648526077097,
90
+ "train_eval_f1": 0.9451948595406918,
91
+ "train_eval_loss": 0.21954156458377838,
92
+ "train_eval_precision": 0.9465585461247004,
93
+ "train_eval_recall": 0.9453011434624647,
94
+ "train_loss": 0.21954156458377838,
95
+ "train_runtime": 265.1444,
96
+ "train_samples_per_second": 33.265,
97
+ "train_steps_per_second": 4.16
98
+ },
99
+ {
100
+ "epoch": 4.0,
101
+ "eval_accuracy": 0.9005291005291005,
102
+ "eval_f1": 0.8997221694148184,
103
+ "eval_loss": 0.4437304437160492,
104
+ "eval_precision": 0.9031201315235958,
105
+ "eval_recall": 0.900597065854027,
106
+ "eval_runtime": 113.9005,
107
+ "eval_samples_per_second": 33.187,
108
+ "eval_steps_per_second": 4.153,
109
+ "step": 4412
110
+ },
111
+ {
112
+ "epoch": 5.0,
113
+ "step": 5515,
114
+ "train_eval_accuracy": 0.9524943310657596,
115
+ "train_eval_f1": 0.9521538910810808,
116
+ "train_eval_loss": 0.18594056367874146,
117
+ "train_eval_precision": 0.9535301944285633,
118
+ "train_eval_recall": 0.9522655532984384,
119
+ "train_loss": 0.18594057857990265,
120
+ "train_runtime": 265.1404,
121
+ "train_samples_per_second": 33.265,
122
+ "train_steps_per_second": 4.16
123
+ },
124
+ {
125
+ "epoch": 5.0,
126
+ "eval_accuracy": 0.8957671957671958,
127
+ "eval_f1": 0.8944708569814356,
128
+ "eval_loss": 0.47566497325897217,
129
+ "eval_precision": 0.8970355161375609,
130
+ "eval_recall": 0.8955264074998366,
131
+ "eval_runtime": 113.9062,
132
+ "eval_samples_per_second": 33.185,
133
+ "eval_steps_per_second": 4.153,
134
+ "step": 5515
135
+ },
136
+ {
137
+ "epoch": 6.0,
138
+ "step": 6618,
139
+ "train_eval_accuracy": 0.9667800453514739,
140
+ "train_eval_f1": 0.9665532935289809,
141
+ "train_eval_loss": 0.13728319108486176,
142
+ "train_eval_precision": 0.9668769668275939,
143
+ "train_eval_recall": 0.9665372917440072,
144
+ "train_loss": 0.13728320598602295,
145
+ "train_runtime": 265.104,
146
+ "train_samples_per_second": 33.27,
147
+ "train_steps_per_second": 4.161
148
+ },
149
+ {
150
+ "epoch": 6.0,
151
+ "eval_accuracy": 0.8978835978835978,
152
+ "eval_f1": 0.8974625900835275,
153
+ "eval_loss": 0.48289522528648376,
154
+ "eval_precision": 0.8983196617688776,
155
+ "eval_recall": 0.8981742359077385,
156
+ "eval_runtime": 113.6055,
157
+ "eval_samples_per_second": 33.273,
158
+ "eval_steps_per_second": 4.164,
159
+ "step": 6618
160
+ },
161
+ {
162
+ "epoch": 6.0,
163
+ "step": 6618,
164
+ "total_flos": 1.39288377102336e+16,
165
+ "train_loss": 0.7601337173475748,
166
+ "train_runtime": 7219.9118,
167
+ "train_samples_per_second": 14.659,
168
+ "train_steps_per_second": 1.833
169
+ },
170
+ {
171
+ "epoch": 6.0,
172
+ "eval_accuracy": 0.8978835978835978,
173
+ "eval_f1": 0.8974625900835275,
174
+ "eval_loss": 0.48289522528648376,
175
+ "eval_precision": 0.8983196617688776,
176
+ "eval_recall": 0.8981742359077385,
177
+ "eval_runtime": 113.7531,
178
+ "eval_samples_per_second": 33.23,
179
+ "eval_steps_per_second": 4.158,
180
+ "step": 6618
181
+ },
182
+ {
183
+ "epoch": 6.0,
184
+ "step": 6618,
185
+ "train_en_eval_accuracy": 0.9667800453514739,
186
+ "train_en_eval_f1": 0.9665532935289809,
187
+ "train_en_eval_loss": 0.13728319108486176,
188
+ "train_en_eval_precision": 0.9668769668275939,
189
+ "train_en_eval_recall": 0.9665372917440072,
190
+ "train_en_loss": 0.13728320598602295,
191
+ "train_en_runtime": 265.3662,
192
+ "train_en_samples_per_second": 33.237,
193
+ "train_en_steps_per_second": 4.157
194
+ },
195
+ {
196
+ "epoch": 6.0,
197
+ "step": 6618,
198
+ "test_en_eval_accuracy": 0.8978835978835978,
199
+ "test_en_eval_f1": 0.8974625900835275,
200
+ "test_en_eval_loss": 0.48289522528648376,
201
+ "test_en_eval_precision": 0.8983196617688776,
202
+ "test_en_eval_recall": 0.8981742359077385,
203
+ "test_en_loss": 0.48289522528648376,
204
+ "test_en_runtime": 113.6677,
205
+ "test_en_samples_per_second": 33.255,
206
+ "test_en_steps_per_second": 4.161
207
+ }
208
+ ],
209
+ "logging_steps": 500,
210
+ "max_steps": 13236,
211
+ "num_input_tokens_seen": 0,
212
+ "num_train_epochs": 12,
213
+ "save_steps": 500,
214
+ "stateful_callbacks": {
215
+ "TrainerControl": {
216
+ "args": {
217
+ "should_epoch_stop": false,
218
+ "should_evaluate": false,
219
+ "should_log": false,
220
+ "should_save": true,
221
+ "should_training_stop": true
222
+ },
223
+ "attributes": {}
224
+ }
225
+ },
226
+ "total_flos": 1.39288377102336e+16,
227
+ "train_batch_size": 8,
228
+ "trial_name": null,
229
+ "trial_params": null
230
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db8ac7d0511f62b94e66f0ef14455bd4f4dce508780d8fa019f57c88513cd5e9
3
+ size 5176