JerryYanJiang commited on
Commit
dc7a24b
1 Parent(s): 0c662d9

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: vinai/bertweet-base
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ - precision
9
+ - recall
10
+ model-index:
11
+ - name: bertweet-base_epoch3_batch4_lr2e-05_w0.01
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # bertweet-base_epoch3_batch4_lr2e-05_w0.01
19
+
20
+ This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.5753
23
+ - Accuracy: 0.8687
24
+ - F1: 0.8275
25
+ - Precision: 0.8109
26
+ - Recall: 0.8448
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 4
47
+ - eval_batch_size: 4
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 3
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
57
+ | 0.5235 | 1.0 | 788 | 0.4170 | 0.8643 | 0.8076 | 0.8562 | 0.7642 |
58
+ | 0.3755 | 2.0 | 1576 | 0.5068 | 0.8699 | 0.8272 | 0.8187 | 0.8358 |
59
+ | 0.2978 | 3.0 | 2364 | 0.5753 | 0.8687 | 0.8275 | 0.8109 | 0.8448 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.31.0
65
+ - Pytorch 2.0.1+cu118
66
+ - Datasets 2.14.3
67
+ - Tokenizers 0.13.3