JerryWu commited on
Commit
9e16e86
1 Parent(s): 14586b4

Upload ChatGLMForConditionalGeneration

Browse files
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "THUDM/chatglm-6b-int4",
3
+ "architectures": [
4
+ "ChatGLMForConditionalGeneration"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_chatglm.ChatGLMConfig",
8
+ "AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
9
+ "AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration"
10
+ },
11
+ "bos_token_id": 150004,
12
+ "eos_token_id": 150005,
13
+ "hidden_size": 4096,
14
+ "inner_hidden_size": 16384,
15
+ "layernorm_epsilon": 1e-05,
16
+ "max_sequence_length": 2048,
17
+ "model_type": "chatglm",
18
+ "num_attention_heads": 32,
19
+ "num_layers": 28,
20
+ "pad_token_id": 0,
21
+ "position_encoding_2d": true,
22
+ "quantization_bit": 4,
23
+ "quantization_embeddings": false,
24
+ "torch_dtype": "float16",
25
+ "transformers_version": "4.26.1",
26
+ "use_cache": true,
27
+ "vocab_size": 150528
28
+ }
configuration_chatglm.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ ChatGLM model configuration """
2
+
3
+ from transformers.configuration_utils import PretrainedConfig
4
+ from transformers.utils import logging
5
+
6
+ logger = logging.get_logger(__name__)
7
+
8
+
9
+ class ChatGLMConfig(PretrainedConfig):
10
+ r"""
11
+ This is the configuration class to store the configuration of a [`~ChatGLMModel`].
12
+ It is used to instantiate an ChatGLM model according to the specified arguments, defining the model
13
+ architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
14
+ the ChatGLM-6B [THUDM/ChatGLM-6B](https://huggingface.co/THUDM/chatglm-6b) architecture.
15
+
16
+ Configuration objects inherit from [`PretrainedConfig`] and can be used
17
+ to control the model outputs. Read the documentation from [`PretrainedConfig`]
18
+ for more information.
19
+
20
+
21
+ Args:
22
+ vocab_size (`int`, *optional*, defaults to 150528):
23
+ Vocabulary size of the ChatGLM-6B model. Defines the number of different tokens that can be represented by the
24
+ `inputs_ids` passed when calling [`~ChatGLMModel`] or
25
+ [`~TFChatGLMModel`].
26
+ hidden_size (`int`, *optional*, defaults to 4096):
27
+ Dimension of the encoder layers and the pooler layer.
28
+ num_hidden_layers (`int`, *optional*, defaults to 28):
29
+ Number of hidden layers in the Transformer encoder.
30
+ num_attention_heads (`int`, *optional*, defaults to 32):
31
+ Number of attention heads for each attention layer in the Transformer encoder.
32
+ inner_hidden_size (`int`, *optional*, defaults to 16384):
33
+ Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
34
+ max_sequence_length (`int`, *optional*, defaults to 512):
35
+ The maximum sequence length that this model might ever be used with.
36
+ Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
37
+ layernorm_epsilon (`float`, *optional*, defaults to 1e-5):
38
+ The epsilon used by the layer normalization layers.
39
+ use_cache (`bool`, *optional*, defaults to `True`):
40
+ Whether the model should return the last key/values attentions (not used by all models).
41
+ Example:
42
+
43
+ ```python
44
+ >>> from configuration_chatglm import ChatGLMConfig
45
+ >>> from modeling_chatglm import ChatGLMModel
46
+
47
+ >>> # Initializing a ChatGLM-6B THUDM/ChatGLM-6B style configuration
48
+ >>> configuration = ChatGLMConfig()
49
+
50
+ >>> # Initializing a model from the THUDM/ChatGLM-6B style configuration
51
+ >>> model = ChatGLMModel(configuration)
52
+
53
+ >>> # Accessing the model configuration
54
+ >>> configuration = model.config
55
+ ```
56
+ """
57
+ model_type = "chatglm"
58
+
59
+ def __init__(
60
+ self,
61
+ vocab_size=150528,
62
+ hidden_size=4096,
63
+ num_layers=28,
64
+ num_attention_heads=32,
65
+ layernorm_epsilon=1e-5,
66
+ use_cache=False,
67
+ bos_token_id=150004,
68
+ eos_token_id=150005,
69
+ pad_token_id=0,
70
+ max_sequence_length=2048,
71
+ inner_hidden_size=16384,
72
+ position_encoding_2d=True,
73
+ quantization_bit=0,
74
+ quantization_embeddings=False,
75
+ **kwargs
76
+ ):
77
+ self.num_layers = num_layers
78
+ self.vocab_size = vocab_size
79
+ self.hidden_size = hidden_size
80
+ self.num_attention_heads = num_attention_heads
81
+ self.max_sequence_length = max_sequence_length
82
+ self.layernorm_epsilon = layernorm_epsilon
83
+ self.inner_hidden_size = inner_hidden_size
84
+ self.use_cache = use_cache
85
+ self.bos_token_id = bos_token_id
86
+ self.eos_token_id = eos_token_id
87
+ self.pad_token_id = pad_token_id
88
+ self.position_encoding_2d = position_encoding_2d
89
+ self.quantization_bit=quantization_bit
90
+ self.quantization_embeddings=quantization_embeddings
91
+ super().__init__(
92
+ pad_token_id=pad_token_id,
93
+ bos_token_id=bos_token_id,
94
+ eos_token_id=eos_token_id,
95
+ **kwargs
96
+ )
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 150004,
4
+ "eos_token_id": 150005,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.26.1"
7
+ }
modeling_chatglm.py ADDED
@@ -0,0 +1,1302 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ PyTorch ChatGLM model. """
2
+
3
+ import math
4
+ import copy
5
+ import os
6
+ import warnings
7
+
8
+ import torch
9
+ import torch.utils.checkpoint
10
+ import torch.nn.functional as F
11
+ from torch import nn
12
+ from torch.nn import CrossEntropyLoss, LayerNorm
13
+ from torch.nn.utils import skip_init
14
+ from typing import Optional, Tuple, Union, List, Callable
15
+
16
+ from transformers.utils import (
17
+ add_code_sample_docstrings,
18
+ add_start_docstrings,
19
+ add_start_docstrings_to_model_forward,
20
+ )
21
+ from transformers.modeling_outputs import (
22
+ BaseModelOutputWithPast,
23
+ CausalLMOutputWithPast,
24
+ BaseModelOutputWithPastAndCrossAttentions,
25
+ )
26
+ from transformers.modeling_utils import PreTrainedModel
27
+ from transformers.utils import logging
28
+ from transformers.generation.logits_process import LogitsProcessor
29
+ from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig
30
+
31
+ from .configuration_chatglm import ChatGLMConfig
32
+
33
+
34
+ # flags required to enable jit fusion kernels
35
+ torch._C._jit_set_profiling_mode(False)
36
+ torch._C._jit_set_profiling_executor(False)
37
+ torch._C._jit_override_can_fuse_on_cpu(True)
38
+ torch._C._jit_override_can_fuse_on_gpu(True)
39
+
40
+ logger = logging.get_logger(__name__)
41
+
42
+ _CHECKPOINT_FOR_DOC = "THUDM/ChatGLM-6B"
43
+ _CONFIG_FOR_DOC = "ChatGLM6BConfig"
44
+
45
+ CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
46
+ "THUDM/chatglm-6b",
47
+ # See all ChatGLM-6B models at https://huggingface.co/models?filter=chatglm
48
+ ]
49
+
50
+
51
+ class InvalidScoreLogitsProcessor(LogitsProcessor):
52
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
53
+ if torch.isnan(scores).any() or torch.isinf(scores).any():
54
+ scores.zero_()
55
+ scores[..., 20005] = 5e4
56
+ return scores
57
+
58
+
59
+ def load_tf_weights_in_chatglm_6b(model, config, tf_checkpoint_path):
60
+ """Load tf checkpoints in a pytorch model."""
61
+ try:
62
+ import re
63
+
64
+ import numpy as np
65
+ import tensorflow as tf
66
+ except ImportError:
67
+ logger.error(
68
+ "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
69
+ "https://www.tensorflow.org/install/ for installation instructions."
70
+ )
71
+ raise
72
+ tf_path = os.path.abspath(tf_checkpoint_path)
73
+ logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
74
+ # Load weights from TF model
75
+ init_vars = tf.train.list_variables(tf_path)
76
+ names = []
77
+ arrays = []
78
+ for name, shape in init_vars:
79
+ logger.info(f"Loading TF weight {name} with shape {shape}")
80
+ array = tf.train.load_variable(tf_path, name)
81
+ names.append(name)
82
+ arrays.append(array)
83
+
84
+ for name, array in zip(names, arrays):
85
+ name = name.split("/")
86
+ # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
87
+ # which are not required for using pretrained model
88
+ if any(
89
+ n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
90
+ for n in name
91
+ ):
92
+ logger.info(f"Skipping {'/'.join(name)}")
93
+ continue
94
+ pointer = model
95
+ for m_name in name:
96
+ if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
97
+ scope_names = re.split(r"_(\d+)", m_name)
98
+ else:
99
+ scope_names = [m_name]
100
+ if scope_names[0] == "kernel" or scope_names[0] == "gamma":
101
+ pointer = getattr(pointer, "weight")
102
+ elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
103
+ pointer = getattr(pointer, "bias")
104
+ elif scope_names[0] == "output_weights":
105
+ pointer = getattr(pointer, "weight")
106
+ elif scope_names[0] == "squad":
107
+ pointer = getattr(pointer, "classifier")
108
+ else:
109
+ try:
110
+ pointer = getattr(pointer, scope_names[0])
111
+ except AttributeError:
112
+ logger.info(f"Skipping {'/'.join(name)}")
113
+ continue
114
+ if len(scope_names) >= 2:
115
+ num = int(scope_names[1])
116
+ pointer = pointer[num]
117
+ if m_name[-11:] == "_embeddings":
118
+ pointer = getattr(pointer, "weight")
119
+ elif m_name == "kernel":
120
+ array = np.transpose(array)
121
+ try:
122
+ assert (
123
+ pointer.shape == array.shape
124
+ ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
125
+ except AssertionError as e:
126
+ e.args += (pointer.shape, array.shape)
127
+ raise
128
+ logger.info(f"Initialize PyTorch weight {name}")
129
+ pointer.data = torch.from_numpy(array)
130
+ return model
131
+
132
+
133
+ @torch.jit.script
134
+ def gelu_impl(x):
135
+ """OpenAI's gelu implementation."""
136
+ return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x *
137
+ (1.0 + 0.044715 * x * x)))
138
+
139
+
140
+ def gelu(x):
141
+ return gelu_impl(x)
142
+
143
+
144
+ class RotaryEmbedding(torch.nn.Module):
145
+ def __init__(self, dim, base=10000, precision=torch.half, learnable=False):
146
+ super().__init__()
147
+ inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
148
+ inv_freq = inv_freq.half()
149
+ self.learnable = learnable
150
+ if learnable:
151
+ self.inv_freq = torch.nn.Parameter(inv_freq)
152
+ self.max_seq_len_cached = None
153
+ else:
154
+ self.register_buffer('inv_freq', inv_freq)
155
+ self.max_seq_len_cached = None
156
+ self.cos_cached = None
157
+ self.sin_cached = None
158
+ self.precision = precision
159
+
160
+ def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
161
+ error_msgs):
162
+ pass
163
+
164
+ def forward(self, x, seq_dim=1, seq_len=None):
165
+ if seq_len is None:
166
+ seq_len = x.shape[seq_dim]
167
+ if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):
168
+ self.max_seq_len_cached = None if self.learnable else seq_len
169
+ t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)
170
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
171
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
172
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
173
+ if self.precision == torch.bfloat16:
174
+ emb = emb.float()
175
+
176
+ # [sx, 1 (b * np), hn]
177
+ cos_cached = emb.cos()[:, None, :]
178
+ sin_cached = emb.sin()[:, None, :]
179
+ if self.precision == torch.bfloat16:
180
+ cos_cached = cos_cached.bfloat16()
181
+ sin_cached = sin_cached.bfloat16()
182
+ if self.learnable:
183
+ return cos_cached, sin_cached
184
+ self.cos_cached, self.sin_cached = cos_cached, sin_cached
185
+ return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]
186
+
187
+ def _apply(self, fn):
188
+ if self.cos_cached is not None:
189
+ self.cos_cached = fn(self.cos_cached)
190
+ if self.sin_cached is not None:
191
+ self.sin_cached = fn(self.sin_cached)
192
+ return super()._apply(fn)
193
+
194
+ def rotate_half(x):
195
+ x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
196
+ return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions
197
+
198
+
199
+ @torch.jit.script
200
+ def apply_rotary_pos_emb_index(q, k, cos, sin, position_id):
201
+ # position_id: [sq, b], q, k: [sq, b, np, hn], cos: [sq, 1, hn] -> [sq, b, 1, hn]
202
+ cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(2), \
203
+ F.embedding(position_id, sin.squeeze(1)).unsqueeze(2)
204
+ q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
205
+ return q, k
206
+
207
+
208
+ def attention_fn(
209
+ self,
210
+ query_layer,
211
+ key_layer,
212
+ value_layer,
213
+ attention_mask,
214
+ hidden_size_per_partition,
215
+ layer_id,
216
+ layer_past=None,
217
+ scaling_attention_score=True,
218
+ use_cache=False,
219
+ ):
220
+ if layer_past is not None:
221
+ past_key, past_value = layer_past
222
+ key_layer = torch.cat((past_key, key_layer), dim=0)
223
+ value_layer = torch.cat((past_value, value_layer), dim=0)
224
+
225
+ # seqlen, batch, num_attention_heads, hidden_size_per_attention_head
226
+ seq_len, b, nh, hidden_size = key_layer.shape
227
+
228
+ if use_cache:
229
+ present = (key_layer, value_layer)
230
+ else:
231
+ present = None
232
+
233
+ query_key_layer_scaling_coeff = float(layer_id + 1)
234
+ if scaling_attention_score:
235
+ query_layer = query_layer / (math.sqrt(hidden_size) * query_key_layer_scaling_coeff)
236
+
237
+ # ===================================
238
+ # Raw attention scores. [b, np, s, s]
239
+ # ===================================
240
+
241
+ # [b, np, sq, sk]
242
+ output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
243
+
244
+ # [sq, b, np, hn] -> [sq, b * np, hn]
245
+ query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
246
+ # [sk, b, np, hn] -> [sk, b * np, hn]
247
+ key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
248
+
249
+ matmul_result = torch.empty(
250
+ output_size[0] * output_size[1],
251
+ output_size[2],
252
+ output_size[3],
253
+ dtype=query_layer.dtype,
254
+ device=query_layer.device,
255
+ )
256
+
257
+ matmul_result = torch.baddbmm(
258
+ matmul_result,
259
+ query_layer.transpose(0, 1), # [b * np, sq, hn]
260
+ key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
261
+ beta=0.0,
262
+ alpha=1.0,
263
+ )
264
+
265
+ # change view to [b, np, sq, sk]
266
+ attention_scores = matmul_result.view(*output_size)
267
+
268
+ if self.scale_mask_softmax:
269
+ self.scale_mask_softmax.scale = query_key_layer_scaling_coeff
270
+ attention_probs = self.scale_mask_softmax(attention_scores, attention_mask.contiguous())
271
+ else:
272
+ if not (attention_mask == 0).all():
273
+ # if auto-regressive, skip
274
+ attention_scores.masked_fill_(attention_mask, -10000.0)
275
+ dtype = attention_scores.type()
276
+ attention_scores = attention_scores.float()
277
+ attention_scores = attention_scores * query_key_layer_scaling_coeff
278
+
279
+ attention_probs = F.softmax(attention_scores, dim=-1)
280
+
281
+ attention_probs = attention_probs.type(dtype)
282
+
283
+ # =========================
284
+ # Context layer. [sq, b, hp]
285
+ # =========================
286
+
287
+ # value_layer -> context layer.
288
+ # [sk, b, np, hn] --> [b, np, sq, hn]
289
+
290
+ # context layer shape: [b, np, sq, hn]
291
+ output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
292
+
293
+ # change view [sk, b * np, hn]
294
+ value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
295
+
296
+ # change view [b * np, sq, sk]
297
+ attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
298
+
299
+ # matmul: [b * np, sq, hn]
300
+ context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
301
+
302
+ # change view [b, np, sq, hn]
303
+ context_layer = context_layer.view(*output_size)
304
+
305
+ # [b, np, sq, hn] --> [sq, b, np, hn]
306
+ context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
307
+
308
+ # [sq, b, np, hn] --> [sq, b, hp]
309
+ new_context_layer_shape = context_layer.size()[:-2] + (hidden_size_per_partition,)
310
+ context_layer = context_layer.view(*new_context_layer_shape)
311
+
312
+ outputs = (context_layer, present, attention_probs)
313
+
314
+ return outputs
315
+
316
+
317
+ class SelfAttention(torch.nn.Module):
318
+ def __init__(self, hidden_size, num_attention_heads,
319
+ layer_id, hidden_size_per_attention_head=None, bias=True,
320
+ params_dtype=torch.float, position_encoding_2d=True):
321
+ super(SelfAttention, self).__init__()
322
+
323
+ self.layer_id = layer_id
324
+ self.hidden_size = hidden_size
325
+ self.hidden_size_per_partition = hidden_size
326
+ self.num_attention_heads = num_attention_heads
327
+ self.num_attention_heads_per_partition = num_attention_heads
328
+ self.position_encoding_2d = position_encoding_2d
329
+ self.rotary_emb = RotaryEmbedding(
330
+ self.hidden_size // (self.num_attention_heads * 2)
331
+ if position_encoding_2d
332
+ else self.hidden_size // self.num_attention_heads,
333
+ base=10000,
334
+ precision=torch.half,
335
+ learnable=False,
336
+ )
337
+
338
+ self.scale_mask_softmax = None
339
+
340
+ if hidden_size_per_attention_head is None:
341
+ self.hidden_size_per_attention_head = hidden_size // num_attention_heads
342
+ else:
343
+ self.hidden_size_per_attention_head = hidden_size_per_attention_head
344
+
345
+ self.inner_hidden_size = num_attention_heads * self.hidden_size_per_attention_head
346
+
347
+ # Strided linear layer.
348
+ self.query_key_value = skip_init(
349
+ torch.nn.Linear,
350
+ hidden_size,
351
+ 3 * self.inner_hidden_size,
352
+ bias=bias,
353
+ dtype=params_dtype,
354
+ )
355
+
356
+ self.dense = skip_init(
357
+ torch.nn.Linear,
358
+ self.inner_hidden_size,
359
+ hidden_size,
360
+ bias=bias,
361
+ dtype=params_dtype,
362
+ )
363
+
364
+ @staticmethod
365
+ def attention_mask_func(attention_scores, attention_mask):
366
+ attention_scores.masked_fill_(attention_mask, -10000.0)
367
+ return attention_scores
368
+
369
+ def split_tensor_along_last_dim(self, tensor, num_partitions,
370
+ contiguous_split_chunks=False):
371
+ """Split a tensor along its last dimension.
372
+ Arguments:
373
+ tensor: input tensor.
374
+ num_partitions: number of partitions to split the tensor
375
+ contiguous_split_chunks: If True, make each chunk contiguous
376
+ in memory.
377
+ """
378
+ # Get the size and dimension.
379
+ last_dim = tensor.dim() - 1
380
+ last_dim_size = tensor.size()[last_dim] // num_partitions
381
+ # Split.
382
+ tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
383
+ # Note: torch.split does not create contiguous tensors by default.
384
+ if contiguous_split_chunks:
385
+ return tuple(chunk.contiguous() for chunk in tensor_list)
386
+
387
+ return tensor_list
388
+
389
+ def forward(
390
+ self,
391
+ hidden_states: torch.Tensor,
392
+ position_ids,
393
+ attention_mask: torch.Tensor,
394
+ layer_id,
395
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
396
+ use_cache: bool = False,
397
+ output_attentions: bool = False,
398
+ ):
399
+ """
400
+ hidden_states: [seq_len, batch, hidden_size]
401
+ attention_mask: [(1, 1), seq_len, seq_len]
402
+ """
403
+
404
+ # [seq_len, batch, 3 * hidden_size]
405
+ mixed_raw_layer = self.query_key_value(hidden_states)
406
+
407
+ # [seq_len, batch, 3 * hidden_size] --> [seq_len, batch, num_attention_heads, 3 * hidden_size_per_attention_head]
408
+ new_tensor_shape = mixed_raw_layer.size()[:-1] + (
409
+ self.num_attention_heads_per_partition,
410
+ 3 * self.hidden_size_per_attention_head,
411
+ )
412
+ mixed_raw_layer = mixed_raw_layer.view(*new_tensor_shape)
413
+
414
+ # [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
415
+ (query_layer, key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_raw_layer, 3)
416
+
417
+ if self.position_encoding_2d:
418
+ q1, q2 = query_layer.chunk(2, dim=(query_layer.ndim - 1))
419
+ k1, k2 = key_layer.chunk(2, dim=(key_layer.ndim - 1))
420
+ cos, sin = self.rotary_emb(q1, seq_len=position_ids.max() + 1)
421
+ position_ids, block_position_ids = position_ids[:, 0, :].transpose(0, 1).contiguous(), \
422
+ position_ids[:, 1, :].transpose(0, 1).contiguous()
423
+ q1, k1 = apply_rotary_pos_emb_index(q1, k1, cos, sin, position_ids)
424
+ q2, k2 = apply_rotary_pos_emb_index(q2, k2, cos, sin, block_position_ids)
425
+ query_layer = torch.concat([q1, q2], dim=(q1.ndim - 1))
426
+ key_layer = torch.concat([k1, k2], dim=(k1.ndim - 1))
427
+ else:
428
+ position_ids = position_ids.transpose(0, 1)
429
+ cos, sin = self.rotary_emb(value_layer, seq_len=position_ids.max() + 1)
430
+ # [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
431
+ query_layer, key_layer = apply_rotary_pos_emb_index(query_layer, key_layer, cos, sin, position_ids)
432
+
433
+ # [seq_len, batch, hidden_size]
434
+ context_layer, present, attention_probs = attention_fn(
435
+ self=self,
436
+ query_layer=query_layer,
437
+ key_layer=key_layer,
438
+ value_layer=value_layer,
439
+ attention_mask=attention_mask,
440
+ hidden_size_per_partition=self.hidden_size_per_partition,
441
+ layer_id=layer_id,
442
+ layer_past=layer_past,
443
+ use_cache=use_cache
444
+ )
445
+
446
+ output = self.dense(context_layer)
447
+
448
+ outputs = (output, present)
449
+
450
+ if output_attentions:
451
+ outputs += (attention_probs,)
452
+
453
+ return outputs # output, present, attention_probs
454
+
455
+
456
+ class GEGLU(torch.nn.Module):
457
+ def __init__(self):
458
+ super().__init__()
459
+ self.activation_fn = F.gelu
460
+
461
+ def forward(self, x):
462
+ # dim=-1 breaks in jit for pt<1.10
463
+ x1, x2 = x.chunk(2, dim=(x.ndim - 1))
464
+ return x1 * self.activation_fn(x2)
465
+
466
+
467
+ class GLU(torch.nn.Module):
468
+ def __init__(self, hidden_size, inner_hidden_size=None,
469
+ layer_id=None, bias=True, activation_func=gelu, params_dtype=torch.float):
470
+ super(GLU, self).__init__()
471
+ self.layer_id = layer_id
472
+ self.activation_func = activation_func
473
+
474
+ # Project to 4h.
475
+ self.hidden_size = hidden_size
476
+ if inner_hidden_size is None:
477
+ inner_hidden_size = 4 * hidden_size
478
+ self.inner_hidden_size = inner_hidden_size
479
+ self.dense_h_to_4h = skip_init(
480
+ torch.nn.Linear,
481
+ self.hidden_size,
482
+ self.inner_hidden_size,
483
+ bias=bias,
484
+ dtype=params_dtype,
485
+ )
486
+ # Project back to h.
487
+ self.dense_4h_to_h = skip_init(
488
+ torch.nn.Linear,
489
+ self.inner_hidden_size,
490
+ self.hidden_size,
491
+ bias=bias,
492
+ dtype=params_dtype,
493
+ )
494
+
495
+ def forward(self, hidden_states):
496
+ """
497
+ hidden_states: [seq_len, batch, hidden_size]
498
+ """
499
+
500
+ # [seq_len, batch, inner_hidden_size]
501
+ intermediate_parallel = self.dense_h_to_4h(hidden_states)
502
+
503
+ intermediate_parallel = self.activation_func(intermediate_parallel)
504
+
505
+ output = self.dense_4h_to_h(intermediate_parallel)
506
+
507
+ return output
508
+
509
+
510
+ class GLMBlock(torch.nn.Module):
511
+ def __init__(
512
+ self,
513
+ hidden_size,
514
+ num_attention_heads,
515
+ layernorm_epsilon,
516
+ layer_id,
517
+ inner_hidden_size=None,
518
+ hidden_size_per_attention_head=None,
519
+ layernorm=LayerNorm,
520
+ use_bias=True,
521
+ params_dtype=torch.float,
522
+ num_layers=28,
523
+ position_encoding_2d=True
524
+ ):
525
+ super(GLMBlock, self).__init__()
526
+ # Set output layer initialization if not provided.
527
+
528
+ self.layer_id = layer_id
529
+
530
+ # Layernorm on the input data.
531
+ self.input_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
532
+
533
+ self.position_encoding_2d = position_encoding_2d
534
+
535
+ # Self attention.
536
+ self.attention = SelfAttention(
537
+ hidden_size,
538
+ num_attention_heads,
539
+ layer_id,
540
+ hidden_size_per_attention_head=hidden_size_per_attention_head,
541
+ bias=use_bias,
542
+ params_dtype=params_dtype,
543
+ position_encoding_2d=self.position_encoding_2d
544
+ )
545
+
546
+ # Layernorm on the input data.
547
+ self.post_attention_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
548
+
549
+ self.num_layers = num_layers
550
+
551
+ # GLU
552
+ self.mlp = GLU(
553
+ hidden_size,
554
+ inner_hidden_size=inner_hidden_size,
555
+ bias=use_bias,
556
+ layer_id=layer_id,
557
+ params_dtype=params_dtype,
558
+ )
559
+
560
+ def forward(
561
+ self,
562
+ hidden_states: torch.Tensor,
563
+ position_ids,
564
+ attention_mask: torch.Tensor,
565
+ layer_id,
566
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
567
+ use_cache: bool = False,
568
+ output_attentions: bool = False,
569
+ ):
570
+ """
571
+ hidden_states: [seq_len, batch, hidden_size]
572
+ attention_mask: [(1, 1), seq_len, seq_len]
573
+ """
574
+
575
+ # Layer norm at the begining of the transformer layer.
576
+ # [seq_len, batch, hidden_size]
577
+ attention_input = self.input_layernorm(hidden_states)
578
+
579
+ # Self attention.
580
+ attention_outputs = self.attention(
581
+ attention_input,
582
+ position_ids,
583
+ attention_mask=attention_mask,
584
+ layer_id=layer_id,
585
+ layer_past=layer_past,
586
+ use_cache=use_cache,
587
+ output_attentions=output_attentions
588
+ )
589
+
590
+ attention_output = attention_outputs[0]
591
+
592
+ outputs = attention_outputs[1:]
593
+
594
+ # Residual connection.
595
+ alpha = (2 * self.num_layers) ** 0.5
596
+ hidden_states = attention_input * alpha + attention_output
597
+
598
+ mlp_input = self.post_attention_layernorm(hidden_states)
599
+
600
+ # MLP.
601
+ mlp_output = self.mlp(mlp_input)
602
+
603
+ # Second residual connection.
604
+ output = mlp_input * alpha + mlp_output
605
+
606
+ if use_cache:
607
+ outputs = (output,) + outputs
608
+ else:
609
+ outputs = (output,) + outputs[1:]
610
+
611
+ return outputs # hidden_states, present, attentions
612
+
613
+
614
+ class ChatGLMPreTrainedModel(PreTrainedModel):
615
+ """
616
+ An abstract class to handle weights initialization and
617
+ a simple interface for downloading and loading pretrained models.
618
+ """
619
+
620
+ is_parallelizable = False
621
+ supports_gradient_checkpointing = False
622
+ config_class = ChatGLMConfig
623
+ base_model_prefix = "transformer"
624
+ _no_split_modules = ["GLM6BBlock"]
625
+
626
+ def __init__(self, *inputs, **kwargs):
627
+ super().__init__(*inputs, **kwargs)
628
+
629
+ def _init_weights(self, module: nn.Module):
630
+ """Initialize the weights."""
631
+ return
632
+
633
+
634
+ CHATGLM_6B_START_DOCSTRING = r"""
635
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class.
636
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
637
+ usage and behavior.
638
+
639
+ Parameters:
640
+ config ([`~ChatGLM6BConfig`]): Model configuration class with all the parameters of the model.
641
+ Initializing with a config file does not load the weights associated with the model, only the configuration.
642
+ Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
643
+ """
644
+
645
+ CHATGLM_6B_INPUTS_DOCSTRING = r"""
646
+ Args:
647
+ input_ids (`torch.LongTensor` of shape `({0})`):
648
+ Indices of input sequence tokens in the vocabulary.
649
+
650
+ Indices can be obtained using [`ChatGLM6BTokenizer`].
651
+ See [`PreTrainedTokenizer.encode`] and
652
+ [`PreTrainedTokenizer.__call__`] for details.
653
+
654
+ [What are input IDs?](../glossary#input-ids)
655
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
656
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
657
+
658
+ - 1 for tokens that are **not masked**,
659
+ - 0 for tokens that are **masked**.
660
+
661
+ [What are attention masks?](../glossary#attention-mask)
662
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
663
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`:
664
+
665
+ - 0 corresponds to a *sentence A* token,
666
+ - 1 corresponds to a *sentence B* token.
667
+
668
+ [What are token type IDs?](../glossary#token-type-ids)
669
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
670
+ Indices of positions of each input sequence tokens in the position embeddings.
671
+ Selected in the range `[0, config.max_position_embeddings - 1]`.
672
+
673
+ [What are position IDs?](../glossary#position-ids)
674
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
675
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
676
+
677
+ - 1 indicates the head is **not masked**,
678
+ - 0 indicates the head is **masked**.
679
+
680
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
681
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
682
+ This is useful if you want more control over how to convert *input_ids* indices into associated vectors
683
+ than the model's internal embedding lookup matrix.
684
+ output_attentions (`bool`, *optional*):
685
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
686
+ tensors for more detail.
687
+ output_hidden_states (`bool`, *optional*):
688
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
689
+ more detail.
690
+ return_dict (`bool`, *optional*):
691
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
692
+ """
693
+
694
+
695
+ @add_start_docstrings(
696
+ "The bare ChatGLM-6B Model transformer outputting raw hidden-states without any specific head on top.",
697
+ CHATGLM_6B_START_DOCSTRING,
698
+ )
699
+ class ChatGLMModel(ChatGLMPreTrainedModel):
700
+ """
701
+
702
+ The model can behave as an encoder (with only self-attention) as well
703
+ as a decoder, in which case a layer of cross-attention is added between
704
+ the self-attention layers, following the architecture described in [Attention is
705
+ all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani,
706
+ Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
707
+
708
+ To behave as an decoder the model needs to be initialized with the
709
+ `is_decoder` argument of the configuration set to `True`.
710
+ To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder`
711
+ argument and `add_cross_attention` set to `True`; an
712
+ `encoder_hidden_states` is then expected as an input to the forward pass.
713
+ """
714
+
715
+ def __init__(self, config: ChatGLMConfig):
716
+ super().__init__(config)
717
+
718
+ # recording parameters
719
+ self.max_sequence_length = config.max_sequence_length
720
+ self.hidden_size = config.hidden_size
721
+ self.params_dtype = torch.half
722
+ self.num_attention_heads = config.num_attention_heads
723
+ self.vocab_size = config.vocab_size
724
+ self.num_layers = config.num_layers
725
+ self.layernorm_epsilon = config.layernorm_epsilon
726
+ self.inner_hidden_size = config.inner_hidden_size
727
+ self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
728
+ self.position_encoding_2d = config.position_encoding_2d
729
+
730
+ self.word_embeddings = skip_init(
731
+ torch.nn.Embedding,
732
+ num_embeddings=self.vocab_size, embedding_dim=self.hidden_size,
733
+ dtype=self.params_dtype
734
+ )
735
+
736
+ def get_layer(layer_id):
737
+ return GLMBlock(
738
+ self.hidden_size,
739
+ self.num_attention_heads,
740
+ self.layernorm_epsilon,
741
+ layer_id,
742
+ inner_hidden_size=self.inner_hidden_size,
743
+ hidden_size_per_attention_head=self.hidden_size_per_attention_head,
744
+ layernorm=LayerNorm,
745
+ use_bias=True,
746
+ params_dtype=self.params_dtype,
747
+ position_encoding_2d=self.position_encoding_2d,
748
+ )
749
+
750
+ self.layers = torch.nn.ModuleList(
751
+ [get_layer(layer_id) for layer_id in range(self.num_layers)]
752
+ )
753
+
754
+ # Final layer norm before output.
755
+ self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon)
756
+
757
+ def get_input_embeddings(self):
758
+ return self.word_embeddings
759
+
760
+ def set_input_embeddings(self, new_embeddings: torch.Tensor):
761
+ self.word_embeddings = new_embeddings
762
+
763
+ def get_masks(self, seq, device):
764
+ context_length = seq.index(self.config.bos_token_id) + 1
765
+
766
+ attention_mask = torch.ones((1, len(seq), len(seq)), device=device)
767
+ attention_mask.tril_()
768
+ attention_mask[..., :context_length - 1] = 1
769
+ attention_mask.unsqueeze_(1)
770
+ attention_mask = (attention_mask < 0.5).bool()
771
+
772
+ return attention_mask
773
+
774
+ def get_position_ids(self, seq, mask_position, device, gmask=False):
775
+ context_length = seq.index(self.config.bos_token_id) + 1
776
+ if self.position_encoding_2d:
777
+ seq_length = seq.index(self.config.bos_token_id)
778
+ position_ids = torch.arange(context_length, dtype=torch.long, device=device)
779
+ if not gmask:
780
+ position_ids[seq_length:] = mask_position
781
+ block_position_ids = torch.cat((
782
+ torch.zeros(seq_length, dtype=torch.long, device=device),
783
+ torch.arange(context_length - seq_length, dtype=torch.long, device=device) + 1
784
+ ))
785
+ position_ids = torch.stack((position_ids, block_position_ids), dim=0)
786
+ else:
787
+ position_ids = torch.arange(context_length, dtype=torch.long, device=device)
788
+ if not gmask:
789
+ position_ids[context_length - 1:] = mask_position
790
+
791
+ position_ids = position_ids.unsqueeze(0)
792
+
793
+ return position_ids
794
+
795
+ @add_start_docstrings_to_model_forward(CHATGLM_6B_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
796
+ @add_code_sample_docstrings(
797
+ checkpoint=_CHECKPOINT_FOR_DOC,
798
+ output_type=BaseModelOutputWithPastAndCrossAttentions,
799
+ config_class=_CONFIG_FOR_DOC,
800
+ )
801
+ def forward(
802
+ self,
803
+ input_ids: Optional[torch.LongTensor] = None,
804
+ position_ids: Optional[torch.LongTensor] = None,
805
+ attention_mask: Optional[torch.Tensor] = None,
806
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
807
+ inputs_embeds: Optional[torch.LongTensor] = None,
808
+ use_cache: Optional[bool] = None,
809
+ output_attentions: Optional[bool] = None,
810
+ output_hidden_states: Optional[bool] = None,
811
+ return_dict: Optional[bool] = None,
812
+ ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPast]:
813
+
814
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
815
+ output_hidden_states = (
816
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
817
+ )
818
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
819
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
820
+
821
+ if input_ids is not None and inputs_embeds is not None:
822
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
823
+ elif input_ids is not None:
824
+ batch_size, seq_length = input_ids.shape[:2]
825
+ elif inputs_embeds is not None:
826
+ batch_size, seq_length, _ = inputs_embeds.shape[:2]
827
+ else:
828
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
829
+
830
+ if past_key_values is None:
831
+ past_key_values = tuple([None] * len(self.layers))
832
+ seq = input_ids[0].tolist()
833
+
834
+ if attention_mask is None:
835
+ attention_mask = self.get_masks(
836
+ seq=seq,
837
+ device=input_ids.device
838
+ )
839
+
840
+ if position_ids is None:
841
+ MASK, gMASK = 150000, 150001
842
+ mask_token = MASK if MASK in input_ids else gMASK
843
+ use_gmask = False if MASK in input_ids else gMASK
844
+
845
+ mask_position = seq.index(mask_token)
846
+ position_ids = self.get_position_ids(
847
+ seq=seq,
848
+ mask_position=mask_position,
849
+ device=input_ids.device,
850
+ gmask=use_gmask
851
+ )
852
+
853
+ if inputs_embeds is None:
854
+ inputs_embeds = self.word_embeddings(input_ids)
855
+
856
+ # [seq_len, batch, hidden_size]
857
+ hidden_states = inputs_embeds.transpose(0, 1)
858
+
859
+ presents = () if use_cache else None
860
+ all_self_attentions = () if output_attentions else None
861
+ all_hidden_states = () if output_hidden_states else None
862
+
863
+ seq_length_with_past = seq_length
864
+ past_key_values_length = 0
865
+ if past_key_values[0] is not None:
866
+ past_key_values_length = past_key_values[0][0].shape[0]
867
+ seq_length_with_past = seq_length_with_past + past_key_values_length
868
+ if attention_mask is None:
869
+ attention_mask = torch.zeros(1, 1, device=input_ids.device).bool()
870
+
871
+ else:
872
+ attention_mask = attention_mask.to(input_ids.device)
873
+
874
+ for i, layer in enumerate(self.layers):
875
+
876
+ if output_hidden_states:
877
+ all_hidden_states = all_hidden_states + (hidden_states,)
878
+
879
+ layer_ret = layer(
880
+ hidden_states,
881
+ position_ids=position_ids,
882
+ attention_mask=attention_mask,
883
+ layer_id=torch.tensor(i),
884
+ layer_past=past_key_values[i],
885
+ use_cache=use_cache,
886
+ output_attentions=output_attentions
887
+ )
888
+
889
+ hidden_states = layer_ret[0]
890
+
891
+ if use_cache:
892
+ presents = presents + (layer_ret[1],)
893
+
894
+ if output_attentions:
895
+ all_self_attentions = all_self_attentions + (layer_ret[2 if use_cache else 1],)
896
+
897
+ # Final layer norm.
898
+ hidden_states = self.final_layernorm(hidden_states)
899
+
900
+ if output_hidden_states:
901
+ all_hidden_states = all_hidden_states + (hidden_states,)
902
+
903
+ if not return_dict:
904
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
905
+
906
+ return BaseModelOutputWithPast(
907
+ last_hidden_state=hidden_states,
908
+ past_key_values=presents,
909
+ hidden_states=all_hidden_states,
910
+ attentions=all_self_attentions,
911
+ )
912
+
913
+
914
+ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
915
+ def __init__(self, config: ChatGLMConfig):
916
+ super().__init__(config)
917
+
918
+ # self.hidden_size = config.hidden_size
919
+ # self.params_dtype = torch.half
920
+ # self.vocab_size = config.vocab_size
921
+ self.max_sequence_length = config.max_sequence_length
922
+
923
+ self.position_encoding_2d = config.position_encoding_2d
924
+
925
+ self.transformer = ChatGLMModel(config)
926
+
927
+ self.lm_head = skip_init(
928
+ nn.Linear,
929
+ config.hidden_size,
930
+ config.vocab_size,
931
+ bias=False,
932
+ dtype=torch.half
933
+ )
934
+
935
+ self.config = config
936
+
937
+ self.quantized = False
938
+
939
+ if self.config.quantization_bit:
940
+ self.quantize(self.config.quantization_bit, self.config.quantization_embeddings, use_quantization_cache=True, empty_init=True)
941
+
942
+ def get_output_embeddings(self):
943
+ return self.lm_head
944
+
945
+ def set_output_embeddings(self, new_embeddings):
946
+ self.lm_head = new_embeddings
947
+
948
+ def get_masks_and_position_ids(self, seq, mask_position, context_length, device, gmask=False):
949
+ attention_mask = torch.ones((1, context_length, context_length), device=device)
950
+ attention_mask.tril_()
951
+ attention_mask[..., :context_length - 1] = 1
952
+ attention_mask.unsqueeze_(1)
953
+ attention_mask = (attention_mask < 0.5).bool()
954
+
955
+ if self.position_encoding_2d:
956
+ seq_length = seq.index(self.config.bos_token_id)
957
+ position_ids = torch.arange(context_length, dtype=torch.long, device=device)
958
+ if not gmask:
959
+ position_ids[seq_length:] = mask_position
960
+ block_position_ids = torch.cat((
961
+ torch.zeros(seq_length, dtype=torch.long, device=device),
962
+ torch.arange(context_length - seq_length, dtype=torch.long, device=device) + 1
963
+ ))
964
+ position_ids = torch.stack((position_ids, block_position_ids), dim=0)
965
+ else:
966
+ position_ids = torch.arange(context_length, dtype=torch.long, device=device)
967
+ if not gmask:
968
+ position_ids[context_length - 1:] = mask_position
969
+
970
+ position_ids = position_ids.unsqueeze(0)
971
+
972
+ return attention_mask, position_ids
973
+
974
+ def prepare_inputs_for_generation(
975
+ self,
976
+ input_ids: torch.LongTensor,
977
+ past: Optional[torch.Tensor] = None,
978
+ past_key_values: Optional[torch.Tensor] = None,
979
+ attention_mask: Optional[torch.Tensor] = None,
980
+ **kwargs
981
+ ) -> dict:
982
+
983
+ MASK, gMASK = 150000, 150001
984
+ mask_token = MASK if MASK in input_ids else gMASK
985
+ use_gmask = False if MASK in input_ids else gMASK
986
+ seq = input_ids[0].tolist()
987
+ mask_position = seq.index(mask_token)
988
+
989
+ if mask_token not in seq:
990
+ raise ValueError("You have to add either [MASK] or [gMASK] in your input")
991
+
992
+ # only last token for input_ids if past is not None
993
+ if past is not None or past_key_values is not None:
994
+ context_length = seq.index(self.config.bos_token_id)
995
+ last_token = input_ids[:, -1].unsqueeze(-1)
996
+ if self.position_encoding_2d:
997
+ position_ids = torch.tensor([[[mask_position], [len(seq) - context_length]]], dtype=torch.long,
998
+ device=input_ids.device)
999
+ else:
1000
+ position_ids = torch.tensor([[mask_position]], dtype=torch.long, device=input_ids.device)
1001
+
1002
+ if past is None:
1003
+ past = past_key_values
1004
+ return {
1005
+ "input_ids": last_token,
1006
+ "past_key_values": past,
1007
+ "position_ids": position_ids,
1008
+ }
1009
+ else:
1010
+ attention_mask, position_ids = self.get_masks_and_position_ids(
1011
+ seq=seq,
1012
+ mask_position=mask_position,
1013
+ context_length=len(seq),
1014
+ device=input_ids.device,
1015
+ gmask=use_gmask
1016
+ )
1017
+
1018
+ return {
1019
+ "input_ids": input_ids,
1020
+ "past_key_values": past,
1021
+ "position_ids": position_ids,
1022
+ "attention_mask": attention_mask
1023
+ }
1024
+
1025
+ def forward(
1026
+ self,
1027
+ input_ids: Optional[torch.Tensor] = None,
1028
+ position_ids: Optional[torch.Tensor] = None,
1029
+ attention_mask: Optional[torch.Tensor] = None,
1030
+ past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
1031
+ inputs_embeds: Optional[torch.Tensor] = None,
1032
+ labels: Optional[torch.Tensor] = None,
1033
+ use_cache: Optional[bool] = None,
1034
+ output_attentions: Optional[bool] = None,
1035
+ output_hidden_states: Optional[bool] = None,
1036
+ return_dict: Optional[bool] = None,
1037
+ ):
1038
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1039
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1040
+
1041
+ transformer_outputs = self.transformer(
1042
+ input_ids=input_ids,
1043
+ position_ids=position_ids,
1044
+ attention_mask=attention_mask,
1045
+ past_key_values=past_key_values,
1046
+ inputs_embeds=inputs_embeds,
1047
+ use_cache=use_cache,
1048
+ output_attentions=output_attentions,
1049
+ output_hidden_states=output_hidden_states,
1050
+ return_dict=return_dict,
1051
+ )
1052
+
1053
+ hidden_states = transformer_outputs[0]
1054
+
1055
+ lm_logits = self.lm_head(hidden_states).permute(1, 0, 2).contiguous()
1056
+
1057
+ loss = None
1058
+ if labels is not None:
1059
+ lm_logits = lm_logits.to(torch.float32)
1060
+
1061
+ # Shift so that tokens < n predict n
1062
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1063
+ shift_labels = labels[..., 1:].contiguous()
1064
+ # Flatten the tokens
1065
+ loss_fct = CrossEntropyLoss()
1066
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1067
+
1068
+ lm_logits = lm_logits.to(hidden_states.dtype)
1069
+ loss = loss.to(hidden_states.dtype)
1070
+
1071
+ if not return_dict:
1072
+ output = (lm_logits,) + transformer_outputs[1:]
1073
+ return ((loss,) + output) if loss is not None else output
1074
+
1075
+ return CausalLMOutputWithPast(
1076
+ loss=loss,
1077
+ logits=lm_logits,
1078
+ past_key_values=transformer_outputs.past_key_values,
1079
+ hidden_states=transformer_outputs.hidden_states,
1080
+ attentions=transformer_outputs.attentions,
1081
+ )
1082
+
1083
+ @staticmethod
1084
+ def _reorder_cache(
1085
+ past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
1086
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
1087
+ """
1088
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
1089
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
1090
+ beam_idx at every generation step.
1091
+
1092
+ Output shares the same memory storage as `past`.
1093
+ """
1094
+ return tuple(
1095
+ (
1096
+ layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
1097
+ layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
1098
+ )
1099
+ for layer_past in past
1100
+ )
1101
+
1102
+ @torch.no_grad()
1103
+ def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048, num_beams=1,
1104
+ do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs):
1105
+ if history is None:
1106
+ history = []
1107
+ if logits_processor is None:
1108
+ logits_processor = LogitsProcessorList()
1109
+ logits_processor.append(InvalidScoreLogitsProcessor())
1110
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
1111
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1112
+ if not history:
1113
+ prompt = query
1114
+ else:
1115
+ prompt = ""
1116
+ for i, (old_query, response) in enumerate(history):
1117
+ prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
1118
+ prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
1119
+ input_ids = tokenizer([prompt], return_tensors="pt", padding=True)
1120
+ input_ids = input_ids.to(self.device)
1121
+ outputs = self.generate(**input_ids, **gen_kwargs)
1122
+ outputs = outputs.tolist()[0][len(input_ids["input_ids"][0]):]
1123
+ response = tokenizer.decode(outputs)
1124
+ response = response.strip()
1125
+ response = response.replace("[[训练时间]]", "2023年")
1126
+ history = history + [(query, response)]
1127
+ return response, history
1128
+
1129
+ @torch.no_grad()
1130
+ def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048,
1131
+ do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs):
1132
+ if history is None:
1133
+ history = []
1134
+ if logits_processor is None:
1135
+ logits_processor = LogitsProcessorList()
1136
+ logits_processor.append(InvalidScoreLogitsProcessor())
1137
+ gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
1138
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1139
+ if not history:
1140
+ prompt = query
1141
+ else:
1142
+ prompt = ""
1143
+ for i, (old_query, response) in enumerate(history):
1144
+ prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
1145
+ prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
1146
+ input_ids = tokenizer([prompt], return_tensors="pt", padding=True)
1147
+ input_ids = input_ids.to(self.device)
1148
+ for outputs in self.stream_generate(**input_ids, **gen_kwargs):
1149
+ outputs = outputs.tolist()[0][len(input_ids["input_ids"][0]):]
1150
+ response = tokenizer.decode(outputs)
1151
+ response = response.strip()
1152
+ response = response.replace("[[训练时间]]", "2023年")
1153
+ new_history = history + [(query, response)]
1154
+ yield response, new_history
1155
+
1156
+ @torch.no_grad()
1157
+ def stream_generate(
1158
+ self,
1159
+ input_ids,
1160
+ generation_config: Optional[GenerationConfig] = None,
1161
+ logits_processor: Optional[LogitsProcessorList] = None,
1162
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
1163
+ prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
1164
+ **kwargs,
1165
+ ):
1166
+ batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
1167
+
1168
+ if generation_config is None:
1169
+ generation_config = self.generation_config
1170
+ generation_config = copy.deepcopy(generation_config)
1171
+ model_kwargs = generation_config.update(**kwargs)
1172
+ bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
1173
+
1174
+ if isinstance(eos_token_id, int):
1175
+ eos_token_id = [eos_token_id]
1176
+
1177
+ has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
1178
+ if has_default_max_length and generation_config.max_new_tokens is None:
1179
+ warnings.warn(
1180
+ f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
1181
+ "This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
1182
+ " recommend using `max_new_tokens` to control the maximum length of the generation.",
1183
+ UserWarning,
1184
+ )
1185
+ elif generation_config.max_new_tokens is not None:
1186
+ generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
1187
+ if not has_default_max_length:
1188
+ logger.warn(
1189
+ f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
1190
+ f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
1191
+ "Please refer to the documentation for more information. "
1192
+ "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
1193
+ UserWarning,
1194
+ )
1195
+
1196
+ if input_ids_seq_length >= generation_config.max_length:
1197
+ input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
1198
+ logger.warning(
1199
+ f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
1200
+ f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
1201
+ " increasing `max_new_tokens`."
1202
+ )
1203
+
1204
+ # 2. Set generation parameters if not already defined
1205
+ logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
1206
+ stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
1207
+
1208
+ logits_processor = self._get_logits_processor(
1209
+ generation_config=generation_config,
1210
+ input_ids_seq_length=input_ids_seq_length,
1211
+ encoder_input_ids=input_ids,
1212
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
1213
+ logits_processor=logits_processor,
1214
+ )
1215
+
1216
+ stopping_criteria = self._get_stopping_criteria(
1217
+ generation_config=generation_config, stopping_criteria=stopping_criteria
1218
+ )
1219
+ logits_warper = self._get_logits_warper(generation_config)
1220
+
1221
+ unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
1222
+ scores = None
1223
+ while True:
1224
+ model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
1225
+ # forward pass to get next token
1226
+ outputs = self(
1227
+ **model_inputs,
1228
+ return_dict=True,
1229
+ output_attentions=False,
1230
+ output_hidden_states=False,
1231
+ )
1232
+
1233
+ next_token_logits = outputs.logits[:, -1, :]
1234
+
1235
+ # pre-process distribution
1236
+ next_token_scores = logits_processor(input_ids, next_token_logits)
1237
+ next_token_scores = logits_warper(input_ids, next_token_scores)
1238
+
1239
+ # sample
1240
+ probs = nn.functional.softmax(next_token_scores, dim=-1)
1241
+ if generation_config.do_sample:
1242
+ next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
1243
+ else:
1244
+ next_tokens = torch.argmax(probs, dim=-1)
1245
+
1246
+ # update generated ids, model inputs, and length for next step
1247
+ input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
1248
+ model_kwargs = self._update_model_kwargs_for_generation(
1249
+ outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
1250
+ )
1251
+ unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long())
1252
+
1253
+ # stop when each sentence is finished, or if we exceed the maximum length
1254
+ if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
1255
+ break
1256
+ yield input_ids
1257
+
1258
+ def quantize(self, bits: int, quantize_embeddings=False, use_quantization_cache=False, empty_init=False, **kwargs):
1259
+ if bits == 0:
1260
+ return
1261
+
1262
+ from .quantization import quantize, QuantizedEmbedding, QuantizedLinear, load_cpu_kernel
1263
+
1264
+ if self.quantized:
1265
+ if self.device == torch.device("cpu"):
1266
+ logger.info("Already quantized, reloading cpu kernel.")
1267
+ load_cpu_kernel(**kwargs)
1268
+ else:
1269
+ logger.info("Already quantized.")
1270
+ return self
1271
+
1272
+ self.quantized = True
1273
+
1274
+ self.config.quantization_bit = bits
1275
+ self.config.quantization_embeddings = quantize_embeddings
1276
+
1277
+ self.transformer = quantize(self.transformer, bits, use_quantization_cache=use_quantization_cache, empty_init=empty_init, **kwargs)
1278
+
1279
+ if quantize_embeddings:
1280
+ logger.info("Applying quantization to embeddings")
1281
+ self.transformer.word_embeddings = QuantizedEmbedding(
1282
+ weight_bit_width=bits,
1283
+ weight_tensor=self.transformer.word_embeddings.weight.to(self.device),
1284
+ num_embeddings=self.transformer.word_embeddings.num_embeddings,
1285
+ embedding_dim=self.transformer.word_embeddings.embedding_dim,
1286
+ dtype=torch.half,
1287
+ device=self.transformer.word_embeddings.weight.device,
1288
+ )
1289
+ self.lm_head = QuantizedLinear(
1290
+ weight_bit_width=bits,
1291
+ weight_tensor=self.lm_head.weight.to(self.device),
1292
+ bias_tensor=None,
1293
+ in_features=self.lm_head.in_features,
1294
+ out_features=self.lm_head.out_features,
1295
+ bias=False,
1296
+ quantized_weight=self.transformer.word_embeddings.weight,
1297
+ quantized_weight_scale=self.transformer.word_embeddings.weight_scale,
1298
+ dtype=torch.half,
1299
+ device=self.lm_head.weight.device,
1300
+ )
1301
+
1302
+ return self
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a2ead8dd73140bf69077547bd0274172d2f961c2c905d795c22ba8368a648ee
3
+ size 4056926537
quantization.py ADDED
@@ -0,0 +1,469 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.nn import Linear, Embedding
2
+ from torch.nn.parameter import Parameter
3
+ import torch.nn.functional as F
4
+
5
+ import os
6
+ import bz2
7
+ import torch
8
+ import base64
9
+ import ctypes
10
+
11
+ from typing import List
12
+ from functools import partial
13
+ from cpm_kernels.kernels.base import LazyKernelCModule, KernelFunction, round_up
14
+
15
+
16
+ class W8A16Linear(torch.autograd.Function):
17
+ @staticmethod
18
+ def forward(ctx, inp: torch.Tensor, quant_w: torch.Tensor, scale_w: torch.Tensor, weight_bit_width):
19
+ ctx.inp_shape = inp.size()
20
+ ctx.weight_shape = quant_w.size()
21
+ ctx.weight_bit_width = weight_bit_width
22
+ out_features = quant_w.size(0)
23
+ inp = inp.contiguous().view(-1, inp.size(-1))
24
+ weight = extract_weight_to_half(quant_w, scale_w, weight_bit_width)
25
+ output = inp.mm(weight.t())
26
+ ctx.save_for_backward(inp, quant_w, scale_w)
27
+ return output.view(*(ctx.inp_shape[:-1] + (out_features,)))
28
+
29
+ @staticmethod
30
+ def backward(ctx, grad_output: torch.Tensor):
31
+ inp, quant_w, scale_w = ctx.saved_tensors
32
+ weight = extract_weight_to_half(quant_w, scale_w, ctx.weight_bit_width)
33
+ grad_output = grad_output.contiguous().view(-1, weight.size(0))
34
+ grad_input = grad_output.mm(weight)
35
+ grad_weight = grad_output.t().mm(inp)
36
+ return grad_input.view(ctx.inp_shape), grad_weight.view(ctx.weight_shape), None
37
+
38
+
39
+ class W8A16LinearCPU(torch.autograd.Function):
40
+ @staticmethod
41
+ def forward(ctx, inp: torch.Tensor, quant_w: torch.Tensor, scale_w: torch.Tensor, weight_bit_width, quantization_cache=None):
42
+ ctx.inp_shape = inp.size()
43
+ ctx.weight_shape = quant_w.size()
44
+ ctx.weight_bit_width = weight_bit_width
45
+ out_features = quant_w.size(0)
46
+ inp = inp.contiguous().view(-1, inp.size(-1))
47
+ weight = extract_weight_to_float(quant_w, scale_w, weight_bit_width, quantization_cache=quantization_cache)
48
+ output = inp.mm(weight.t())
49
+ ctx.save_for_backward(inp, quant_w, scale_w)
50
+ return output.view(*(ctx.inp_shape[:-1] + (out_features,)))
51
+
52
+ @staticmethod
53
+ def backward(ctx, grad_output: torch.Tensor):
54
+ inp, quant_w, scale_w = ctx.saved_tensors
55
+ weight = extract_weight_to_float(quant_w, scale_w, ctx.weight_bit_width)
56
+ grad_output = grad_output.contiguous().view(-1, weight.size(0))
57
+ grad_input = grad_output.mm(weight)
58
+ grad_weight = grad_output.t().mm(inp)
59
+ return grad_input.view(ctx.inp_shape), grad_weight.view(ctx.weight_shape), None
60
+
61
+
62
+ class Kernel:
63
+ def __init__(self, code: bytes, function_names: List[str]):
64
+ self.code = code
65
+ self._function_names = function_names
66
+ self._cmodule = LazyKernelCModule(self.code)
67
+
68
+ for name in self._function_names:
69
+ setattr(self, name, KernelFunction(self._cmodule, name))
70
+
71
+ default_cpu_kernel_code_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "quantization_kernels.c")
72
+ default_cpu_kernel_code = "QlpoOTFBWSZTWXLbSoQAAgzbgERwQXxmTwAAr/ff3kABt0Q2oRVT0hpo9RtEAAAAyBEiSQ9EGjQGQAAAwANGhowjJoNGmgMEUplMTNSMJ5TQaDJpsoMyRMj8P4mZzFSVVwqSXG8GG7MlVwiToYEQwVD7noBxMhNfkeZYtYFtbgOBUSIGtIQjhNHCEnPJsadhb3yBmRIOD3TeAtNLSaU5GgvKUBWSNuuOIHmVt0YhW6rsmDMDUjeUJGJ64R1Jm5lrh0Aa0tKjhFwPdWcGogxLDSXPWQUWTM8Sd3Qz1HMYNxx3HMeiNqNo4jeRDEfZ3gUSHIcU/heomq0vEzL1Msz5KKGxH8FrNOYw3KaxdqaEmNHYMxJFgQbR0DyRknL2L4kwUSxKRdhjRpEtUqilVfggFL1klaMS3PPRDfNqbBOPWO7m4JTVGhS9QTBDDJaEbLbrUQNB+IpJSKQbG5SZZ5gkwJEhJ3aYKJipZ/i7kinChIOW2lQg"
73
+ default_cpu_parallel_kernel_code_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "quantization_kernels_parallel.c")
74
+ default_cpu_parallel_kernel_code = "QlpoOTFBWSZTWZzWK2UAALXbgERwSX1mTwAAr/ff3kACNyXSbZYwBpoaNGIyAaADQwRRFT/UKDINANqAD1NABFQlPUzaaJHppGRmoAG01ARKKaaMp4gmgaNAaDQDIKVKfZ/g6v1Kem5ZsWZmZtSXS5ZwRAzKmjr1E1lKMEoQNCPkEYPACgcR5I9w/0k6JrJYHqFuHnChcD7N+DHeOQ0ajF83Tc40jgmQbOB5wt3TEHyTObDBLoxrJGBuJmNbxYZwAoKTjbIcI7GsbuVRERAR8wqwhXQjQOxiHQlgSnHjQjddXERojNmQYJJVoM2xxawMeI9asi6E1rfd7GO8S0S5vacCNGry4F1nyZbcTvSBXEMipuPfM7i0Y8kjirpbxb05jpIQjCGE8DYBNCAZyHz9EoOpDRST/I1aFCNpcjoXgyc3NjVsUvYIaYq7xopYJqcxg2g4qXofm7AaGNTzJSNguOQw4utKcEl0F1UOgI+T1hk5LusbGZ9udC1CiBeGwwFxR/QdbZDndehRPxyGt3Me1DBW45MXIY24ZD30aFNuSEUdu5LWx1sSJWLGgsmqUIFTgWhU0gfxXpzhghr2AYpV3hE06mGk1I2JyuZiFgkiz/i7kinChITmsVso"
75
+
76
+
77
+ class CPUKernel:
78
+ def __init__(self, kernel_file="", source_code=default_cpu_kernel_code_path, compile_parallel_kernel=None, parallel_num=None):
79
+ self.load =False
80
+ self.int8WeightExtractionFloat = None
81
+ self.int4WeightExtractionFloat = None
82
+ self.int4WeightCompression = None
83
+ self.SetNumThreads = None
84
+
85
+ try:
86
+ if not os.path.exists(default_cpu_kernel_code_path):
87
+ with open(default_cpu_kernel_code_path, "w", encoding="utf-8") as file:
88
+ code = default_cpu_kernel_code
89
+ cpu_quantization_code = bz2.decompress(base64.b64decode(code)).decode()
90
+ file.write(cpu_quantization_code)
91
+
92
+ if not os.path.exists(default_cpu_parallel_kernel_code_path):
93
+ with open(default_cpu_parallel_kernel_code_path, "w", encoding="utf-8") as file:
94
+ code = default_cpu_parallel_kernel_code
95
+ cpu_quantization_code = bz2.decompress(base64.b64decode(code)).decode()
96
+ file.write(cpu_quantization_code)
97
+
98
+ except Exception as ex:
99
+ print("Error when generating default cpu kernel code(can be ignored when using custom kernels).")
100
+
101
+ if compile_parallel_kernel is None:
102
+ compile_parallel_kernel = bool(int(os.cpu_count()) >= 4)
103
+
104
+ if compile_parallel_kernel and source_code == default_cpu_kernel_code_path:
105
+ source_code = default_cpu_parallel_kernel_code_path
106
+
107
+ if (not kernel_file) or (not os.path.exists(kernel_file)):
108
+ print("No compiled kernel found.")
109
+ try:
110
+ if os.path.exists(source_code):
111
+ print("Compiling kernels :", source_code)
112
+ kernel_file = source_code[:-2] + ".so"
113
+ if compile_parallel_kernel:
114
+ compile_command = "gcc -O3 -pthread -fopenmp -std=c99 {} -shared -o {}".format(source_code, kernel_file)
115
+ print("Compiling", compile_command)
116
+ exit_state = os.system(compile_command)
117
+ if exit_state:
118
+ print("Compile failed, using default cpu kernel code.")
119
+ compile_parallel_kernel = False
120
+ source_code = default_cpu_kernel_code_path
121
+ kernel_file = source_code[:-2] + ".so"
122
+ compile_command = "gcc -O3 -fPIC -std=c99 {} -shared -o {}".format(source_code, kernel_file)
123
+ print("Compiling", compile_command)
124
+ else:
125
+ compile_command = "gcc -O3 -fPIC -std=c99 {} -shared -o {}".format(source_code, kernel_file)
126
+ print("Compiling", compile_command)
127
+ exit_state = os.system(compile_command)
128
+
129
+ print("Kernels compiled :", kernel_file)
130
+ else:
131
+ print("Kernel source code not found.")
132
+ return
133
+ except:
134
+ print("Failed to build kernel.")
135
+ return
136
+ if kernel_file:
137
+ kernels = ctypes.cdll.LoadLibrary(kernel_file)
138
+ self.int8WeightExtractionFloat = kernels.extract_int8_weight_to_float
139
+ self.int4WeightExtractionFloat = kernels.extract_int4_weight_to_float
140
+ self.int4WeightCompression = kernels.compress_int4_weight
141
+ if compile_parallel_kernel:
142
+ try:
143
+ self.SetNumThreads = kernels.set_num_threads
144
+ except:
145
+ print("No set_num_threads() found in kernel.")
146
+ self.SetNumThreads = lambda x: x
147
+ self.load = True
148
+ print("Load kernel :", kernel_file)
149
+ else:
150
+ print("Failed to load kernel.")
151
+
152
+ if compile_parallel_kernel:
153
+ if parallel_num is None:
154
+ parallel_num = max(os.cpu_count() // 2, 1)
155
+ print("Setting CPU quantization kernel threads to", parallel_num)
156
+ if parallel_num < 4:
157
+ print("Parallel kernel is not recommended when parallel num < 4.")
158
+ self.SetNumThreads(parallel_num)
159
+
160
+ self.parallel_num = parallel_num
161
+
162
+
163
+ cpu_kernels = None
164
+
165
+ quantization_code = "$QlpoOTFBWSZTWU9yuJUAQHN//////////f/n/8/n///n//bt4dTidcVx8X3V9FV/92/v4B7/AD5FBQFAAAChSgKpFCFAFVSigUAAAEKhSgUUqgFBKigqVREQAABQBQIANDTTIGI00BkZBkNGE0A0BkBkGQGRkaNAaAGQNBoGgDIAAYIGTI0DQAQAaGmmQMRpoDIyDIaMJoBoDIDIMgMjI0aA0AMgaDQNAGQAAwQMmRoGgAgA0NNMgYjTQGRkGQ0YTQDQGQGQZAZGRo0BoAZA0GgaAMgABggZMjQNABABoaaZAxGmgMjIMhowmgGgMgMgyAyMjRoDQAyBoNA0AZAADBAyZGgaAAmqU1NEgJqnptU/Sn4jRR6J6epk2pqb1Q/SgAPUGgyNNGjQ2SBpoAZAAGg0NB6mgDIAAAAA2oaApSREBNAARhGiYEaEwU8pvImlP0k2aam1GaGqbFNM1MHpTwmkepmyU9R6nqPKekHqNNPUxNGhp6n6p6QaZ6o9TG1GMqcoV9ly6nRanHlq6zPNbnGZNi6HSug+2nPiZ13XcnFYZW+45W11CumhzYhchOJ2GLLV1OBjBjGf4TptOddTSOcVxhqYZMYwZXZZY00zI1paX5X9J+b+f4e+x43RXSxXPOdquiGpduatGyXneN696M9t4HU2eR5XX/kPhP261NTx3JO1Ow7LyuDmeo9a7d351T1ZxnvnrvYnrXv/hXxPCeuYx2XsNmO003eg9J3Z6U7b23meJ4ri01OdzTk9BNO96brz+qT5nuvvH3ds/G+m/JcG/F2XYuhXlvO+jP7U3XgrzPN/lr8Sf1n6j4j7jZs+s/T0tNaNNYzTs12rxjwztHlnire3Nzc3N1wuBwOBwXBvZfoHpD7rFmR99V5vj3aXza3xdBbXMalubTg/jIv5dfAi54Pdc75j4z412n3Npj3Ld/ENm7a3b/Cod6h/ret1/5vn/C+l+gdslMvgPSLJ8d8q+U66fevYn/tW1chleEtNTGlcHCbLRlq0tHzF5tsbbZZfHjjLgZu42XCuC3NrdjTasZGNzgxPIrGqp7r3p7L2p5XjnpPSmTd5XtzqnB6U87zzg1Ol0zd0zsLszxR6lkxp35u6/teL0L0W922cR7Lu1lpL9CsHirzuM2T+BgsyViT6LHcm0/Vr6U/7LGGyJeqTEjt0PHWhF5mCT7R9mtlDwriYv0Tyr/OxYt6qp5r0mPVT0608TqnqMZaarU2nFwrTzzlrs1ed7z1ux60wyr4ydCaTi3enW8x68x0zU7tXSlcmPSW1mGpWJMg4zmPC2lK96tp0OE80y4MfEvnZj8zGluR6b22ki1Ou9V2nCd9xovcPvcYMZYy0lvN60ScZ45vN6yeCeeXFb1lVjnnCar5fwXwE2bzJ4HI1XVPXfXZMm44GUsMpYsmLB65TuVdm0cl0b+i/wGNN66XjeV7zuPpHcnK/juhhjdfId5jMdE5nN0dGmmm2zZs2cexD5n9p/dY352XsvXHaZNWWsmmS1atjR452nYudzvqv2HMRyvNNnlMcDl3R2+yx2uVrBubTW9icHDVtbNXlZm7jma1rM4VurZZd2y6nUau7ZXZ7bVU+mnoOVxZGMrVmvX60605JwmzGZhhhjTWtaaaMaaGTGmNMZasY0iX8VMUl8eepaIrzGSpemWOQyZORk2bNpjUybMmxqYmknCGCFynutfksaZpjTNMaaatM0xsxcGR0sociNqxNSmhhR1ZJPbsn8qyF0t2qH6iYBclclalbtTTcHTDsPaX6rlnElph2Jyumumtynv2Kk8GI7rsvXbIcJgHJOSaSXnnGaI3m87RtVXJOZ/YtgdTE6Wpha6ZlE8ayXkef1fh602r2WwvfMXtMdLlkfnLFdYYwYso+bWqm7yJqHXZGw2nrS5ZanSYnWlxBxMF1V940K2wdrI7R6OYf7DGGamMmTSbRhlS45xmVOumF1EyPCmHrrN8wwZOOrdNtLeMtzFzDlWnfTBxMk2NaXIZHBYxYLD4w8yju0ao65Vz1OIXoS9dLanwCe1PWrYuWMqf1if1z2k2yYfKJ741PDgno1ZQ8DRqvUny3mNoWTzGO6m1DkrJI8JiR5cSd+vZdGOO8nrMoc5+NDUFsMSXaZJeNlMmGLtJsovOsUp7I9S5VojKxF6bTVEelXqlfJobQr3LozSh2Jk7VcrVMfhXqszGWMzNqGhqZY0OadxkyyMssKugZR0KNFXBHlqwmJgTE/BNVMk6ItJXZMR0H47GpXv/DMOvNkmVuaV1PRfEdxuqc7Hcd+ZV/zTLaRxWk0nl9CdCeM6mn5rstHIBcpiuwmUZXeq81DacHI2rmrZ5SuE5mOZd6LQrZg9mx32TprA8BMo5jKN6yLTCi3WzQaZSuhzTtM1fUTGVpG8Tw+KXI0tjEpiWxtLYynOlktSbVlaI5kxP8TDH8kx50xoxi5KcA4pcja8KWLRlO/Ks6q06ergnvm1ca3Tq8Uw7LTUsmWyctXPWmpitl/uvGcWTGXGuAXDfhqazGmjkxcJW5hMMMMpYsXl2TZYtVOddG3XCarUt6Ptq9CZXSNzyuRzqRZOjsxdBbFVz6OA5HI43r1jityVlVpVkxmOsyaYWE1NTGq1sOVh36mHMcxtSvcy70edG0ZGR3I1Go1GRlV7mWWo1G0ZGRqlvH40l7o4m5xMWLLLYyNjnqc8556mdPqLJ31n/1nWOncxzG1tizrHs/Z+d2vP/B/l8wdJ6rHUn2nbbDq4p6htFtYzMMMTaZis1K5GKzGNmxhmUx2DDlZ/qNnIx41xnaMfCZWYaZWtNLTNW8ND4Fw1MyZOCdM428suKG1ehW8TesOydg7J+YYcD4cYR+8dFK6M4E3HM9ZfRNNL+Sn6rsl4DsrDl2HpPCnfxjGXtbZtYys1ttlyJ4T+BvexjGWRjMszK4Jpc77D3GyuVD7q0+G8m9G+2+rGm7cOR2y7FdtY2XUYx/oNlfRYxhMYyYZkyyg55enna9Kt/FFi6GMMwYwdwxWgxGMLKYmUyGExTKMZkMFhkymKuh0NOBNnBu+23LdwDoZYYzGGMxtORaTU1pjTGWTTGGtMrNWUsyyTTLLG1qy2ZjbK2DBllWqxMtBMaYZQmcE7zvvRcTkclUwdkxTaSdyySt/7fpL+T1v516Ji97fwr5JbLu305zMn5+GMTTZ9F+y7ExwmGVfG44yxn3dLv6l5i+Wth1jCrDq21nW9LqvvDzz3Vf3LLH/O/32TJ/erx3bXftO4eF+G956D952K/An4NfvOpjFjExjevP/UmE0fIoZXx6/w6lX/no3D0bLt+ixjieBM6ksRd0yB4Lt2SwYNE+gd1detlZWUnpiZfGfFaK+4PyCa/v18V8X75pe9fLXzp7l3VjF76vWZmHwGz1IZNWT7b8yddJ4q5kyrVdfru6atWc7bVYztL9Jf4GXvT+Y8m9/YsXP6H018a8D4XVOqvfzqeR+6yZOD8dPv0+U7/q5Pl+2dNb0MjzGVH5p6MNQ7cOWvw62U9aHE8DprDek+McLyvDz+te+9Zhq5+YTruufMcWMabqysTmZVWjKPfnK0wyVcrsuhjZRdLkHNvD72b9abriOSGIxiLixMOoalNPXzy+wT/tf+U6HHONfsz+xe8ufHBdQWWGWLA9if0rsnmrxK5LvRZQeWsTCsrmOYy8VteVfuRfcVTtDLItLIsMYxZLdU/DbtSemxF6Z6Zo5WBXE4tFdCyVMMXMTEMZXVlS6Xec2T4e0tHsRcEuWshcJ2YsNF5rUx1E8ifCq6Z+ZP7qdCeu/aTwFd53l16/o0NOw6O3dLavP4Hbi4RdmuDk6DoYaninC0+o4uZjbJ7Rxeu0/FbuFg+q7DVS6fQe0rZ6NDGUNNU6DEqOaLTicKnYZMnBWruljQxoaS3dZhocDge0bSTyOvdAbG5hxe2xji7E/L55xX13wWNDi6HCekcFxfCPGxY0MXC+s7afWaMdDyjyr+o8Rudm/NabOZvdl274zH4f5XK9z6On1Pe/K5TdPAslg77BjuO6Y3eO7GqvOPG/stknp1leyvLL0Z7bl9I4noMvLkzytLhWYzrOZzLXCORe028rORzOg4N/L0HlMOQ3Pgmnbb6KczlabORpu980q37TBqRu0/p3PO6234Bl03Ynuz+9W7gnsEcmvYaYY3aMYY0wx3pYd+ujsXauWdaY5Xkbtl23fPzFHiDB/QMo0yFjBllYxTQYYyxkrwn7JufwJ/PfgJ+C83X69ni6zvXcnyXabv0ncbLwsceS+RNlyN2mnneJtX0ngYO0+e+0+UnA+Wch3ji8hj5an4h+i6XBySU4n+R0roVcbw5yvHrmr4Yw8Y7x6c+9POPYHI5HI5HI5HI5HGXGww4nE4nrVyOR8XeqPEO7PLOiukYa3Novk5hV4cdtYZLI93e+uxff2jRo0aNGjRo0aNG1bVtW1dy3m83m8+tQ5ZzHw3nObwOu8La9Rc1dtkdS8A3eTk823tnktXWlxN6Oixe06zrN70Isd9jiOgZFq9yfkPqP/SLhN2Myl8jDM43bl1nbcb4cO57jlh8Jow6pzXZdL4dyODTuuhu77FyO27DdwdRxmvO+O+3N2+BdqyTwLHVczDVY4UPE4O66/ZO2cx1LFzVdSXtF7G4HMbrauOHRw6c8FdZ5m9fHZHYZXfTlZquyynSyTTKke6vcffSD9pzPA/G7n7jxPmuhc1DHMynPMrGL6AdewYmwu5ko+UUyTwrMv27rPH1v1nGqd87+p6N6LU8k3NEng53xXyHS97+44OSg/sy/hn+Se6yfYNjW0/uTgP+PvWYzLMmjhcLB/gGpri6H83/84eUXWT6T9Hsv7785z/7z4icpW+zfXypuR7rx/gMdZb1/wC678pcs8/2a3mDitGHxl9mfPlll5MafWWqxk/eYuTDgcNMzDGWLWvsuglNxs53GtN6uWpktlW1tZZYcuinMMWmnNnJydze3b2Y1McBxrBkXw799izLMZZYyy0TkbsGM4p03S2uVu5s/XXUdSdec6smVxZYYGpVmT8A+8ajuEyV5FatkvVru2x6uxGXXbH4A+jvgP4GMYy3iPLXzq/6z65+E005ey+cwMZD3fZcqc6xpjTFjQ0P3U+e++cPYmTIwj0nrK5NPTfl3WvpfLtXDcb2HQMudYOxFXQBor4L4T6vrOauFctYXJQ++NUWmJe5bmx1jDiZS1dTqWxo4GR8jm3fttpmPHppk9PEyv4/y8/sO07XacOmcqc0x2Vi9BvNJvN5oW8x4mOsydpidRxMYJPx06m1bqPzq9KtK8sxXNXFodD/+MYYaJTLwOhc9brCsV18oOR1i4tXChyTkq4lf4y1Ke+9axjDHqs1mfBbMXuP4Hzi+X7t8vzv7bHerrUPgPCxhjre4fXdfLNtNM+Jd+Zdh8xd8wP87uNPoPgv4W7/5P2BuxfsMabNnMnza+54Pdi5U671GPZY8CehX8Voeoo7FHpkeEc6715FwHZrIrUrHaviPUbPZHND+IhczrP6FcYvhOZ0Di/ETt0OI+YwNWR9r7tpf6WDeZKZDB1+z2IthOl1mPyb5FluvEx9h9d0NnM0Y1XPFkWIsk1WotJ0PBMmkvjvQTd0e71tfeV+8r8lQ/tpzpsmxJ+InrI/dj2UajUajVTUajatRqNRtGo1Go1Go4wjeMpZFMVV9CHbofPraLsJ3JpWV2XOoanCuFky4y3PPNxucK2uKC1Lbdb1eo+m5XomN6HfeZsabHLHRX/K+offtNGGmHWctcVcG44MdSqsOLY9VzX+Zxfxn2HPdWTpzWvkrtJ8M5zorrKcquRytJ5N5DZmcaW02l76nWO+BqPXm1A2Ry/0q71dH/mqrqeFjkYxjEXtsX8qubTk67rGycyqsdm4tZx5D6D5hhi0waaWmiaMP81Yjii5qxPlPuU/GfTL1Y5E6Jyfiq63qTa39A4J0sOGDgO9WF9bOXl0XfPRbsY2bPNKPy1YrFYrFYmRhhlTIyMjJWJYZHXuCXI8OoXsvfljGLFicNifpp2XunoPiG1wtx3p1Tah+/DD66OnVtVXP9rKbVxOnL0tR/rHtqB5UDErUVcl11D4qqvjpOcxX7armUNJB3LpW6bxVvD08e8h3odKKvyCFZBdSh2FVcST9xV3n3T8t1j7Kr9qgrqXg+13Pt5U7JCvFXVIV1YG5lRhkVYZJYYDDD4KOIMoHCp26WS8GB7uBh2zIdgq/PKyInjV2STShuoapUdCpX1yTwqq/z1VvET7Kh5nVPkO8YyxjLt2MaaMmWTLQvx3qnzltnXW0p2jxgbEtSny/Osv8Y9pLMXYoHVPAhkVdWVeODhR6q9/Sxe2liwwZWMVvFXfRkeIDxAePUPIrdJ4ey6yquzH+PD/bUOWAu05qVHtFd8rrKHSoeNIOUqrYr3FXyToqfYJgwmJdKpXXOwYYegNNGMzfZPp/t3t/DVs4zjNTN61rRqaWaa4NYbRjTa0tWwy2Y2tGN8ZO8ofNKq4j9SL7I+cSm4/6ovLV5HNXLI0jJidwrtk6ynCaP6Z++GjRlWS3tLeW129Mi9evxU9mtz6s5J3Z7M2ngTgnKvmpomxpaLCzPfmx0JWE+m3NLDDGOX47RctdYYNK5jakdqLkRlI39n590T5zctGSwwZZDJj6kW8XSi6ot2MmWWJ0DUT3nuvebBudScjZ79g8cWJ8av0k+/bE5WKd5MdbFpbDVMxu1DVMmtNZGJvq1mtRbn6M+g/kP0FwDwr7quZs7xosNGpbscyxhhd9TyJyFwbLcxlTasg75vW7TsV5K7ji44XPMMrdoj+Y3rT0Hie62nlYV/pwczzOmdLqLhYkzGMzCZWGMQzGMSsZYY6Di1t4nlJ+Em63mJxrVLxPbYxNEdgc1dU2iOKyoYYWjNrEeHTYybVk0atSa7ehuwsWMWTqn1TrnS6hYsi71d1+s+k+ic70e20fzE/VaTdxT9ZtU4GIXdeNx3X77guYYfpHeTQjaMX6brOu4OY4K7Y2d9mbHarI5ox3p4GpJ2Vd/Tst60f7j999pppjR+Q/Qf8J/VaORs3cji7FfFuN61+ui9s8hix1OCh5KGVV23BPXvZfz3CLyHpix+exi8z/KnCnosY2eunor+cxyPO/xJ0vKey9OvE9VjqaYu0x3Z3jd6o2b1T12D+F8l232lwaaacD5LE8LBxu7WTlbWraWpew8Xexjel3E+wWD4APITdNqR8F3R3T0lunCQ4GaE9R37DxeCYfcHi4xci5ovKfxVs55y2hf+65E/Xdp6jR5nrebTmi5incpkyOjs50JvrZwstbbW6kfuuQw+2mykf/EXNFzxfKTrxew929TR6bWnGL//F3JFOFCQT3K4lQ"
166
+
167
+ kernels = Kernel(
168
+ bz2.decompress(base64.b64decode(quantization_code)),
169
+ [
170
+ "int4WeightCompression",
171
+ "int4WeightExtractionFloat",
172
+ "int4WeightExtractionHalf",
173
+ "int8WeightExtractionFloat",
174
+ "int8WeightExtractionHalf",
175
+ ],
176
+ )
177
+
178
+
179
+ def compress_int4_weight(weight: torch.Tensor): # (n, m)
180
+ """compress weight on cpu or cuda to int4"""
181
+ if weight.device == torch.device("cpu"):
182
+ assert isinstance(cpu_kernels, CPUKernel)
183
+ n, m = weight.size(0), weight.size(1)
184
+ assert m % 2 == 0
185
+ m = m // 2
186
+ out = torch.empty(n, m, dtype=torch.int8, device="cpu")
187
+ cpu_kernels.int4WeightCompression(
188
+ ctypes.c_void_p(weight.data_ptr()),
189
+ ctypes.c_void_p(out.data_ptr()),
190
+ ctypes.c_int32(n),
191
+ ctypes.c_int32(m)
192
+ )
193
+ return out
194
+ else:
195
+ with torch.cuda.device(weight.device):
196
+ n, m = weight.size(0), weight.size(1)
197
+ assert m % 2 == 0
198
+ m = m // 2
199
+ out = torch.empty(n, m, dtype=torch.int8, device="cuda")
200
+ stream = torch.cuda.current_stream()
201
+
202
+ gridDim = (n, 1, 1)
203
+ blockDim = (min(round_up(m, 32), 1024), 1, 1)
204
+
205
+ kernels.int4WeightCompression(
206
+ gridDim,
207
+ blockDim,
208
+ 0,
209
+ stream,
210
+ [ctypes.c_void_p(weight.data_ptr()), ctypes.c_void_p(out.data_ptr()), ctypes.c_int32(n), ctypes.c_int32(m)],
211
+ )
212
+ return out
213
+
214
+
215
+ def extract_weight_to_half(weight: torch.Tensor, scale_list: torch.Tensor, source_bit_width: int):
216
+ if source_bit_width == 8:
217
+ func = kernels.int8WeightExtractionHalf
218
+ elif source_bit_width == 4:
219
+ func = kernels.int4WeightExtractionHalf
220
+ else:
221
+ assert False, "Unsupported bit-width"
222
+
223
+ with torch.cuda.device(weight.device):
224
+ n, m = weight.size(0), weight.size(1)
225
+ out = torch.empty(n, m * (8 // source_bit_width), dtype=torch.half, device="cuda")
226
+ stream = torch.cuda.current_stream()
227
+
228
+ gridDim = (n, 1, 1)
229
+ blockDim = (min(round_up(m, 32), 1024), 1, 1)
230
+
231
+ func(
232
+ gridDim,
233
+ blockDim,
234
+ 0,
235
+ stream,
236
+ [
237
+ ctypes.c_void_p(weight.data_ptr()),
238
+ ctypes.c_void_p(scale_list.data_ptr()),
239
+ ctypes.c_void_p(out.data_ptr()),
240
+ ctypes.c_int32(n),
241
+ ctypes.c_int32(m),
242
+ ],
243
+ )
244
+ return out
245
+
246
+
247
+ def extract_weight_to_float(weight: torch.Tensor, scale_list: torch.Tensor, source_bit_width: int, quantization_cache=None):
248
+ """extract weight on cpu to float32"""
249
+ if source_bit_width == 8:
250
+ func = cpu_kernels.int8WeightExtractionFloat
251
+ elif source_bit_width == 4:
252
+ func = cpu_kernels.int4WeightExtractionFloat
253
+ else:
254
+ assert False, "Unsupported bit-width"
255
+
256
+ n, m = weight.size(0), weight.size(1)
257
+
258
+ if quantization_cache is not None:
259
+ out = quantization_cache
260
+ func(
261
+ ctypes.c_void_p(weight.data_ptr()),
262
+ ctypes.c_void_p(scale_list.data_ptr()),
263
+ ctypes.c_void_p(out.data_ptr()),
264
+ ctypes.c_int32(n),
265
+ ctypes.c_int32(m)
266
+ )
267
+ return out.tensor
268
+ else:
269
+ out = torch.empty(n, m * (8 // source_bit_width), dtype=torch.float, device="cpu")
270
+ func(
271
+ ctypes.c_void_p(weight.data_ptr()),
272
+ ctypes.c_void_p(scale_list.data_ptr()),
273
+ ctypes.c_void_p(out.data_ptr()),
274
+ ctypes.c_int32(n),
275
+ ctypes.c_int32(m)
276
+ )
277
+ return out
278
+
279
+
280
+ class CacheTensor():
281
+ def __init__(self, *args, **kwargs):
282
+ self.tensor = torch.empty(*args, **kwargs)
283
+
284
+ def to(self, *args, **kwargs):
285
+ self.tensor = self.tensor.to(*args, **kwargs)
286
+
287
+ def data_ptr(self):
288
+ return self.tensor.data_ptr()
289
+
290
+
291
+ class QuantizedLinear(Linear):
292
+ def __init__(self, weight_bit_width: int, weight_tensor=None, bias_tensor=None, quantized_weight=None, quantized_weight_scale=None, quantization_cache=None, empty_init=False, *args, **kwargs):
293
+ super(QuantizedLinear, self).__init__(*args, **kwargs)
294
+ self.weight_bit_width = weight_bit_width
295
+ self.quantization_cache = quantization_cache
296
+
297
+ if (quantized_weight is not None) and (quantized_weight_scale is not None):
298
+ del self.weight
299
+ self.weight = Parameter(quantized_weight.to(kwargs["device"]), requires_grad=False)
300
+ self.weight_scale = Parameter(quantized_weight_scale.to(kwargs["device"]), requires_grad=False)
301
+ else:
302
+ shape = self.weight.shape
303
+ del self.weight
304
+
305
+ if weight_tensor is None or empty_init:
306
+ self.weight = torch.empty(
307
+ shape[0], shape[1] * weight_bit_width // 8, dtype=torch.int8, device=kwargs["device"]
308
+ )
309
+ self.weight_scale = torch.empty(shape[0], dtype=kwargs["dtype"], device=kwargs["device"])
310
+ else:
311
+ self.weight_scale = (weight_tensor.abs().max(dim=-1).values / ((2 ** (weight_bit_width - 1)) - 1)).to(kwargs["dtype"])
312
+ self.weight = torch.round(weight_tensor / self.weight_scale[:, None]).to(torch.int8)
313
+ if weight_bit_width == 4:
314
+ self.weight = compress_int4_weight(self.weight)
315
+
316
+ self.weight = Parameter(self.weight.to(kwargs["device"]), requires_grad=False)
317
+ self.weight_scale = Parameter(self.weight_scale.to(kwargs["device"]), requires_grad=False)
318
+
319
+ if bias_tensor is not None:
320
+ self.bias = Parameter(bias_tensor.to(kwargs["device"]), requires_grad=False)
321
+ else:
322
+ self.bias = None
323
+
324
+ def reset_parameters(self):
325
+ """To accelerate initialization"""
326
+ pass
327
+
328
+ def forward(self, input):
329
+ if self.weight.device == torch.device("cpu"):
330
+ output = W8A16LinearCPU.apply(input, self.weight, self.weight_scale, self.weight_bit_width, self.quantization_cache)
331
+ else:
332
+ output = W8A16Linear.apply(input, self.weight, self.weight_scale, self.weight_bit_width)
333
+ if self.bias is not None:
334
+ output = output + self.bias
335
+ return output
336
+
337
+ def _apply(self, fn):
338
+ self_obj = super()._apply(fn)
339
+ if self.quantization_cache is not None:
340
+ self.quantization_cache.to(self_obj.weight.device)
341
+ self.quantization_cache.to(self_obj.weight_scale.dtype)
342
+ return self_obj
343
+
344
+
345
+ class QuantizedEmbedding(Embedding): # TODO: backward, check empty_init
346
+ def __init__(self, weight_bit_width: int, weight_tensor=None, quantized_weight=None, quantized_weight_scale=None, empty_init=False, *args, **kwargs):
347
+ super(QuantizedEmbedding, self).__init__(*args, **kwargs)
348
+ self.weight_bit_width = weight_bit_width
349
+
350
+ if (quantized_weight is not None) and (quantized_weight_scale is not None):
351
+ del self.weight
352
+ self.weight = Parameter(quantized_weight.to(kwargs["device"]), requires_grad=False)
353
+ self.weight_scale = Parameter(quantized_weight_scale.to(kwargs["device"]), requires_grad=False)
354
+ else:
355
+ shape = self.weight.shape
356
+ del self.weight
357
+
358
+ if weight_tensor is None or empty_init:
359
+ self.weight = torch.empty(
360
+ shape[0], shape[1] * weight_bit_width // 8, dtype=torch.int8, device=kwargs["device"]
361
+ )
362
+ self.weight_scale = torch.empty(shape[0], dtype=kwargs["dtype"], device=kwargs["device"])
363
+ else:
364
+ self.weight_scale = (weight_tensor.abs().max(dim=-1).values / ((2 ** (weight_bit_width - 1)) - 1)).half()
365
+ self.weight = torch.round(weight_tensor / self.weight_scale[:, None]).to(torch.int8)
366
+ if weight_bit_width == 4:
367
+ self.weight = compress_int4_weight(self.weight)
368
+
369
+ self.weight = Parameter(self.weight.to(kwargs["device"]), requires_grad=False)
370
+ self.weight_scale = Parameter(self.weight_scale.to(kwargs["device"]), requires_grad=False)
371
+
372
+ def forward(self, input):
373
+ if self.weight.device == torch.device("cpu"):
374
+ original_weight = extract_weight_to_float(weight=self.weight, scale_list=self.weight_scale, source_bit_width=self.weight_bit_width)
375
+ else:
376
+ original_weight = extract_weight_to_half(weight=self.weight, scale_list=self.weight_scale, source_bit_width=self.weight_bit_width)
377
+ output = F.embedding(
378
+ input, original_weight, self.padding_idx, self.max_norm,
379
+ self.norm_type, self.scale_grad_by_freq, self.sparse
380
+ )
381
+ return output
382
+
383
+
384
+ def load_cpu_kernel(**kwargs):
385
+ global cpu_kernels
386
+ cpu_kernels = CPUKernel(**kwargs)
387
+ assert cpu_kernels.load
388
+
389
+
390
+ def quantize(model, weight_bit_width, use_quantization_cache=False, empty_init=False, **kwargs):
391
+ """Replace fp16 linear with quantized linear"""
392
+
393
+ query_key_value_quantization_cache = None
394
+ dense_quantization_cache = None
395
+ dense_h_to_4h_quantization_cache = None
396
+ dense_4h_to_h_quantization_cache = None
397
+
398
+ try:
399
+ load_cpu_kernel(**kwargs)
400
+ except:
401
+ print("Cannot load cpu kernel, don't use quantized model on cpu.")
402
+
403
+ current_device = model.device
404
+
405
+ if model.device == torch.device("cpu"):
406
+ dtype=torch.float32
407
+ else:
408
+ dtype = torch.half
409
+
410
+ QuantizedLinearWithPara = partial(
411
+ QuantizedLinear,
412
+ weight_bit_width=weight_bit_width,
413
+ bias=True,
414
+ dtype=dtype,
415
+ empty_init=empty_init
416
+ )
417
+
418
+ if use_quantization_cache:
419
+ print("Using quantization cache")
420
+ layer = model.layers[0]
421
+ weight = layer.attention.query_key_value.weight
422
+ n, m = weight.size(0), weight.size(1)
423
+ query_key_value_quantization_cache = CacheTensor(n, m, dtype=dtype, device=current_device, requires_grad=False)
424
+ weight = layer.attention.dense.weight
425
+ n, m = weight.size(0), weight.size(1)
426
+ dense_quantization_cache = CacheTensor(n, m, dtype=dtype, device=current_device, requires_grad=False)
427
+ weight = layer.mlp.dense_h_to_4h.weight
428
+ n, m = weight.size(0), weight.size(1)
429
+ dense_h_to_4h_quantization_cache = CacheTensor(n, m, dtype=dtype, device=current_device, requires_grad=False)
430
+ weight = layer.mlp.dense_4h_to_h.weight
431
+ n, m = weight.size(0), weight.size(1)
432
+ dense_4h_to_h_quantization_cache = CacheTensor(n, m, dtype=dtype, device=current_device, requires_grad=False)
433
+
434
+ print("Applying quantization to glm layers")
435
+
436
+ for layer in model.layers:
437
+ layer.attention.query_key_value = QuantizedLinearWithPara(
438
+ weight_tensor=layer.attention.query_key_value.weight.to(current_device),
439
+ bias_tensor=layer.attention.query_key_value.bias,
440
+ in_features=layer.attention.query_key_value.in_features,
441
+ out_features=layer.attention.query_key_value.out_features,
442
+ device=layer.attention.query_key_value.weight.device,
443
+ quantization_cache=query_key_value_quantization_cache
444
+ )
445
+ layer.attention.dense = QuantizedLinearWithPara(
446
+ weight_tensor=layer.attention.dense.weight.to(current_device),
447
+ bias_tensor=layer.attention.dense.bias,
448
+ in_features=layer.attention.dense.in_features,
449
+ out_features=layer.attention.dense.out_features,
450
+ device=layer.attention.dense.weight.device,
451
+ quantization_cache=dense_quantization_cache
452
+ )
453
+ layer.mlp.dense_h_to_4h = QuantizedLinearWithPara(
454
+ weight_tensor=layer.mlp.dense_h_to_4h.weight.to(current_device),
455
+ bias_tensor=layer.mlp.dense_h_to_4h.bias,
456
+ in_features=layer.mlp.dense_h_to_4h.in_features,
457
+ out_features=layer.mlp.dense_h_to_4h.out_features,
458
+ device=layer.mlp.dense_h_to_4h.weight.device,
459
+ quantization_cache=dense_h_to_4h_quantization_cache
460
+ )
461
+ layer.mlp.dense_4h_to_h = QuantizedLinearWithPara(
462
+ weight_tensor=layer.mlp.dense_4h_to_h.weight.to(current_device),
463
+ bias_tensor=layer.mlp.dense_4h_to_h.bias,
464
+ in_features=layer.mlp.dense_4h_to_h.in_features,
465
+ out_features=layer.mlp.dense_4h_to_h.out_features,
466
+ device=layer.mlp.dense_4h_to_h.weight.device,
467
+ quantization_cache=dense_4h_to_h_quantization_cache
468
+ )
469
+ return model