Upload ChatGLMForConditionalGeneration
Browse files- config.json +28 -0
- configuration_chatglm.py +96 -0
- generation_config.json +7 -0
- modeling_chatglm.py +1302 -0
- pytorch_model.bin +3 -0
- quantization.py +469 -0
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "THUDM/chatglm-6b-int4",
|
3 |
+
"architectures": [
|
4 |
+
"ChatGLMForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_chatglm.ChatGLMConfig",
|
8 |
+
"AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
|
9 |
+
"AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration"
|
10 |
+
},
|
11 |
+
"bos_token_id": 150004,
|
12 |
+
"eos_token_id": 150005,
|
13 |
+
"hidden_size": 4096,
|
14 |
+
"inner_hidden_size": 16384,
|
15 |
+
"layernorm_epsilon": 1e-05,
|
16 |
+
"max_sequence_length": 2048,
|
17 |
+
"model_type": "chatglm",
|
18 |
+
"num_attention_heads": 32,
|
19 |
+
"num_layers": 28,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"position_encoding_2d": true,
|
22 |
+
"quantization_bit": 4,
|
23 |
+
"quantization_embeddings": false,
|
24 |
+
"torch_dtype": "float16",
|
25 |
+
"transformers_version": "4.26.1",
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 150528
|
28 |
+
}
|
configuration_chatglm.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" ChatGLM model configuration """
|
2 |
+
|
3 |
+
from transformers.configuration_utils import PretrainedConfig
|
4 |
+
from transformers.utils import logging
|
5 |
+
|
6 |
+
logger = logging.get_logger(__name__)
|
7 |
+
|
8 |
+
|
9 |
+
class ChatGLMConfig(PretrainedConfig):
|
10 |
+
r"""
|
11 |
+
This is the configuration class to store the configuration of a [`~ChatGLMModel`].
|
12 |
+
It is used to instantiate an ChatGLM model according to the specified arguments, defining the model
|
13 |
+
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
|
14 |
+
the ChatGLM-6B [THUDM/ChatGLM-6B](https://huggingface.co/THUDM/chatglm-6b) architecture.
|
15 |
+
|
16 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used
|
17 |
+
to control the model outputs. Read the documentation from [`PretrainedConfig`]
|
18 |
+
for more information.
|
19 |
+
|
20 |
+
|
21 |
+
Args:
|
22 |
+
vocab_size (`int`, *optional*, defaults to 150528):
|
23 |
+
Vocabulary size of the ChatGLM-6B model. Defines the number of different tokens that can be represented by the
|
24 |
+
`inputs_ids` passed when calling [`~ChatGLMModel`] or
|
25 |
+
[`~TFChatGLMModel`].
|
26 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
27 |
+
Dimension of the encoder layers and the pooler layer.
|
28 |
+
num_hidden_layers (`int`, *optional*, defaults to 28):
|
29 |
+
Number of hidden layers in the Transformer encoder.
|
30 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
31 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
32 |
+
inner_hidden_size (`int`, *optional*, defaults to 16384):
|
33 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
34 |
+
max_sequence_length (`int`, *optional*, defaults to 512):
|
35 |
+
The maximum sequence length that this model might ever be used with.
|
36 |
+
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
|
37 |
+
layernorm_epsilon (`float`, *optional*, defaults to 1e-5):
|
38 |
+
The epsilon used by the layer normalization layers.
|
39 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
40 |
+
Whether the model should return the last key/values attentions (not used by all models).
|
41 |
+
Example:
|
42 |
+
|
43 |
+
```python
|
44 |
+
>>> from configuration_chatglm import ChatGLMConfig
|
45 |
+
>>> from modeling_chatglm import ChatGLMModel
|
46 |
+
|
47 |
+
>>> # Initializing a ChatGLM-6B THUDM/ChatGLM-6B style configuration
|
48 |
+
>>> configuration = ChatGLMConfig()
|
49 |
+
|
50 |
+
>>> # Initializing a model from the THUDM/ChatGLM-6B style configuration
|
51 |
+
>>> model = ChatGLMModel(configuration)
|
52 |
+
|
53 |
+
>>> # Accessing the model configuration
|
54 |
+
>>> configuration = model.config
|
55 |
+
```
|
56 |
+
"""
|
57 |
+
model_type = "chatglm"
|
58 |
+
|
59 |
+
def __init__(
|
60 |
+
self,
|
61 |
+
vocab_size=150528,
|
62 |
+
hidden_size=4096,
|
63 |
+
num_layers=28,
|
64 |
+
num_attention_heads=32,
|
65 |
+
layernorm_epsilon=1e-5,
|
66 |
+
use_cache=False,
|
67 |
+
bos_token_id=150004,
|
68 |
+
eos_token_id=150005,
|
69 |
+
pad_token_id=0,
|
70 |
+
max_sequence_length=2048,
|
71 |
+
inner_hidden_size=16384,
|
72 |
+
position_encoding_2d=True,
|
73 |
+
quantization_bit=0,
|
74 |
+
quantization_embeddings=False,
|
75 |
+
**kwargs
|
76 |
+
):
|
77 |
+
self.num_layers = num_layers
|
78 |
+
self.vocab_size = vocab_size
|
79 |
+
self.hidden_size = hidden_size
|
80 |
+
self.num_attention_heads = num_attention_heads
|
81 |
+
self.max_sequence_length = max_sequence_length
|
82 |
+
self.layernorm_epsilon = layernorm_epsilon
|
83 |
+
self.inner_hidden_size = inner_hidden_size
|
84 |
+
self.use_cache = use_cache
|
85 |
+
self.bos_token_id = bos_token_id
|
86 |
+
self.eos_token_id = eos_token_id
|
87 |
+
self.pad_token_id = pad_token_id
|
88 |
+
self.position_encoding_2d = position_encoding_2d
|
89 |
+
self.quantization_bit=quantization_bit
|
90 |
+
self.quantization_embeddings=quantization_embeddings
|
91 |
+
super().__init__(
|
92 |
+
pad_token_id=pad_token_id,
|
93 |
+
bos_token_id=bos_token_id,
|
94 |
+
eos_token_id=eos_token_id,
|
95 |
+
**kwargs
|
96 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 150004,
|
4 |
+
"eos_token_id": 150005,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.26.1"
|
7 |
+
}
|
modeling_chatglm.py
ADDED
@@ -0,0 +1,1302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" PyTorch ChatGLM model. """
|
2 |
+
|
3 |
+
import math
|
4 |
+
import copy
|
5 |
+
import os
|
6 |
+
import warnings
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.utils.checkpoint
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from torch import nn
|
12 |
+
from torch.nn import CrossEntropyLoss, LayerNorm
|
13 |
+
from torch.nn.utils import skip_init
|
14 |
+
from typing import Optional, Tuple, Union, List, Callable
|
15 |
+
|
16 |
+
from transformers.utils import (
|
17 |
+
add_code_sample_docstrings,
|
18 |
+
add_start_docstrings,
|
19 |
+
add_start_docstrings_to_model_forward,
|
20 |
+
)
|
21 |
+
from transformers.modeling_outputs import (
|
22 |
+
BaseModelOutputWithPast,
|
23 |
+
CausalLMOutputWithPast,
|
24 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
25 |
+
)
|
26 |
+
from transformers.modeling_utils import PreTrainedModel
|
27 |
+
from transformers.utils import logging
|
28 |
+
from transformers.generation.logits_process import LogitsProcessor
|
29 |
+
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig
|
30 |
+
|
31 |
+
from .configuration_chatglm import ChatGLMConfig
|
32 |
+
|
33 |
+
|
34 |
+
# flags required to enable jit fusion kernels
|
35 |
+
torch._C._jit_set_profiling_mode(False)
|
36 |
+
torch._C._jit_set_profiling_executor(False)
|
37 |
+
torch._C._jit_override_can_fuse_on_cpu(True)
|
38 |
+
torch._C._jit_override_can_fuse_on_gpu(True)
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__)
|
41 |
+
|
42 |
+
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM-6B"
|
43 |
+
_CONFIG_FOR_DOC = "ChatGLM6BConfig"
|
44 |
+
|
45 |
+
CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
46 |
+
"THUDM/chatglm-6b",
|
47 |
+
# See all ChatGLM-6B models at https://huggingface.co/models?filter=chatglm
|
48 |
+
]
|
49 |
+
|
50 |
+
|
51 |
+
class InvalidScoreLogitsProcessor(LogitsProcessor):
|
52 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
53 |
+
if torch.isnan(scores).any() or torch.isinf(scores).any():
|
54 |
+
scores.zero_()
|
55 |
+
scores[..., 20005] = 5e4
|
56 |
+
return scores
|
57 |
+
|
58 |
+
|
59 |
+
def load_tf_weights_in_chatglm_6b(model, config, tf_checkpoint_path):
|
60 |
+
"""Load tf checkpoints in a pytorch model."""
|
61 |
+
try:
|
62 |
+
import re
|
63 |
+
|
64 |
+
import numpy as np
|
65 |
+
import tensorflow as tf
|
66 |
+
except ImportError:
|
67 |
+
logger.error(
|
68 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
69 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
70 |
+
)
|
71 |
+
raise
|
72 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
73 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
74 |
+
# Load weights from TF model
|
75 |
+
init_vars = tf.train.list_variables(tf_path)
|
76 |
+
names = []
|
77 |
+
arrays = []
|
78 |
+
for name, shape in init_vars:
|
79 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
80 |
+
array = tf.train.load_variable(tf_path, name)
|
81 |
+
names.append(name)
|
82 |
+
arrays.append(array)
|
83 |
+
|
84 |
+
for name, array in zip(names, arrays):
|
85 |
+
name = name.split("/")
|
86 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
87 |
+
# which are not required for using pretrained model
|
88 |
+
if any(
|
89 |
+
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
90 |
+
for n in name
|
91 |
+
):
|
92 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
93 |
+
continue
|
94 |
+
pointer = model
|
95 |
+
for m_name in name:
|
96 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
97 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
98 |
+
else:
|
99 |
+
scope_names = [m_name]
|
100 |
+
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
101 |
+
pointer = getattr(pointer, "weight")
|
102 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
103 |
+
pointer = getattr(pointer, "bias")
|
104 |
+
elif scope_names[0] == "output_weights":
|
105 |
+
pointer = getattr(pointer, "weight")
|
106 |
+
elif scope_names[0] == "squad":
|
107 |
+
pointer = getattr(pointer, "classifier")
|
108 |
+
else:
|
109 |
+
try:
|
110 |
+
pointer = getattr(pointer, scope_names[0])
|
111 |
+
except AttributeError:
|
112 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
113 |
+
continue
|
114 |
+
if len(scope_names) >= 2:
|
115 |
+
num = int(scope_names[1])
|
116 |
+
pointer = pointer[num]
|
117 |
+
if m_name[-11:] == "_embeddings":
|
118 |
+
pointer = getattr(pointer, "weight")
|
119 |
+
elif m_name == "kernel":
|
120 |
+
array = np.transpose(array)
|
121 |
+
try:
|
122 |
+
assert (
|
123 |
+
pointer.shape == array.shape
|
124 |
+
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
125 |
+
except AssertionError as e:
|
126 |
+
e.args += (pointer.shape, array.shape)
|
127 |
+
raise
|
128 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
129 |
+
pointer.data = torch.from_numpy(array)
|
130 |
+
return model
|
131 |
+
|
132 |
+
|
133 |
+
@torch.jit.script
|
134 |
+
def gelu_impl(x):
|
135 |
+
"""OpenAI's gelu implementation."""
|
136 |
+
return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x *
|
137 |
+
(1.0 + 0.044715 * x * x)))
|
138 |
+
|
139 |
+
|
140 |
+
def gelu(x):
|
141 |
+
return gelu_impl(x)
|
142 |
+
|
143 |
+
|
144 |
+
class RotaryEmbedding(torch.nn.Module):
|
145 |
+
def __init__(self, dim, base=10000, precision=torch.half, learnable=False):
|
146 |
+
super().__init__()
|
147 |
+
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
|
148 |
+
inv_freq = inv_freq.half()
|
149 |
+
self.learnable = learnable
|
150 |
+
if learnable:
|
151 |
+
self.inv_freq = torch.nn.Parameter(inv_freq)
|
152 |
+
self.max_seq_len_cached = None
|
153 |
+
else:
|
154 |
+
self.register_buffer('inv_freq', inv_freq)
|
155 |
+
self.max_seq_len_cached = None
|
156 |
+
self.cos_cached = None
|
157 |
+
self.sin_cached = None
|
158 |
+
self.precision = precision
|
159 |
+
|
160 |
+
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
|
161 |
+
error_msgs):
|
162 |
+
pass
|
163 |
+
|
164 |
+
def forward(self, x, seq_dim=1, seq_len=None):
|
165 |
+
if seq_len is None:
|
166 |
+
seq_len = x.shape[seq_dim]
|
167 |
+
if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):
|
168 |
+
self.max_seq_len_cached = None if self.learnable else seq_len
|
169 |
+
t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)
|
170 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
171 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
172 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
173 |
+
if self.precision == torch.bfloat16:
|
174 |
+
emb = emb.float()
|
175 |
+
|
176 |
+
# [sx, 1 (b * np), hn]
|
177 |
+
cos_cached = emb.cos()[:, None, :]
|
178 |
+
sin_cached = emb.sin()[:, None, :]
|
179 |
+
if self.precision == torch.bfloat16:
|
180 |
+
cos_cached = cos_cached.bfloat16()
|
181 |
+
sin_cached = sin_cached.bfloat16()
|
182 |
+
if self.learnable:
|
183 |
+
return cos_cached, sin_cached
|
184 |
+
self.cos_cached, self.sin_cached = cos_cached, sin_cached
|
185 |
+
return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]
|
186 |
+
|
187 |
+
def _apply(self, fn):
|
188 |
+
if self.cos_cached is not None:
|
189 |
+
self.cos_cached = fn(self.cos_cached)
|
190 |
+
if self.sin_cached is not None:
|
191 |
+
self.sin_cached = fn(self.sin_cached)
|
192 |
+
return super()._apply(fn)
|
193 |
+
|
194 |
+
def rotate_half(x):
|
195 |
+
x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
|
196 |
+
return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions
|
197 |
+
|
198 |
+
|
199 |
+
@torch.jit.script
|
200 |
+
def apply_rotary_pos_emb_index(q, k, cos, sin, position_id):
|
201 |
+
# position_id: [sq, b], q, k: [sq, b, np, hn], cos: [sq, 1, hn] -> [sq, b, 1, hn]
|
202 |
+
cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(2), \
|
203 |
+
F.embedding(position_id, sin.squeeze(1)).unsqueeze(2)
|
204 |
+
q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
|
205 |
+
return q, k
|
206 |
+
|
207 |
+
|
208 |
+
def attention_fn(
|
209 |
+
self,
|
210 |
+
query_layer,
|
211 |
+
key_layer,
|
212 |
+
value_layer,
|
213 |
+
attention_mask,
|
214 |
+
hidden_size_per_partition,
|
215 |
+
layer_id,
|
216 |
+
layer_past=None,
|
217 |
+
scaling_attention_score=True,
|
218 |
+
use_cache=False,
|
219 |
+
):
|
220 |
+
if layer_past is not None:
|
221 |
+
past_key, past_value = layer_past
|
222 |
+
key_layer = torch.cat((past_key, key_layer), dim=0)
|
223 |
+
value_layer = torch.cat((past_value, value_layer), dim=0)
|
224 |
+
|
225 |
+
# seqlen, batch, num_attention_heads, hidden_size_per_attention_head
|
226 |
+
seq_len, b, nh, hidden_size = key_layer.shape
|
227 |
+
|
228 |
+
if use_cache:
|
229 |
+
present = (key_layer, value_layer)
|
230 |
+
else:
|
231 |
+
present = None
|
232 |
+
|
233 |
+
query_key_layer_scaling_coeff = float(layer_id + 1)
|
234 |
+
if scaling_attention_score:
|
235 |
+
query_layer = query_layer / (math.sqrt(hidden_size) * query_key_layer_scaling_coeff)
|
236 |
+
|
237 |
+
# ===================================
|
238 |
+
# Raw attention scores. [b, np, s, s]
|
239 |
+
# ===================================
|
240 |
+
|
241 |
+
# [b, np, sq, sk]
|
242 |
+
output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
|
243 |
+
|
244 |
+
# [sq, b, np, hn] -> [sq, b * np, hn]
|
245 |
+
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
|
246 |
+
# [sk, b, np, hn] -> [sk, b * np, hn]
|
247 |
+
key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
|
248 |
+
|
249 |
+
matmul_result = torch.empty(
|
250 |
+
output_size[0] * output_size[1],
|
251 |
+
output_size[2],
|
252 |
+
output_size[3],
|
253 |
+
dtype=query_layer.dtype,
|
254 |
+
device=query_layer.device,
|
255 |
+
)
|
256 |
+
|
257 |
+
matmul_result = torch.baddbmm(
|
258 |
+
matmul_result,
|
259 |
+
query_layer.transpose(0, 1), # [b * np, sq, hn]
|
260 |
+
key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
|
261 |
+
beta=0.0,
|
262 |
+
alpha=1.0,
|
263 |
+
)
|
264 |
+
|
265 |
+
# change view to [b, np, sq, sk]
|
266 |
+
attention_scores = matmul_result.view(*output_size)
|
267 |
+
|
268 |
+
if self.scale_mask_softmax:
|
269 |
+
self.scale_mask_softmax.scale = query_key_layer_scaling_coeff
|
270 |
+
attention_probs = self.scale_mask_softmax(attention_scores, attention_mask.contiguous())
|
271 |
+
else:
|
272 |
+
if not (attention_mask == 0).all():
|
273 |
+
# if auto-regressive, skip
|
274 |
+
attention_scores.masked_fill_(attention_mask, -10000.0)
|
275 |
+
dtype = attention_scores.type()
|
276 |
+
attention_scores = attention_scores.float()
|
277 |
+
attention_scores = attention_scores * query_key_layer_scaling_coeff
|
278 |
+
|
279 |
+
attention_probs = F.softmax(attention_scores, dim=-1)
|
280 |
+
|
281 |
+
attention_probs = attention_probs.type(dtype)
|
282 |
+
|
283 |
+
# =========================
|
284 |
+
# Context layer. [sq, b, hp]
|
285 |
+
# =========================
|
286 |
+
|
287 |
+
# value_layer -> context layer.
|
288 |
+
# [sk, b, np, hn] --> [b, np, sq, hn]
|
289 |
+
|
290 |
+
# context layer shape: [b, np, sq, hn]
|
291 |
+
output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
|
292 |
+
|
293 |
+
# change view [sk, b * np, hn]
|
294 |
+
value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
|
295 |
+
|
296 |
+
# change view [b * np, sq, sk]
|
297 |
+
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
298 |
+
|
299 |
+
# matmul: [b * np, sq, hn]
|
300 |
+
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
|
301 |
+
|
302 |
+
# change view [b, np, sq, hn]
|
303 |
+
context_layer = context_layer.view(*output_size)
|
304 |
+
|
305 |
+
# [b, np, sq, hn] --> [sq, b, np, hn]
|
306 |
+
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
|
307 |
+
|
308 |
+
# [sq, b, np, hn] --> [sq, b, hp]
|
309 |
+
new_context_layer_shape = context_layer.size()[:-2] + (hidden_size_per_partition,)
|
310 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
311 |
+
|
312 |
+
outputs = (context_layer, present, attention_probs)
|
313 |
+
|
314 |
+
return outputs
|
315 |
+
|
316 |
+
|
317 |
+
class SelfAttention(torch.nn.Module):
|
318 |
+
def __init__(self, hidden_size, num_attention_heads,
|
319 |
+
layer_id, hidden_size_per_attention_head=None, bias=True,
|
320 |
+
params_dtype=torch.float, position_encoding_2d=True):
|
321 |
+
super(SelfAttention, self).__init__()
|
322 |
+
|
323 |
+
self.layer_id = layer_id
|
324 |
+
self.hidden_size = hidden_size
|
325 |
+
self.hidden_size_per_partition = hidden_size
|
326 |
+
self.num_attention_heads = num_attention_heads
|
327 |
+
self.num_attention_heads_per_partition = num_attention_heads
|
328 |
+
self.position_encoding_2d = position_encoding_2d
|
329 |
+
self.rotary_emb = RotaryEmbedding(
|
330 |
+
self.hidden_size // (self.num_attention_heads * 2)
|
331 |
+
if position_encoding_2d
|
332 |
+
else self.hidden_size // self.num_attention_heads,
|
333 |
+
base=10000,
|
334 |
+
precision=torch.half,
|
335 |
+
learnable=False,
|
336 |
+
)
|
337 |
+
|
338 |
+
self.scale_mask_softmax = None
|
339 |
+
|
340 |
+
if hidden_size_per_attention_head is None:
|
341 |
+
self.hidden_size_per_attention_head = hidden_size // num_attention_heads
|
342 |
+
else:
|
343 |
+
self.hidden_size_per_attention_head = hidden_size_per_attention_head
|
344 |
+
|
345 |
+
self.inner_hidden_size = num_attention_heads * self.hidden_size_per_attention_head
|
346 |
+
|
347 |
+
# Strided linear layer.
|
348 |
+
self.query_key_value = skip_init(
|
349 |
+
torch.nn.Linear,
|
350 |
+
hidden_size,
|
351 |
+
3 * self.inner_hidden_size,
|
352 |
+
bias=bias,
|
353 |
+
dtype=params_dtype,
|
354 |
+
)
|
355 |
+
|
356 |
+
self.dense = skip_init(
|
357 |
+
torch.nn.Linear,
|
358 |
+
self.inner_hidden_size,
|
359 |
+
hidden_size,
|
360 |
+
bias=bias,
|
361 |
+
dtype=params_dtype,
|
362 |
+
)
|
363 |
+
|
364 |
+
@staticmethod
|
365 |
+
def attention_mask_func(attention_scores, attention_mask):
|
366 |
+
attention_scores.masked_fill_(attention_mask, -10000.0)
|
367 |
+
return attention_scores
|
368 |
+
|
369 |
+
def split_tensor_along_last_dim(self, tensor, num_partitions,
|
370 |
+
contiguous_split_chunks=False):
|
371 |
+
"""Split a tensor along its last dimension.
|
372 |
+
Arguments:
|
373 |
+
tensor: input tensor.
|
374 |
+
num_partitions: number of partitions to split the tensor
|
375 |
+
contiguous_split_chunks: If True, make each chunk contiguous
|
376 |
+
in memory.
|
377 |
+
"""
|
378 |
+
# Get the size and dimension.
|
379 |
+
last_dim = tensor.dim() - 1
|
380 |
+
last_dim_size = tensor.size()[last_dim] // num_partitions
|
381 |
+
# Split.
|
382 |
+
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
|
383 |
+
# Note: torch.split does not create contiguous tensors by default.
|
384 |
+
if contiguous_split_chunks:
|
385 |
+
return tuple(chunk.contiguous() for chunk in tensor_list)
|
386 |
+
|
387 |
+
return tensor_list
|
388 |
+
|
389 |
+
def forward(
|
390 |
+
self,
|
391 |
+
hidden_states: torch.Tensor,
|
392 |
+
position_ids,
|
393 |
+
attention_mask: torch.Tensor,
|
394 |
+
layer_id,
|
395 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
396 |
+
use_cache: bool = False,
|
397 |
+
output_attentions: bool = False,
|
398 |
+
):
|
399 |
+
"""
|
400 |
+
hidden_states: [seq_len, batch, hidden_size]
|
401 |
+
attention_mask: [(1, 1), seq_len, seq_len]
|
402 |
+
"""
|
403 |
+
|
404 |
+
# [seq_len, batch, 3 * hidden_size]
|
405 |
+
mixed_raw_layer = self.query_key_value(hidden_states)
|
406 |
+
|
407 |
+
# [seq_len, batch, 3 * hidden_size] --> [seq_len, batch, num_attention_heads, 3 * hidden_size_per_attention_head]
|
408 |
+
new_tensor_shape = mixed_raw_layer.size()[:-1] + (
|
409 |
+
self.num_attention_heads_per_partition,
|
410 |
+
3 * self.hidden_size_per_attention_head,
|
411 |
+
)
|
412 |
+
mixed_raw_layer = mixed_raw_layer.view(*new_tensor_shape)
|
413 |
+
|
414 |
+
# [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
|
415 |
+
(query_layer, key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_raw_layer, 3)
|
416 |
+
|
417 |
+
if self.position_encoding_2d:
|
418 |
+
q1, q2 = query_layer.chunk(2, dim=(query_layer.ndim - 1))
|
419 |
+
k1, k2 = key_layer.chunk(2, dim=(key_layer.ndim - 1))
|
420 |
+
cos, sin = self.rotary_emb(q1, seq_len=position_ids.max() + 1)
|
421 |
+
position_ids, block_position_ids = position_ids[:, 0, :].transpose(0, 1).contiguous(), \
|
422 |
+
position_ids[:, 1, :].transpose(0, 1).contiguous()
|
423 |
+
q1, k1 = apply_rotary_pos_emb_index(q1, k1, cos, sin, position_ids)
|
424 |
+
q2, k2 = apply_rotary_pos_emb_index(q2, k2, cos, sin, block_position_ids)
|
425 |
+
query_layer = torch.concat([q1, q2], dim=(q1.ndim - 1))
|
426 |
+
key_layer = torch.concat([k1, k2], dim=(k1.ndim - 1))
|
427 |
+
else:
|
428 |
+
position_ids = position_ids.transpose(0, 1)
|
429 |
+
cos, sin = self.rotary_emb(value_layer, seq_len=position_ids.max() + 1)
|
430 |
+
# [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
|
431 |
+
query_layer, key_layer = apply_rotary_pos_emb_index(query_layer, key_layer, cos, sin, position_ids)
|
432 |
+
|
433 |
+
# [seq_len, batch, hidden_size]
|
434 |
+
context_layer, present, attention_probs = attention_fn(
|
435 |
+
self=self,
|
436 |
+
query_layer=query_layer,
|
437 |
+
key_layer=key_layer,
|
438 |
+
value_layer=value_layer,
|
439 |
+
attention_mask=attention_mask,
|
440 |
+
hidden_size_per_partition=self.hidden_size_per_partition,
|
441 |
+
layer_id=layer_id,
|
442 |
+
layer_past=layer_past,
|
443 |
+
use_cache=use_cache
|
444 |
+
)
|
445 |
+
|
446 |
+
output = self.dense(context_layer)
|
447 |
+
|
448 |
+
outputs = (output, present)
|
449 |
+
|
450 |
+
if output_attentions:
|
451 |
+
outputs += (attention_probs,)
|
452 |
+
|
453 |
+
return outputs # output, present, attention_probs
|
454 |
+
|
455 |
+
|
456 |
+
class GEGLU(torch.nn.Module):
|
457 |
+
def __init__(self):
|
458 |
+
super().__init__()
|
459 |
+
self.activation_fn = F.gelu
|
460 |
+
|
461 |
+
def forward(self, x):
|
462 |
+
# dim=-1 breaks in jit for pt<1.10
|
463 |
+
x1, x2 = x.chunk(2, dim=(x.ndim - 1))
|
464 |
+
return x1 * self.activation_fn(x2)
|
465 |
+
|
466 |
+
|
467 |
+
class GLU(torch.nn.Module):
|
468 |
+
def __init__(self, hidden_size, inner_hidden_size=None,
|
469 |
+
layer_id=None, bias=True, activation_func=gelu, params_dtype=torch.float):
|
470 |
+
super(GLU, self).__init__()
|
471 |
+
self.layer_id = layer_id
|
472 |
+
self.activation_func = activation_func
|
473 |
+
|
474 |
+
# Project to 4h.
|
475 |
+
self.hidden_size = hidden_size
|
476 |
+
if inner_hidden_size is None:
|
477 |
+
inner_hidden_size = 4 * hidden_size
|
478 |
+
self.inner_hidden_size = inner_hidden_size
|
479 |
+
self.dense_h_to_4h = skip_init(
|
480 |
+
torch.nn.Linear,
|
481 |
+
self.hidden_size,
|
482 |
+
self.inner_hidden_size,
|
483 |
+
bias=bias,
|
484 |
+
dtype=params_dtype,
|
485 |
+
)
|
486 |
+
# Project back to h.
|
487 |
+
self.dense_4h_to_h = skip_init(
|
488 |
+
torch.nn.Linear,
|
489 |
+
self.inner_hidden_size,
|
490 |
+
self.hidden_size,
|
491 |
+
bias=bias,
|
492 |
+
dtype=params_dtype,
|
493 |
+
)
|
494 |
+
|
495 |
+
def forward(self, hidden_states):
|
496 |
+
"""
|
497 |
+
hidden_states: [seq_len, batch, hidden_size]
|
498 |
+
"""
|
499 |
+
|
500 |
+
# [seq_len, batch, inner_hidden_size]
|
501 |
+
intermediate_parallel = self.dense_h_to_4h(hidden_states)
|
502 |
+
|
503 |
+
intermediate_parallel = self.activation_func(intermediate_parallel)
|
504 |
+
|
505 |
+
output = self.dense_4h_to_h(intermediate_parallel)
|
506 |
+
|
507 |
+
return output
|
508 |
+
|
509 |
+
|
510 |
+
class GLMBlock(torch.nn.Module):
|
511 |
+
def __init__(
|
512 |
+
self,
|
513 |
+
hidden_size,
|
514 |
+
num_attention_heads,
|
515 |
+
layernorm_epsilon,
|
516 |
+
layer_id,
|
517 |
+
inner_hidden_size=None,
|
518 |
+
hidden_size_per_attention_head=None,
|
519 |
+
layernorm=LayerNorm,
|
520 |
+
use_bias=True,
|
521 |
+
params_dtype=torch.float,
|
522 |
+
num_layers=28,
|
523 |
+
position_encoding_2d=True
|
524 |
+
):
|
525 |
+
super(GLMBlock, self).__init__()
|
526 |
+
# Set output layer initialization if not provided.
|
527 |
+
|
528 |
+
self.layer_id = layer_id
|
529 |
+
|
530 |
+
# Layernorm on the input data.
|
531 |
+
self.input_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
|
532 |
+
|
533 |
+
self.position_encoding_2d = position_encoding_2d
|
534 |
+
|
535 |
+
# Self attention.
|
536 |
+
self.attention = SelfAttention(
|
537 |
+
hidden_size,
|
538 |
+
num_attention_heads,
|
539 |
+
layer_id,
|
540 |
+
hidden_size_per_attention_head=hidden_size_per_attention_head,
|
541 |
+
bias=use_bias,
|
542 |
+
params_dtype=params_dtype,
|
543 |
+
position_encoding_2d=self.position_encoding_2d
|
544 |
+
)
|
545 |
+
|
546 |
+
# Layernorm on the input data.
|
547 |
+
self.post_attention_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
|
548 |
+
|
549 |
+
self.num_layers = num_layers
|
550 |
+
|
551 |
+
# GLU
|
552 |
+
self.mlp = GLU(
|
553 |
+
hidden_size,
|
554 |
+
inner_hidden_size=inner_hidden_size,
|
555 |
+
bias=use_bias,
|
556 |
+
layer_id=layer_id,
|
557 |
+
params_dtype=params_dtype,
|
558 |
+
)
|
559 |
+
|
560 |
+
def forward(
|
561 |
+
self,
|
562 |
+
hidden_states: torch.Tensor,
|
563 |
+
position_ids,
|
564 |
+
attention_mask: torch.Tensor,
|
565 |
+
layer_id,
|
566 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
567 |
+
use_cache: bool = False,
|
568 |
+
output_attentions: bool = False,
|
569 |
+
):
|
570 |
+
"""
|
571 |
+
hidden_states: [seq_len, batch, hidden_size]
|
572 |
+
attention_mask: [(1, 1), seq_len, seq_len]
|
573 |
+
"""
|
574 |
+
|
575 |
+
# Layer norm at the begining of the transformer layer.
|
576 |
+
# [seq_len, batch, hidden_size]
|
577 |
+
attention_input = self.input_layernorm(hidden_states)
|
578 |
+
|
579 |
+
# Self attention.
|
580 |
+
attention_outputs = self.attention(
|
581 |
+
attention_input,
|
582 |
+
position_ids,
|
583 |
+
attention_mask=attention_mask,
|
584 |
+
layer_id=layer_id,
|
585 |
+
layer_past=layer_past,
|
586 |
+
use_cache=use_cache,
|
587 |
+
output_attentions=output_attentions
|
588 |
+
)
|
589 |
+
|
590 |
+
attention_output = attention_outputs[0]
|
591 |
+
|
592 |
+
outputs = attention_outputs[1:]
|
593 |
+
|
594 |
+
# Residual connection.
|
595 |
+
alpha = (2 * self.num_layers) ** 0.5
|
596 |
+
hidden_states = attention_input * alpha + attention_output
|
597 |
+
|
598 |
+
mlp_input = self.post_attention_layernorm(hidden_states)
|
599 |
+
|
600 |
+
# MLP.
|
601 |
+
mlp_output = self.mlp(mlp_input)
|
602 |
+
|
603 |
+
# Second residual connection.
|
604 |
+
output = mlp_input * alpha + mlp_output
|
605 |
+
|
606 |
+
if use_cache:
|
607 |
+
outputs = (output,) + outputs
|
608 |
+
else:
|
609 |
+
outputs = (output,) + outputs[1:]
|
610 |
+
|
611 |
+
return outputs # hidden_states, present, attentions
|
612 |
+
|
613 |
+
|
614 |
+
class ChatGLMPreTrainedModel(PreTrainedModel):
|
615 |
+
"""
|
616 |
+
An abstract class to handle weights initialization and
|
617 |
+
a simple interface for downloading and loading pretrained models.
|
618 |
+
"""
|
619 |
+
|
620 |
+
is_parallelizable = False
|
621 |
+
supports_gradient_checkpointing = False
|
622 |
+
config_class = ChatGLMConfig
|
623 |
+
base_model_prefix = "transformer"
|
624 |
+
_no_split_modules = ["GLM6BBlock"]
|
625 |
+
|
626 |
+
def __init__(self, *inputs, **kwargs):
|
627 |
+
super().__init__(*inputs, **kwargs)
|
628 |
+
|
629 |
+
def _init_weights(self, module: nn.Module):
|
630 |
+
"""Initialize the weights."""
|
631 |
+
return
|
632 |
+
|
633 |
+
|
634 |
+
CHATGLM_6B_START_DOCSTRING = r"""
|
635 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class.
|
636 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
|
637 |
+
usage and behavior.
|
638 |
+
|
639 |
+
Parameters:
|
640 |
+
config ([`~ChatGLM6BConfig`]): Model configuration class with all the parameters of the model.
|
641 |
+
Initializing with a config file does not load the weights associated with the model, only the configuration.
|
642 |
+
Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
643 |
+
"""
|
644 |
+
|
645 |
+
CHATGLM_6B_INPUTS_DOCSTRING = r"""
|
646 |
+
Args:
|
647 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
648 |
+
Indices of input sequence tokens in the vocabulary.
|
649 |
+
|
650 |
+
Indices can be obtained using [`ChatGLM6BTokenizer`].
|
651 |
+
See [`PreTrainedTokenizer.encode`] and
|
652 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
653 |
+
|
654 |
+
[What are input IDs?](../glossary#input-ids)
|
655 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
656 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
657 |
+
|
658 |
+
- 1 for tokens that are **not masked**,
|
659 |
+
- 0 for tokens that are **masked**.
|
660 |
+
|
661 |
+
[What are attention masks?](../glossary#attention-mask)
|
662 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
663 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`:
|
664 |
+
|
665 |
+
- 0 corresponds to a *sentence A* token,
|
666 |
+
- 1 corresponds to a *sentence B* token.
|
667 |
+
|
668 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
669 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
670 |
+
Indices of positions of each input sequence tokens in the position embeddings.
|
671 |
+
Selected in the range `[0, config.max_position_embeddings - 1]`.
|
672 |
+
|
673 |
+
[What are position IDs?](../glossary#position-ids)
|
674 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
675 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
676 |
+
|
677 |
+
- 1 indicates the head is **not masked**,
|
678 |
+
- 0 indicates the head is **masked**.
|
679 |
+
|
680 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
681 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
682 |
+
This is useful if you want more control over how to convert *input_ids* indices into associated vectors
|
683 |
+
than the model's internal embedding lookup matrix.
|
684 |
+
output_attentions (`bool`, *optional*):
|
685 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
686 |
+
tensors for more detail.
|
687 |
+
output_hidden_states (`bool`, *optional*):
|
688 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
689 |
+
more detail.
|
690 |
+
return_dict (`bool`, *optional*):
|
691 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
692 |
+
"""
|
693 |
+
|
694 |
+
|
695 |
+
@add_start_docstrings(
|
696 |
+
"The bare ChatGLM-6B Model transformer outputting raw hidden-states without any specific head on top.",
|
697 |
+
CHATGLM_6B_START_DOCSTRING,
|
698 |
+
)
|
699 |
+
class ChatGLMModel(ChatGLMPreTrainedModel):
|
700 |
+
"""
|
701 |
+
|
702 |
+
The model can behave as an encoder (with only self-attention) as well
|
703 |
+
as a decoder, in which case a layer of cross-attention is added between
|
704 |
+
the self-attention layers, following the architecture described in [Attention is
|
705 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani,
|
706 |
+
Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
707 |
+
|
708 |
+
To behave as an decoder the model needs to be initialized with the
|
709 |
+
`is_decoder` argument of the configuration set to `True`.
|
710 |
+
To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder`
|
711 |
+
argument and `add_cross_attention` set to `True`; an
|
712 |
+
`encoder_hidden_states` is then expected as an input to the forward pass.
|
713 |
+
"""
|
714 |
+
|
715 |
+
def __init__(self, config: ChatGLMConfig):
|
716 |
+
super().__init__(config)
|
717 |
+
|
718 |
+
# recording parameters
|
719 |
+
self.max_sequence_length = config.max_sequence_length
|
720 |
+
self.hidden_size = config.hidden_size
|
721 |
+
self.params_dtype = torch.half
|
722 |
+
self.num_attention_heads = config.num_attention_heads
|
723 |
+
self.vocab_size = config.vocab_size
|
724 |
+
self.num_layers = config.num_layers
|
725 |
+
self.layernorm_epsilon = config.layernorm_epsilon
|
726 |
+
self.inner_hidden_size = config.inner_hidden_size
|
727 |
+
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
|
728 |
+
self.position_encoding_2d = config.position_encoding_2d
|
729 |
+
|
730 |
+
self.word_embeddings = skip_init(
|
731 |
+
torch.nn.Embedding,
|
732 |
+
num_embeddings=self.vocab_size, embedding_dim=self.hidden_size,
|
733 |
+
dtype=self.params_dtype
|
734 |
+
)
|
735 |
+
|
736 |
+
def get_layer(layer_id):
|
737 |
+
return GLMBlock(
|
738 |
+
self.hidden_size,
|
739 |
+
self.num_attention_heads,
|
740 |
+
self.layernorm_epsilon,
|
741 |
+
layer_id,
|
742 |
+
inner_hidden_size=self.inner_hidden_size,
|
743 |
+
hidden_size_per_attention_head=self.hidden_size_per_attention_head,
|
744 |
+
layernorm=LayerNorm,
|
745 |
+
use_bias=True,
|
746 |
+
params_dtype=self.params_dtype,
|
747 |
+
position_encoding_2d=self.position_encoding_2d,
|
748 |
+
)
|
749 |
+
|
750 |
+
self.layers = torch.nn.ModuleList(
|
751 |
+
[get_layer(layer_id) for layer_id in range(self.num_layers)]
|
752 |
+
)
|
753 |
+
|
754 |
+
# Final layer norm before output.
|
755 |
+
self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon)
|
756 |
+
|
757 |
+
def get_input_embeddings(self):
|
758 |
+
return self.word_embeddings
|
759 |
+
|
760 |
+
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
761 |
+
self.word_embeddings = new_embeddings
|
762 |
+
|
763 |
+
def get_masks(self, seq, device):
|
764 |
+
context_length = seq.index(self.config.bos_token_id) + 1
|
765 |
+
|
766 |
+
attention_mask = torch.ones((1, len(seq), len(seq)), device=device)
|
767 |
+
attention_mask.tril_()
|
768 |
+
attention_mask[..., :context_length - 1] = 1
|
769 |
+
attention_mask.unsqueeze_(1)
|
770 |
+
attention_mask = (attention_mask < 0.5).bool()
|
771 |
+
|
772 |
+
return attention_mask
|
773 |
+
|
774 |
+
def get_position_ids(self, seq, mask_position, device, gmask=False):
|
775 |
+
context_length = seq.index(self.config.bos_token_id) + 1
|
776 |
+
if self.position_encoding_2d:
|
777 |
+
seq_length = seq.index(self.config.bos_token_id)
|
778 |
+
position_ids = torch.arange(context_length, dtype=torch.long, device=device)
|
779 |
+
if not gmask:
|
780 |
+
position_ids[seq_length:] = mask_position
|
781 |
+
block_position_ids = torch.cat((
|
782 |
+
torch.zeros(seq_length, dtype=torch.long, device=device),
|
783 |
+
torch.arange(context_length - seq_length, dtype=torch.long, device=device) + 1
|
784 |
+
))
|
785 |
+
position_ids = torch.stack((position_ids, block_position_ids), dim=0)
|
786 |
+
else:
|
787 |
+
position_ids = torch.arange(context_length, dtype=torch.long, device=device)
|
788 |
+
if not gmask:
|
789 |
+
position_ids[context_length - 1:] = mask_position
|
790 |
+
|
791 |
+
position_ids = position_ids.unsqueeze(0)
|
792 |
+
|
793 |
+
return position_ids
|
794 |
+
|
795 |
+
@add_start_docstrings_to_model_forward(CHATGLM_6B_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
796 |
+
@add_code_sample_docstrings(
|
797 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
798 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
799 |
+
config_class=_CONFIG_FOR_DOC,
|
800 |
+
)
|
801 |
+
def forward(
|
802 |
+
self,
|
803 |
+
input_ids: Optional[torch.LongTensor] = None,
|
804 |
+
position_ids: Optional[torch.LongTensor] = None,
|
805 |
+
attention_mask: Optional[torch.Tensor] = None,
|
806 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
807 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
808 |
+
use_cache: Optional[bool] = None,
|
809 |
+
output_attentions: Optional[bool] = None,
|
810 |
+
output_hidden_states: Optional[bool] = None,
|
811 |
+
return_dict: Optional[bool] = None,
|
812 |
+
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPast]:
|
813 |
+
|
814 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
815 |
+
output_hidden_states = (
|
816 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
817 |
+
)
|
818 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
819 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
820 |
+
|
821 |
+
if input_ids is not None and inputs_embeds is not None:
|
822 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
823 |
+
elif input_ids is not None:
|
824 |
+
batch_size, seq_length = input_ids.shape[:2]
|
825 |
+
elif inputs_embeds is not None:
|
826 |
+
batch_size, seq_length, _ = inputs_embeds.shape[:2]
|
827 |
+
else:
|
828 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
829 |
+
|
830 |
+
if past_key_values is None:
|
831 |
+
past_key_values = tuple([None] * len(self.layers))
|
832 |
+
seq = input_ids[0].tolist()
|
833 |
+
|
834 |
+
if attention_mask is None:
|
835 |
+
attention_mask = self.get_masks(
|
836 |
+
seq=seq,
|
837 |
+
device=input_ids.device
|
838 |
+
)
|
839 |
+
|
840 |
+
if position_ids is None:
|
841 |
+
MASK, gMASK = 150000, 150001
|
842 |
+
mask_token = MASK if MASK in input_ids else gMASK
|
843 |
+
use_gmask = False if MASK in input_ids else gMASK
|
844 |
+
|
845 |
+
mask_position = seq.index(mask_token)
|
846 |
+
position_ids = self.get_position_ids(
|
847 |
+
seq=seq,
|
848 |
+
mask_position=mask_position,
|
849 |
+
device=input_ids.device,
|
850 |
+
gmask=use_gmask
|
851 |
+
)
|
852 |
+
|
853 |
+
if inputs_embeds is None:
|
854 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
855 |
+
|
856 |
+
# [seq_len, batch, hidden_size]
|
857 |
+
hidden_states = inputs_embeds.transpose(0, 1)
|
858 |
+
|
859 |
+
presents = () if use_cache else None
|
860 |
+
all_self_attentions = () if output_attentions else None
|
861 |
+
all_hidden_states = () if output_hidden_states else None
|
862 |
+
|
863 |
+
seq_length_with_past = seq_length
|
864 |
+
past_key_values_length = 0
|
865 |
+
if past_key_values[0] is not None:
|
866 |
+
past_key_values_length = past_key_values[0][0].shape[0]
|
867 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
868 |
+
if attention_mask is None:
|
869 |
+
attention_mask = torch.zeros(1, 1, device=input_ids.device).bool()
|
870 |
+
|
871 |
+
else:
|
872 |
+
attention_mask = attention_mask.to(input_ids.device)
|
873 |
+
|
874 |
+
for i, layer in enumerate(self.layers):
|
875 |
+
|
876 |
+
if output_hidden_states:
|
877 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
878 |
+
|
879 |
+
layer_ret = layer(
|
880 |
+
hidden_states,
|
881 |
+
position_ids=position_ids,
|
882 |
+
attention_mask=attention_mask,
|
883 |
+
layer_id=torch.tensor(i),
|
884 |
+
layer_past=past_key_values[i],
|
885 |
+
use_cache=use_cache,
|
886 |
+
output_attentions=output_attentions
|
887 |
+
)
|
888 |
+
|
889 |
+
hidden_states = layer_ret[0]
|
890 |
+
|
891 |
+
if use_cache:
|
892 |
+
presents = presents + (layer_ret[1],)
|
893 |
+
|
894 |
+
if output_attentions:
|
895 |
+
all_self_attentions = all_self_attentions + (layer_ret[2 if use_cache else 1],)
|
896 |
+
|
897 |
+
# Final layer norm.
|
898 |
+
hidden_states = self.final_layernorm(hidden_states)
|
899 |
+
|
900 |
+
if output_hidden_states:
|
901 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
902 |
+
|
903 |
+
if not return_dict:
|
904 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
905 |
+
|
906 |
+
return BaseModelOutputWithPast(
|
907 |
+
last_hidden_state=hidden_states,
|
908 |
+
past_key_values=presents,
|
909 |
+
hidden_states=all_hidden_states,
|
910 |
+
attentions=all_self_attentions,
|
911 |
+
)
|
912 |
+
|
913 |
+
|
914 |
+
class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
915 |
+
def __init__(self, config: ChatGLMConfig):
|
916 |
+
super().__init__(config)
|
917 |
+
|
918 |
+
# self.hidden_size = config.hidden_size
|
919 |
+
# self.params_dtype = torch.half
|
920 |
+
# self.vocab_size = config.vocab_size
|
921 |
+
self.max_sequence_length = config.max_sequence_length
|
922 |
+
|
923 |
+
self.position_encoding_2d = config.position_encoding_2d
|
924 |
+
|
925 |
+
self.transformer = ChatGLMModel(config)
|
926 |
+
|
927 |
+
self.lm_head = skip_init(
|
928 |
+
nn.Linear,
|
929 |
+
config.hidden_size,
|
930 |
+
config.vocab_size,
|
931 |
+
bias=False,
|
932 |
+
dtype=torch.half
|
933 |
+
)
|
934 |
+
|
935 |
+
self.config = config
|
936 |
+
|
937 |
+
self.quantized = False
|
938 |
+
|
939 |
+
if self.config.quantization_bit:
|
940 |
+
self.quantize(self.config.quantization_bit, self.config.quantization_embeddings, use_quantization_cache=True, empty_init=True)
|
941 |
+
|
942 |
+
def get_output_embeddings(self):
|
943 |
+
return self.lm_head
|
944 |
+
|
945 |
+
def set_output_embeddings(self, new_embeddings):
|
946 |
+
self.lm_head = new_embeddings
|
947 |
+
|
948 |
+
def get_masks_and_position_ids(self, seq, mask_position, context_length, device, gmask=False):
|
949 |
+
attention_mask = torch.ones((1, context_length, context_length), device=device)
|
950 |
+
attention_mask.tril_()
|
951 |
+
attention_mask[..., :context_length - 1] = 1
|
952 |
+
attention_mask.unsqueeze_(1)
|
953 |
+
attention_mask = (attention_mask < 0.5).bool()
|
954 |
+
|
955 |
+
if self.position_encoding_2d:
|
956 |
+
seq_length = seq.index(self.config.bos_token_id)
|
957 |
+
position_ids = torch.arange(context_length, dtype=torch.long, device=device)
|
958 |
+
if not gmask:
|
959 |
+
position_ids[seq_length:] = mask_position
|
960 |
+
block_position_ids = torch.cat((
|
961 |
+
torch.zeros(seq_length, dtype=torch.long, device=device),
|
962 |
+
torch.arange(context_length - seq_length, dtype=torch.long, device=device) + 1
|
963 |
+
))
|
964 |
+
position_ids = torch.stack((position_ids, block_position_ids), dim=0)
|
965 |
+
else:
|
966 |
+
position_ids = torch.arange(context_length, dtype=torch.long, device=device)
|
967 |
+
if not gmask:
|
968 |
+
position_ids[context_length - 1:] = mask_position
|
969 |
+
|
970 |
+
position_ids = position_ids.unsqueeze(0)
|
971 |
+
|
972 |
+
return attention_mask, position_ids
|
973 |
+
|
974 |
+
def prepare_inputs_for_generation(
|
975 |
+
self,
|
976 |
+
input_ids: torch.LongTensor,
|
977 |
+
past: Optional[torch.Tensor] = None,
|
978 |
+
past_key_values: Optional[torch.Tensor] = None,
|
979 |
+
attention_mask: Optional[torch.Tensor] = None,
|
980 |
+
**kwargs
|
981 |
+
) -> dict:
|
982 |
+
|
983 |
+
MASK, gMASK = 150000, 150001
|
984 |
+
mask_token = MASK if MASK in input_ids else gMASK
|
985 |
+
use_gmask = False if MASK in input_ids else gMASK
|
986 |
+
seq = input_ids[0].tolist()
|
987 |
+
mask_position = seq.index(mask_token)
|
988 |
+
|
989 |
+
if mask_token not in seq:
|
990 |
+
raise ValueError("You have to add either [MASK] or [gMASK] in your input")
|
991 |
+
|
992 |
+
# only last token for input_ids if past is not None
|
993 |
+
if past is not None or past_key_values is not None:
|
994 |
+
context_length = seq.index(self.config.bos_token_id)
|
995 |
+
last_token = input_ids[:, -1].unsqueeze(-1)
|
996 |
+
if self.position_encoding_2d:
|
997 |
+
position_ids = torch.tensor([[[mask_position], [len(seq) - context_length]]], dtype=torch.long,
|
998 |
+
device=input_ids.device)
|
999 |
+
else:
|
1000 |
+
position_ids = torch.tensor([[mask_position]], dtype=torch.long, device=input_ids.device)
|
1001 |
+
|
1002 |
+
if past is None:
|
1003 |
+
past = past_key_values
|
1004 |
+
return {
|
1005 |
+
"input_ids": last_token,
|
1006 |
+
"past_key_values": past,
|
1007 |
+
"position_ids": position_ids,
|
1008 |
+
}
|
1009 |
+
else:
|
1010 |
+
attention_mask, position_ids = self.get_masks_and_position_ids(
|
1011 |
+
seq=seq,
|
1012 |
+
mask_position=mask_position,
|
1013 |
+
context_length=len(seq),
|
1014 |
+
device=input_ids.device,
|
1015 |
+
gmask=use_gmask
|
1016 |
+
)
|
1017 |
+
|
1018 |
+
return {
|
1019 |
+
"input_ids": input_ids,
|
1020 |
+
"past_key_values": past,
|
1021 |
+
"position_ids": position_ids,
|
1022 |
+
"attention_mask": attention_mask
|
1023 |
+
}
|
1024 |
+
|
1025 |
+
def forward(
|
1026 |
+
self,
|
1027 |
+
input_ids: Optional[torch.Tensor] = None,
|
1028 |
+
position_ids: Optional[torch.Tensor] = None,
|
1029 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1030 |
+
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
1031 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1032 |
+
labels: Optional[torch.Tensor] = None,
|
1033 |
+
use_cache: Optional[bool] = None,
|
1034 |
+
output_attentions: Optional[bool] = None,
|
1035 |
+
output_hidden_states: Optional[bool] = None,
|
1036 |
+
return_dict: Optional[bool] = None,
|
1037 |
+
):
|
1038 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1039 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1040 |
+
|
1041 |
+
transformer_outputs = self.transformer(
|
1042 |
+
input_ids=input_ids,
|
1043 |
+
position_ids=position_ids,
|
1044 |
+
attention_mask=attention_mask,
|
1045 |
+
past_key_values=past_key_values,
|
1046 |
+
inputs_embeds=inputs_embeds,
|
1047 |
+
use_cache=use_cache,
|
1048 |
+
output_attentions=output_attentions,
|
1049 |
+
output_hidden_states=output_hidden_states,
|
1050 |
+
return_dict=return_dict,
|
1051 |
+
)
|
1052 |
+
|
1053 |
+
hidden_states = transformer_outputs[0]
|
1054 |
+
|
1055 |
+
lm_logits = self.lm_head(hidden_states).permute(1, 0, 2).contiguous()
|
1056 |
+
|
1057 |
+
loss = None
|
1058 |
+
if labels is not None:
|
1059 |
+
lm_logits = lm_logits.to(torch.float32)
|
1060 |
+
|
1061 |
+
# Shift so that tokens < n predict n
|
1062 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1063 |
+
shift_labels = labels[..., 1:].contiguous()
|
1064 |
+
# Flatten the tokens
|
1065 |
+
loss_fct = CrossEntropyLoss()
|
1066 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
1067 |
+
|
1068 |
+
lm_logits = lm_logits.to(hidden_states.dtype)
|
1069 |
+
loss = loss.to(hidden_states.dtype)
|
1070 |
+
|
1071 |
+
if not return_dict:
|
1072 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
1073 |
+
return ((loss,) + output) if loss is not None else output
|
1074 |
+
|
1075 |
+
return CausalLMOutputWithPast(
|
1076 |
+
loss=loss,
|
1077 |
+
logits=lm_logits,
|
1078 |
+
past_key_values=transformer_outputs.past_key_values,
|
1079 |
+
hidden_states=transformer_outputs.hidden_states,
|
1080 |
+
attentions=transformer_outputs.attentions,
|
1081 |
+
)
|
1082 |
+
|
1083 |
+
@staticmethod
|
1084 |
+
def _reorder_cache(
|
1085 |
+
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
|
1086 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
1087 |
+
"""
|
1088 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
1089 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
1090 |
+
beam_idx at every generation step.
|
1091 |
+
|
1092 |
+
Output shares the same memory storage as `past`.
|
1093 |
+
"""
|
1094 |
+
return tuple(
|
1095 |
+
(
|
1096 |
+
layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
|
1097 |
+
layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
|
1098 |
+
)
|
1099 |
+
for layer_past in past
|
1100 |
+
)
|
1101 |
+
|
1102 |
+
@torch.no_grad()
|
1103 |
+
def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048, num_beams=1,
|
1104 |
+
do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs):
|
1105 |
+
if history is None:
|
1106 |
+
history = []
|
1107 |
+
if logits_processor is None:
|
1108 |
+
logits_processor = LogitsProcessorList()
|
1109 |
+
logits_processor.append(InvalidScoreLogitsProcessor())
|
1110 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
|
1111 |
+
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
1112 |
+
if not history:
|
1113 |
+
prompt = query
|
1114 |
+
else:
|
1115 |
+
prompt = ""
|
1116 |
+
for i, (old_query, response) in enumerate(history):
|
1117 |
+
prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
|
1118 |
+
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
|
1119 |
+
input_ids = tokenizer([prompt], return_tensors="pt", padding=True)
|
1120 |
+
input_ids = input_ids.to(self.device)
|
1121 |
+
outputs = self.generate(**input_ids, **gen_kwargs)
|
1122 |
+
outputs = outputs.tolist()[0][len(input_ids["input_ids"][0]):]
|
1123 |
+
response = tokenizer.decode(outputs)
|
1124 |
+
response = response.strip()
|
1125 |
+
response = response.replace("[[训练时间]]", "2023年")
|
1126 |
+
history = history + [(query, response)]
|
1127 |
+
return response, history
|
1128 |
+
|
1129 |
+
@torch.no_grad()
|
1130 |
+
def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048,
|
1131 |
+
do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs):
|
1132 |
+
if history is None:
|
1133 |
+
history = []
|
1134 |
+
if logits_processor is None:
|
1135 |
+
logits_processor = LogitsProcessorList()
|
1136 |
+
logits_processor.append(InvalidScoreLogitsProcessor())
|
1137 |
+
gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
|
1138 |
+
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
1139 |
+
if not history:
|
1140 |
+
prompt = query
|
1141 |
+
else:
|
1142 |
+
prompt = ""
|
1143 |
+
for i, (old_query, response) in enumerate(history):
|
1144 |
+
prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
|
1145 |
+
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
|
1146 |
+
input_ids = tokenizer([prompt], return_tensors="pt", padding=True)
|
1147 |
+
input_ids = input_ids.to(self.device)
|
1148 |
+
for outputs in self.stream_generate(**input_ids, **gen_kwargs):
|
1149 |
+
outputs = outputs.tolist()[0][len(input_ids["input_ids"][0]):]
|
1150 |
+
response = tokenizer.decode(outputs)
|
1151 |
+
response = response.strip()
|
1152 |
+
response = response.replace("[[训练时间]]", "2023年")
|
1153 |
+
new_history = history + [(query, response)]
|
1154 |
+
yield response, new_history
|
1155 |
+
|
1156 |
+
@torch.no_grad()
|
1157 |
+
def stream_generate(
|
1158 |
+
self,
|
1159 |
+
input_ids,
|
1160 |
+
generation_config: Optional[GenerationConfig] = None,
|
1161 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
1162 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
1163 |
+
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
1164 |
+
**kwargs,
|
1165 |
+
):
|
1166 |
+
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
|
1167 |
+
|
1168 |
+
if generation_config is None:
|
1169 |
+
generation_config = self.generation_config
|
1170 |
+
generation_config = copy.deepcopy(generation_config)
|
1171 |
+
model_kwargs = generation_config.update(**kwargs)
|
1172 |
+
bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
|
1173 |
+
|
1174 |
+
if isinstance(eos_token_id, int):
|
1175 |
+
eos_token_id = [eos_token_id]
|
1176 |
+
|
1177 |
+
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
1178 |
+
if has_default_max_length and generation_config.max_new_tokens is None:
|
1179 |
+
warnings.warn(
|
1180 |
+
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
|
1181 |
+
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
|
1182 |
+
" recommend using `max_new_tokens` to control the maximum length of the generation.",
|
1183 |
+
UserWarning,
|
1184 |
+
)
|
1185 |
+
elif generation_config.max_new_tokens is not None:
|
1186 |
+
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
|
1187 |
+
if not has_default_max_length:
|
1188 |
+
logger.warn(
|
1189 |
+
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
1190 |
+
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
1191 |
+
"Please refer to the documentation for more information. "
|
1192 |
+
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
|
1193 |
+
UserWarning,
|
1194 |
+
)
|
1195 |
+
|
1196 |
+
if input_ids_seq_length >= generation_config.max_length:
|
1197 |
+
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
|
1198 |
+
logger.warning(
|
1199 |
+
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
|
1200 |
+
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
1201 |
+
" increasing `max_new_tokens`."
|
1202 |
+
)
|
1203 |
+
|
1204 |
+
# 2. Set generation parameters if not already defined
|
1205 |
+
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
1206 |
+
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
1207 |
+
|
1208 |
+
logits_processor = self._get_logits_processor(
|
1209 |
+
generation_config=generation_config,
|
1210 |
+
input_ids_seq_length=input_ids_seq_length,
|
1211 |
+
encoder_input_ids=input_ids,
|
1212 |
+
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
1213 |
+
logits_processor=logits_processor,
|
1214 |
+
)
|
1215 |
+
|
1216 |
+
stopping_criteria = self._get_stopping_criteria(
|
1217 |
+
generation_config=generation_config, stopping_criteria=stopping_criteria
|
1218 |
+
)
|
1219 |
+
logits_warper = self._get_logits_warper(generation_config)
|
1220 |
+
|
1221 |
+
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
|
1222 |
+
scores = None
|
1223 |
+
while True:
|
1224 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
1225 |
+
# forward pass to get next token
|
1226 |
+
outputs = self(
|
1227 |
+
**model_inputs,
|
1228 |
+
return_dict=True,
|
1229 |
+
output_attentions=False,
|
1230 |
+
output_hidden_states=False,
|
1231 |
+
)
|
1232 |
+
|
1233 |
+
next_token_logits = outputs.logits[:, -1, :]
|
1234 |
+
|
1235 |
+
# pre-process distribution
|
1236 |
+
next_token_scores = logits_processor(input_ids, next_token_logits)
|
1237 |
+
next_token_scores = logits_warper(input_ids, next_token_scores)
|
1238 |
+
|
1239 |
+
# sample
|
1240 |
+
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
1241 |
+
if generation_config.do_sample:
|
1242 |
+
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
1243 |
+
else:
|
1244 |
+
next_tokens = torch.argmax(probs, dim=-1)
|
1245 |
+
|
1246 |
+
# update generated ids, model inputs, and length for next step
|
1247 |
+
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
1248 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
1249 |
+
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
1250 |
+
)
|
1251 |
+
unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long())
|
1252 |
+
|
1253 |
+
# stop when each sentence is finished, or if we exceed the maximum length
|
1254 |
+
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
1255 |
+
break
|
1256 |
+
yield input_ids
|
1257 |
+
|
1258 |
+
def quantize(self, bits: int, quantize_embeddings=False, use_quantization_cache=False, empty_init=False, **kwargs):
|
1259 |
+
if bits == 0:
|
1260 |
+
return
|
1261 |
+
|
1262 |
+
from .quantization import quantize, QuantizedEmbedding, QuantizedLinear, load_cpu_kernel
|
1263 |
+
|
1264 |
+
if self.quantized:
|
1265 |
+
if self.device == torch.device("cpu"):
|
1266 |
+
logger.info("Already quantized, reloading cpu kernel.")
|
1267 |
+
load_cpu_kernel(**kwargs)
|
1268 |
+
else:
|
1269 |
+
logger.info("Already quantized.")
|
1270 |
+
return self
|
1271 |
+
|
1272 |
+
self.quantized = True
|
1273 |
+
|
1274 |
+
self.config.quantization_bit = bits
|
1275 |
+
self.config.quantization_embeddings = quantize_embeddings
|
1276 |
+
|
1277 |
+
self.transformer = quantize(self.transformer, bits, use_quantization_cache=use_quantization_cache, empty_init=empty_init, **kwargs)
|
1278 |
+
|
1279 |
+
if quantize_embeddings:
|
1280 |
+
logger.info("Applying quantization to embeddings")
|
1281 |
+
self.transformer.word_embeddings = QuantizedEmbedding(
|
1282 |
+
weight_bit_width=bits,
|
1283 |
+
weight_tensor=self.transformer.word_embeddings.weight.to(self.device),
|
1284 |
+
num_embeddings=self.transformer.word_embeddings.num_embeddings,
|
1285 |
+
embedding_dim=self.transformer.word_embeddings.embedding_dim,
|
1286 |
+
dtype=torch.half,
|
1287 |
+
device=self.transformer.word_embeddings.weight.device,
|
1288 |
+
)
|
1289 |
+
self.lm_head = QuantizedLinear(
|
1290 |
+
weight_bit_width=bits,
|
1291 |
+
weight_tensor=self.lm_head.weight.to(self.device),
|
1292 |
+
bias_tensor=None,
|
1293 |
+
in_features=self.lm_head.in_features,
|
1294 |
+
out_features=self.lm_head.out_features,
|
1295 |
+
bias=False,
|
1296 |
+
quantized_weight=self.transformer.word_embeddings.weight,
|
1297 |
+
quantized_weight_scale=self.transformer.word_embeddings.weight_scale,
|
1298 |
+
dtype=torch.half,
|
1299 |
+
device=self.lm_head.weight.device,
|
1300 |
+
)
|
1301 |
+
|
1302 |
+
return self
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a2ead8dd73140bf69077547bd0274172d2f961c2c905d795c22ba8368a648ee
|
3 |
+
size 4056926537
|
quantization.py
ADDED
@@ -0,0 +1,469 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.nn import Linear, Embedding
|
2 |
+
from torch.nn.parameter import Parameter
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
import os
|
6 |
+
import bz2
|
7 |
+
import torch
|
8 |
+
import base64
|
9 |
+
import ctypes
|
10 |
+
|
11 |
+
from typing import List
|
12 |
+
from functools import partial
|
13 |
+
from cpm_kernels.kernels.base import LazyKernelCModule, KernelFunction, round_up
|
14 |
+
|
15 |
+
|
16 |
+
class W8A16Linear(torch.autograd.Function):
|
17 |
+
@staticmethod
|
18 |
+
def forward(ctx, inp: torch.Tensor, quant_w: torch.Tensor, scale_w: torch.Tensor, weight_bit_width):
|
19 |
+
ctx.inp_shape = inp.size()
|
20 |
+
ctx.weight_shape = quant_w.size()
|
21 |
+
ctx.weight_bit_width = weight_bit_width
|
22 |
+
out_features = quant_w.size(0)
|
23 |
+
inp = inp.contiguous().view(-1, inp.size(-1))
|
24 |
+
weight = extract_weight_to_half(quant_w, scale_w, weight_bit_width)
|
25 |
+
output = inp.mm(weight.t())
|
26 |
+
ctx.save_for_backward(inp, quant_w, scale_w)
|
27 |
+
return output.view(*(ctx.inp_shape[:-1] + (out_features,)))
|
28 |
+
|
29 |
+
@staticmethod
|
30 |
+
def backward(ctx, grad_output: torch.Tensor):
|
31 |
+
inp, quant_w, scale_w = ctx.saved_tensors
|
32 |
+
weight = extract_weight_to_half(quant_w, scale_w, ctx.weight_bit_width)
|
33 |
+
grad_output = grad_output.contiguous().view(-1, weight.size(0))
|
34 |
+
grad_input = grad_output.mm(weight)
|
35 |
+
grad_weight = grad_output.t().mm(inp)
|
36 |
+
return grad_input.view(ctx.inp_shape), grad_weight.view(ctx.weight_shape), None
|
37 |
+
|
38 |
+
|
39 |
+
class W8A16LinearCPU(torch.autograd.Function):
|
40 |
+
@staticmethod
|
41 |
+
def forward(ctx, inp: torch.Tensor, quant_w: torch.Tensor, scale_w: torch.Tensor, weight_bit_width, quantization_cache=None):
|
42 |
+
ctx.inp_shape = inp.size()
|
43 |
+
ctx.weight_shape = quant_w.size()
|
44 |
+
ctx.weight_bit_width = weight_bit_width
|
45 |
+
out_features = quant_w.size(0)
|
46 |
+
inp = inp.contiguous().view(-1, inp.size(-1))
|
47 |
+
weight = extract_weight_to_float(quant_w, scale_w, weight_bit_width, quantization_cache=quantization_cache)
|
48 |
+
output = inp.mm(weight.t())
|
49 |
+
ctx.save_for_backward(inp, quant_w, scale_w)
|
50 |
+
return output.view(*(ctx.inp_shape[:-1] + (out_features,)))
|
51 |
+
|
52 |
+
@staticmethod
|
53 |
+
def backward(ctx, grad_output: torch.Tensor):
|
54 |
+
inp, quant_w, scale_w = ctx.saved_tensors
|
55 |
+
weight = extract_weight_to_float(quant_w, scale_w, ctx.weight_bit_width)
|
56 |
+
grad_output = grad_output.contiguous().view(-1, weight.size(0))
|
57 |
+
grad_input = grad_output.mm(weight)
|
58 |
+
grad_weight = grad_output.t().mm(inp)
|
59 |
+
return grad_input.view(ctx.inp_shape), grad_weight.view(ctx.weight_shape), None
|
60 |
+
|
61 |
+
|
62 |
+
class Kernel:
|
63 |
+
def __init__(self, code: bytes, function_names: List[str]):
|
64 |
+
self.code = code
|
65 |
+
self._function_names = function_names
|
66 |
+
self._cmodule = LazyKernelCModule(self.code)
|
67 |
+
|
68 |
+
for name in self._function_names:
|
69 |
+
setattr(self, name, KernelFunction(self._cmodule, name))
|
70 |
+
|
71 |
+
default_cpu_kernel_code_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "quantization_kernels.c")
|
72 |
+
default_cpu_kernel_code = "QlpoOTFBWSZTWXLbSoQAAgzbgERwQXxmTwAAr/ff3kABt0Q2oRVT0hpo9RtEAAAAyBEiSQ9EGjQGQAAAwANGhowjJoNGmgMEUplMTNSMJ5TQaDJpsoMyRMj8P4mZzFSVVwqSXG8GG7MlVwiToYEQwVD7noBxMhNfkeZYtYFtbgOBUSIGtIQjhNHCEnPJsadhb3yBmRIOD3TeAtNLSaU5GgvKUBWSNuuOIHmVt0YhW6rsmDMDUjeUJGJ64R1Jm5lrh0Aa0tKjhFwPdWcGogxLDSXPWQUWTM8Sd3Qz1HMYNxx3HMeiNqNo4jeRDEfZ3gUSHIcU/heomq0vEzL1Msz5KKGxH8FrNOYw3KaxdqaEmNHYMxJFgQbR0DyRknL2L4kwUSxKRdhjRpEtUqilVfggFL1klaMS3PPRDfNqbBOPWO7m4JTVGhS9QTBDDJaEbLbrUQNB+IpJSKQbG5SZZ5gkwJEhJ3aYKJipZ/i7kinChIOW2lQg"
|
73 |
+
default_cpu_parallel_kernel_code_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "quantization_kernels_parallel.c")
|
74 |
+
default_cpu_parallel_kernel_code = "QlpoOTFBWSZTWZzWK2UAALXbgERwSX1mTwAAr/ff3kACNyXSbZYwBpoaNGIyAaADQwRRFT/UKDINANqAD1NABFQlPUzaaJHppGRmoAG01ARKKaaMp4gmgaNAaDQDIKVKfZ/g6v1Kem5ZsWZmZtSXS5ZwRAzKmjr1E1lKMEoQNCPkEYPACgcR5I9w/0k6JrJYHqFuHnChcD7N+DHeOQ0ajF83Tc40jgmQbOB5wt3TEHyTObDBLoxrJGBuJmNbxYZwAoKTjbIcI7GsbuVRERAR8wqwhXQjQOxiHQlgSnHjQjddXERojNmQYJJVoM2xxawMeI9asi6E1rfd7GO8S0S5vacCNGry4F1nyZbcTvSBXEMipuPfM7i0Y8kjirpbxb05jpIQjCGE8DYBNCAZyHz9EoOpDRST/I1aFCNpcjoXgyc3NjVsUvYIaYq7xopYJqcxg2g4qXofm7AaGNTzJSNguOQw4utKcEl0F1UOgI+T1hk5LusbGZ9udC1CiBeGwwFxR/QdbZDndehRPxyGt3Me1DBW45MXIY24ZD30aFNuSEUdu5LWx1sSJWLGgsmqUIFTgWhU0gfxXpzhghr2AYpV3hE06mGk1I2JyuZiFgkiz/i7kinChITmsVso"
|
75 |
+
|
76 |
+
|
77 |
+
class CPUKernel:
|
78 |
+
def __init__(self, kernel_file="", source_code=default_cpu_kernel_code_path, compile_parallel_kernel=None, parallel_num=None):
|
79 |
+
self.load =False
|
80 |
+
self.int8WeightExtractionFloat = None
|
81 |
+
self.int4WeightExtractionFloat = None
|
82 |
+
self.int4WeightCompression = None
|
83 |
+
self.SetNumThreads = None
|
84 |
+
|
85 |
+
try:
|
86 |
+
if not os.path.exists(default_cpu_kernel_code_path):
|
87 |
+
with open(default_cpu_kernel_code_path, "w", encoding="utf-8") as file:
|
88 |
+
code = default_cpu_kernel_code
|
89 |
+
cpu_quantization_code = bz2.decompress(base64.b64decode(code)).decode()
|
90 |
+
file.write(cpu_quantization_code)
|
91 |
+
|
92 |
+
if not os.path.exists(default_cpu_parallel_kernel_code_path):
|
93 |
+
with open(default_cpu_parallel_kernel_code_path, "w", encoding="utf-8") as file:
|
94 |
+
code = default_cpu_parallel_kernel_code
|
95 |
+
cpu_quantization_code = bz2.decompress(base64.b64decode(code)).decode()
|
96 |
+
file.write(cpu_quantization_code)
|
97 |
+
|
98 |
+
except Exception as ex:
|
99 |
+
print("Error when generating default cpu kernel code(can be ignored when using custom kernels).")
|
100 |
+
|
101 |
+
if compile_parallel_kernel is None:
|
102 |
+
compile_parallel_kernel = bool(int(os.cpu_count()) >= 4)
|
103 |
+
|
104 |
+
if compile_parallel_kernel and source_code == default_cpu_kernel_code_path:
|
105 |
+
source_code = default_cpu_parallel_kernel_code_path
|
106 |
+
|
107 |
+
if (not kernel_file) or (not os.path.exists(kernel_file)):
|
108 |
+
print("No compiled kernel found.")
|
109 |
+
try:
|
110 |
+
if os.path.exists(source_code):
|
111 |
+
print("Compiling kernels :", source_code)
|
112 |
+
kernel_file = source_code[:-2] + ".so"
|
113 |
+
if compile_parallel_kernel:
|
114 |
+
compile_command = "gcc -O3 -pthread -fopenmp -std=c99 {} -shared -o {}".format(source_code, kernel_file)
|
115 |
+
print("Compiling", compile_command)
|
116 |
+
exit_state = os.system(compile_command)
|
117 |
+
if exit_state:
|
118 |
+
print("Compile failed, using default cpu kernel code.")
|
119 |
+
compile_parallel_kernel = False
|
120 |
+
source_code = default_cpu_kernel_code_path
|
121 |
+
kernel_file = source_code[:-2] + ".so"
|
122 |
+
compile_command = "gcc -O3 -fPIC -std=c99 {} -shared -o {}".format(source_code, kernel_file)
|
123 |
+
print("Compiling", compile_command)
|
124 |
+
else:
|
125 |
+
compile_command = "gcc -O3 -fPIC -std=c99 {} -shared -o {}".format(source_code, kernel_file)
|
126 |
+
print("Compiling", compile_command)
|
127 |
+
exit_state = os.system(compile_command)
|
128 |
+
|
129 |
+
print("Kernels compiled :", kernel_file)
|
130 |
+
else:
|
131 |
+
print("Kernel source code not found.")
|
132 |
+
return
|
133 |
+
except:
|
134 |
+
print("Failed to build kernel.")
|
135 |
+
return
|
136 |
+
if kernel_file:
|
137 |
+
kernels = ctypes.cdll.LoadLibrary(kernel_file)
|
138 |
+
self.int8WeightExtractionFloat = kernels.extract_int8_weight_to_float
|
139 |
+
self.int4WeightExtractionFloat = kernels.extract_int4_weight_to_float
|
140 |
+
self.int4WeightCompression = kernels.compress_int4_weight
|
141 |
+
if compile_parallel_kernel:
|
142 |
+
try:
|
143 |
+
self.SetNumThreads = kernels.set_num_threads
|
144 |
+
except:
|
145 |
+
print("No set_num_threads() found in kernel.")
|
146 |
+
self.SetNumThreads = lambda x: x
|
147 |
+
self.load = True
|
148 |
+
print("Load kernel :", kernel_file)
|
149 |
+
else:
|
150 |
+
print("Failed to load kernel.")
|
151 |
+
|
152 |
+
if compile_parallel_kernel:
|
153 |
+
if parallel_num is None:
|
154 |
+
parallel_num = max(os.cpu_count() // 2, 1)
|
155 |
+
print("Setting CPU quantization kernel threads to", parallel_num)
|
156 |
+
if parallel_num < 4:
|
157 |
+
print("Parallel kernel is not recommended when parallel num < 4.")
|
158 |
+
self.SetNumThreads(parallel_num)
|
159 |
+
|
160 |
+
self.parallel_num = parallel_num
|
161 |
+
|
162 |
+
|
163 |
+
cpu_kernels = None
|
164 |
+
|
165 |
+
quantization_code = "$QlpoOTFBWSZTWU9yuJUAQHN//////////f/n/8/n///n//bt4dTidcVx8X3V9FV/92/v4B7/AD5FBQFAAAChSgKpFCFAFVSigUAAAEKhSgUUqgFBKigqVREQAABQBQIANDTTIGI00BkZBkNGE0A0BkBkGQGRkaNAaAGQNBoGgDIAAYIGTI0DQAQAaGmmQMRpoDIyDIaMJoBoDIDIMgMjI0aA0AMgaDQNAGQAAwQMmRoGgAgA0NNMgYjTQGRkGQ0YTQDQGQGQZAZGRo0BoAZA0GgaAMgABggZMjQNABABoaaZAxGmgMjIMhowmgGgMgMgyAyMjRoDQAyBoNA0AZAADBAyZGgaAAmqU1NEgJqnptU/Sn4jRR6J6epk2pqb1Q/SgAPUGgyNNGjQ2SBpoAZAAGg0NB6mgDIAAAAA2oaApSREBNAARhGiYEaEwU8pvImlP0k2aam1GaGqbFNM1MHpTwmkepmyU9R6nqPKekHqNNPUxNGhp6n6p6QaZ6o9TG1GMqcoV9ly6nRanHlq6zPNbnGZNi6HSug+2nPiZ13XcnFYZW+45W11CumhzYhchOJ2GLLV1OBjBjGf4TptOddTSOcVxhqYZMYwZXZZY00zI1paX5X9J+b+f4e+x43RXSxXPOdquiGpduatGyXneN696M9t4HU2eR5XX/kPhP261NTx3JO1Ow7LyuDmeo9a7d351T1ZxnvnrvYnrXv/hXxPCeuYx2XsNmO003eg9J3Z6U7b23meJ4ri01OdzTk9BNO96brz+qT5nuvvH3ds/G+m/JcG/F2XYuhXlvO+jP7U3XgrzPN/lr8Sf1n6j4j7jZs+s/T0tNaNNYzTs12rxjwztHlnire3Nzc3N1wuBwOBwXBvZfoHpD7rFmR99V5vj3aXza3xdBbXMalubTg/jIv5dfAi54Pdc75j4z412n3Npj3Ld/ENm7a3b/Cod6h/ret1/5vn/C+l+gdslMvgPSLJ8d8q+U66fevYn/tW1chleEtNTGlcHCbLRlq0tHzF5tsbbZZfHjjLgZu42XCuC3NrdjTasZGNzgxPIrGqp7r3p7L2p5XjnpPSmTd5XtzqnB6U87zzg1Ol0zd0zsLszxR6lkxp35u6/teL0L0W922cR7Lu1lpL9CsHirzuM2T+BgsyViT6LHcm0/Vr6U/7LGGyJeqTEjt0PHWhF5mCT7R9mtlDwriYv0Tyr/OxYt6qp5r0mPVT0608TqnqMZaarU2nFwrTzzlrs1ed7z1ux60wyr4ydCaTi3enW8x68x0zU7tXSlcmPSW1mGpWJMg4zmPC2lK96tp0OE80y4MfEvnZj8zGluR6b22ki1Ou9V2nCd9xovcPvcYMZYy0lvN60ScZ45vN6yeCeeXFb1lVjnnCar5fwXwE2bzJ4HI1XVPXfXZMm44GUsMpYsmLB65TuVdm0cl0b+i/wGNN66XjeV7zuPpHcnK/juhhjdfId5jMdE5nN0dGmmm2zZs2cexD5n9p/dY352XsvXHaZNWWsmmS1atjR452nYudzvqv2HMRyvNNnlMcDl3R2+yx2uVrBubTW9icHDVtbNXlZm7jma1rM4VurZZd2y6nUau7ZXZ7bVU+mnoOVxZGMrVmvX60605JwmzGZhhhjTWtaaaMaaGTGmNMZasY0iX8VMUl8eepaIrzGSpemWOQyZORk2bNpjUybMmxqYmknCGCFynutfksaZpjTNMaaatM0xsxcGR0sociNqxNSmhhR1ZJPbsn8qyF0t2qH6iYBclclalbtTTcHTDsPaX6rlnElph2Jyumumtynv2Kk8GI7rsvXbIcJgHJOSaSXnnGaI3m87RtVXJOZ/YtgdTE6Wpha6ZlE8ayXkef1fh602r2WwvfMXtMdLlkfnLFdYYwYso+bWqm7yJqHXZGw2nrS5ZanSYnWlxBxMF1V940K2wdrI7R6OYf7DGGamMmTSbRhlS45xmVOumF1EyPCmHrrN8wwZOOrdNtLeMtzFzDlWnfTBxMk2NaXIZHBYxYLD4w8yju0ao65Vz1OIXoS9dLanwCe1PWrYuWMqf1if1z2k2yYfKJ741PDgno1ZQ8DRqvUny3mNoWTzGO6m1DkrJI8JiR5cSd+vZdGOO8nrMoc5+NDUFsMSXaZJeNlMmGLtJsovOsUp7I9S5VojKxF6bTVEelXqlfJobQr3LozSh2Jk7VcrVMfhXqszGWMzNqGhqZY0OadxkyyMssKugZR0KNFXBHlqwmJgTE/BNVMk6ItJXZMR0H47GpXv/DMOvNkmVuaV1PRfEdxuqc7Hcd+ZV/zTLaRxWk0nl9CdCeM6mn5rstHIBcpiuwmUZXeq81DacHI2rmrZ5SuE5mOZd6LQrZg9mx32TprA8BMo5jKN6yLTCi3WzQaZSuhzTtM1fUTGVpG8Tw+KXI0tjEpiWxtLYynOlktSbVlaI5kxP8TDH8kx50xoxi5KcA4pcja8KWLRlO/Ks6q06ergnvm1ca3Tq8Uw7LTUsmWyctXPWmpitl/uvGcWTGXGuAXDfhqazGmjkxcJW5hMMMMpYsXl2TZYtVOddG3XCarUt6Ptq9CZXSNzyuRzqRZOjsxdBbFVz6OA5HI43r1jityVlVpVkxmOsyaYWE1NTGq1sOVh36mHMcxtSvcy70edG0ZGR3I1Go1GRlV7mWWo1G0ZGRqlvH40l7o4m5xMWLLLYyNjnqc8556mdPqLJ31n/1nWOncxzG1tizrHs/Z+d2vP/B/l8wdJ6rHUn2nbbDq4p6htFtYzMMMTaZis1K5GKzGNmxhmUx2DDlZ/qNnIx41xnaMfCZWYaZWtNLTNW8ND4Fw1MyZOCdM428suKG1ehW8TesOydg7J+YYcD4cYR+8dFK6M4E3HM9ZfRNNL+Sn6rsl4DsrDl2HpPCnfxjGXtbZtYys1ttlyJ4T+BvexjGWRjMszK4Jpc77D3GyuVD7q0+G8m9G+2+rGm7cOR2y7FdtY2XUYx/oNlfRYxhMYyYZkyyg55enna9Kt/FFi6GMMwYwdwxWgxGMLKYmUyGExTKMZkMFhkymKuh0NOBNnBu+23LdwDoZYYzGGMxtORaTU1pjTGWTTGGtMrNWUsyyTTLLG1qy2ZjbK2DBllWqxMtBMaYZQmcE7zvvRcTkclUwdkxTaSdyySt/7fpL+T1v516Ji97fwr5JbLu305zMn5+GMTTZ9F+y7ExwmGVfG44yxn3dLv6l5i+Wth1jCrDq21nW9LqvvDzz3Vf3LLH/O/32TJ/erx3bXftO4eF+G956D952K/An4NfvOpjFjExjevP/UmE0fIoZXx6/w6lX/no3D0bLt+ixjieBM6ksRd0yB4Lt2SwYNE+gd1detlZWUnpiZfGfFaK+4PyCa/v18V8X75pe9fLXzp7l3VjF76vWZmHwGz1IZNWT7b8yddJ4q5kyrVdfru6atWc7bVYztL9Jf4GXvT+Y8m9/YsXP6H018a8D4XVOqvfzqeR+6yZOD8dPv0+U7/q5Pl+2dNb0MjzGVH5p6MNQ7cOWvw62U9aHE8DprDek+McLyvDz+te+9Zhq5+YTruufMcWMabqysTmZVWjKPfnK0wyVcrsuhjZRdLkHNvD72b9abriOSGIxiLixMOoalNPXzy+wT/tf+U6HHONfsz+xe8ufHBdQWWGWLA9if0rsnmrxK5LvRZQeWsTCsrmOYy8VteVfuRfcVTtDLItLIsMYxZLdU/DbtSemxF6Z6Zo5WBXE4tFdCyVMMXMTEMZXVlS6Xec2T4e0tHsRcEuWshcJ2YsNF5rUx1E8ifCq6Z+ZP7qdCeu/aTwFd53l16/o0NOw6O3dLavP4Hbi4RdmuDk6DoYaninC0+o4uZjbJ7Rxeu0/FbuFg+q7DVS6fQe0rZ6NDGUNNU6DEqOaLTicKnYZMnBWruljQxoaS3dZhocDge0bSTyOvdAbG5hxe2xji7E/L55xX13wWNDi6HCekcFxfCPGxY0MXC+s7afWaMdDyjyr+o8Rudm/NabOZvdl274zH4f5XK9z6On1Pe/K5TdPAslg77BjuO6Y3eO7GqvOPG/stknp1leyvLL0Z7bl9I4noMvLkzytLhWYzrOZzLXCORe028rORzOg4N/L0HlMOQ3Pgmnbb6KczlabORpu980q37TBqRu0/p3PO6234Bl03Ynuz+9W7gnsEcmvYaYY3aMYY0wx3pYd+ujsXauWdaY5Xkbtl23fPzFHiDB/QMo0yFjBllYxTQYYyxkrwn7JufwJ/PfgJ+C83X69ni6zvXcnyXabv0ncbLwsceS+RNlyN2mnneJtX0ngYO0+e+0+UnA+Wch3ji8hj5an4h+i6XBySU4n+R0roVcbw5yvHrmr4Yw8Y7x6c+9POPYHI5HI5HI5HI5HGXGww4nE4nrVyOR8XeqPEO7PLOiukYa3Novk5hV4cdtYZLI93e+uxff2jRo0aNGjRo0aNG1bVtW1dy3m83m8+tQ5ZzHw3nObwOu8La9Rc1dtkdS8A3eTk823tnktXWlxN6Oixe06zrN70Isd9jiOgZFq9yfkPqP/SLhN2Myl8jDM43bl1nbcb4cO57jlh8Jow6pzXZdL4dyODTuuhu77FyO27DdwdRxmvO+O+3N2+BdqyTwLHVczDVY4UPE4O66/ZO2cx1LFzVdSXtF7G4HMbrauOHRw6c8FdZ5m9fHZHYZXfTlZquyynSyTTKke6vcffSD9pzPA/G7n7jxPmuhc1DHMynPMrGL6AdewYmwu5ko+UUyTwrMv27rPH1v1nGqd87+p6N6LU8k3NEng53xXyHS97+44OSg/sy/hn+Se6yfYNjW0/uTgP+PvWYzLMmjhcLB/gGpri6H83/84eUXWT6T9Hsv7785z/7z4icpW+zfXypuR7rx/gMdZb1/wC678pcs8/2a3mDitGHxl9mfPlll5MafWWqxk/eYuTDgcNMzDGWLWvsuglNxs53GtN6uWpktlW1tZZYcuinMMWmnNnJydze3b2Y1McBxrBkXw799izLMZZYyy0TkbsGM4p03S2uVu5s/XXUdSdec6smVxZYYGpVmT8A+8ajuEyV5FatkvVru2x6uxGXXbH4A+jvgP4GMYy3iPLXzq/6z65+E005ey+cwMZD3fZcqc6xpjTFjQ0P3U+e++cPYmTIwj0nrK5NPTfl3WvpfLtXDcb2HQMudYOxFXQBor4L4T6vrOauFctYXJQ++NUWmJe5bmx1jDiZS1dTqWxo4GR8jm3fttpmPHppk9PEyv4/y8/sO07XacOmcqc0x2Vi9BvNJvN5oW8x4mOsydpidRxMYJPx06m1bqPzq9KtK8sxXNXFodD/+MYYaJTLwOhc9brCsV18oOR1i4tXChyTkq4lf4y1Ke+9axjDHqs1mfBbMXuP4Hzi+X7t8vzv7bHerrUPgPCxhjre4fXdfLNtNM+Jd+Zdh8xd8wP87uNPoPgv4W7/5P2BuxfsMabNnMnza+54Pdi5U671GPZY8CehX8Voeoo7FHpkeEc6715FwHZrIrUrHaviPUbPZHND+IhczrP6FcYvhOZ0Di/ETt0OI+YwNWR9r7tpf6WDeZKZDB1+z2IthOl1mPyb5FluvEx9h9d0NnM0Y1XPFkWIsk1WotJ0PBMmkvjvQTd0e71tfeV+8r8lQ/tpzpsmxJ+InrI/dj2UajUajVTUajatRqNRtGo1Go1Go4wjeMpZFMVV9CHbofPraLsJ3JpWV2XOoanCuFky4y3PPNxucK2uKC1Lbdb1eo+m5XomN6HfeZsabHLHRX/K+offtNGGmHWctcVcG44MdSqsOLY9VzX+Zxfxn2HPdWTpzWvkrtJ8M5zorrKcquRytJ5N5DZmcaW02l76nWO+BqPXm1A2Ry/0q71dH/mqrqeFjkYxjEXtsX8qubTk67rGycyqsdm4tZx5D6D5hhi0waaWmiaMP81Yjii5qxPlPuU/GfTL1Y5E6Jyfiq63qTa39A4J0sOGDgO9WF9bOXl0XfPRbsY2bPNKPy1YrFYrFYmRhhlTIyMjJWJYZHXuCXI8OoXsvfljGLFicNifpp2XunoPiG1wtx3p1Tah+/DD66OnVtVXP9rKbVxOnL0tR/rHtqB5UDErUVcl11D4qqvjpOcxX7armUNJB3LpW6bxVvD08e8h3odKKvyCFZBdSh2FVcST9xV3n3T8t1j7Kr9qgrqXg+13Pt5U7JCvFXVIV1YG5lRhkVYZJYYDDD4KOIMoHCp26WS8GB7uBh2zIdgq/PKyInjV2STShuoapUdCpX1yTwqq/z1VvET7Kh5nVPkO8YyxjLt2MaaMmWTLQvx3qnzltnXW0p2jxgbEtSny/Osv8Y9pLMXYoHVPAhkVdWVeODhR6q9/Sxe2liwwZWMVvFXfRkeIDxAePUPIrdJ4ey6yquzH+PD/bUOWAu05qVHtFd8rrKHSoeNIOUqrYr3FXyToqfYJgwmJdKpXXOwYYegNNGMzfZPp/t3t/DVs4zjNTN61rRqaWaa4NYbRjTa0tWwy2Y2tGN8ZO8ofNKq4j9SL7I+cSm4/6ovLV5HNXLI0jJidwrtk6ynCaP6Z++GjRlWS3tLeW129Mi9evxU9mtz6s5J3Z7M2ngTgnKvmpomxpaLCzPfmx0JWE+m3NLDDGOX47RctdYYNK5jakdqLkRlI39n590T5zctGSwwZZDJj6kW8XSi6ot2MmWWJ0DUT3nuvebBudScjZ79g8cWJ8av0k+/bE5WKd5MdbFpbDVMxu1DVMmtNZGJvq1mtRbn6M+g/kP0FwDwr7quZs7xosNGpbscyxhhd9TyJyFwbLcxlTasg75vW7TsV5K7ji44XPMMrdoj+Y3rT0Hie62nlYV/pwczzOmdLqLhYkzGMzCZWGMQzGMSsZYY6Di1t4nlJ+Em63mJxrVLxPbYxNEdgc1dU2iOKyoYYWjNrEeHTYybVk0atSa7ehuwsWMWTqn1TrnS6hYsi71d1+s+k+ic70e20fzE/VaTdxT9ZtU4GIXdeNx3X77guYYfpHeTQjaMX6brOu4OY4K7Y2d9mbHarI5ox3p4GpJ2Vd/Tst60f7j999pppjR+Q/Qf8J/VaORs3cji7FfFuN61+ui9s8hix1OCh5KGVV23BPXvZfz3CLyHpix+exi8z/KnCnosY2eunor+cxyPO/xJ0vKey9OvE9VjqaYu0x3Z3jd6o2b1T12D+F8l232lwaaacD5LE8LBxu7WTlbWraWpew8Xexjel3E+wWD4APITdNqR8F3R3T0lunCQ4GaE9R37DxeCYfcHi4xci5ovKfxVs55y2hf+65E/Xdp6jR5nrebTmi5incpkyOjs50JvrZwstbbW6kfuuQw+2mykf/EXNFzxfKTrxew929TR6bWnGL//F3JFOFCQT3K4lQ"
|
166 |
+
|
167 |
+
kernels = Kernel(
|
168 |
+
bz2.decompress(base64.b64decode(quantization_code)),
|
169 |
+
[
|
170 |
+
"int4WeightCompression",
|
171 |
+
"int4WeightExtractionFloat",
|
172 |
+
"int4WeightExtractionHalf",
|
173 |
+
"int8WeightExtractionFloat",
|
174 |
+
"int8WeightExtractionHalf",
|
175 |
+
],
|
176 |
+
)
|
177 |
+
|
178 |
+
|
179 |
+
def compress_int4_weight(weight: torch.Tensor): # (n, m)
|
180 |
+
"""compress weight on cpu or cuda to int4"""
|
181 |
+
if weight.device == torch.device("cpu"):
|
182 |
+
assert isinstance(cpu_kernels, CPUKernel)
|
183 |
+
n, m = weight.size(0), weight.size(1)
|
184 |
+
assert m % 2 == 0
|
185 |
+
m = m // 2
|
186 |
+
out = torch.empty(n, m, dtype=torch.int8, device="cpu")
|
187 |
+
cpu_kernels.int4WeightCompression(
|
188 |
+
ctypes.c_void_p(weight.data_ptr()),
|
189 |
+
ctypes.c_void_p(out.data_ptr()),
|
190 |
+
ctypes.c_int32(n),
|
191 |
+
ctypes.c_int32(m)
|
192 |
+
)
|
193 |
+
return out
|
194 |
+
else:
|
195 |
+
with torch.cuda.device(weight.device):
|
196 |
+
n, m = weight.size(0), weight.size(1)
|
197 |
+
assert m % 2 == 0
|
198 |
+
m = m // 2
|
199 |
+
out = torch.empty(n, m, dtype=torch.int8, device="cuda")
|
200 |
+
stream = torch.cuda.current_stream()
|
201 |
+
|
202 |
+
gridDim = (n, 1, 1)
|
203 |
+
blockDim = (min(round_up(m, 32), 1024), 1, 1)
|
204 |
+
|
205 |
+
kernels.int4WeightCompression(
|
206 |
+
gridDim,
|
207 |
+
blockDim,
|
208 |
+
0,
|
209 |
+
stream,
|
210 |
+
[ctypes.c_void_p(weight.data_ptr()), ctypes.c_void_p(out.data_ptr()), ctypes.c_int32(n), ctypes.c_int32(m)],
|
211 |
+
)
|
212 |
+
return out
|
213 |
+
|
214 |
+
|
215 |
+
def extract_weight_to_half(weight: torch.Tensor, scale_list: torch.Tensor, source_bit_width: int):
|
216 |
+
if source_bit_width == 8:
|
217 |
+
func = kernels.int8WeightExtractionHalf
|
218 |
+
elif source_bit_width == 4:
|
219 |
+
func = kernels.int4WeightExtractionHalf
|
220 |
+
else:
|
221 |
+
assert False, "Unsupported bit-width"
|
222 |
+
|
223 |
+
with torch.cuda.device(weight.device):
|
224 |
+
n, m = weight.size(0), weight.size(1)
|
225 |
+
out = torch.empty(n, m * (8 // source_bit_width), dtype=torch.half, device="cuda")
|
226 |
+
stream = torch.cuda.current_stream()
|
227 |
+
|
228 |
+
gridDim = (n, 1, 1)
|
229 |
+
blockDim = (min(round_up(m, 32), 1024), 1, 1)
|
230 |
+
|
231 |
+
func(
|
232 |
+
gridDim,
|
233 |
+
blockDim,
|
234 |
+
0,
|
235 |
+
stream,
|
236 |
+
[
|
237 |
+
ctypes.c_void_p(weight.data_ptr()),
|
238 |
+
ctypes.c_void_p(scale_list.data_ptr()),
|
239 |
+
ctypes.c_void_p(out.data_ptr()),
|
240 |
+
ctypes.c_int32(n),
|
241 |
+
ctypes.c_int32(m),
|
242 |
+
],
|
243 |
+
)
|
244 |
+
return out
|
245 |
+
|
246 |
+
|
247 |
+
def extract_weight_to_float(weight: torch.Tensor, scale_list: torch.Tensor, source_bit_width: int, quantization_cache=None):
|
248 |
+
"""extract weight on cpu to float32"""
|
249 |
+
if source_bit_width == 8:
|
250 |
+
func = cpu_kernels.int8WeightExtractionFloat
|
251 |
+
elif source_bit_width == 4:
|
252 |
+
func = cpu_kernels.int4WeightExtractionFloat
|
253 |
+
else:
|
254 |
+
assert False, "Unsupported bit-width"
|
255 |
+
|
256 |
+
n, m = weight.size(0), weight.size(1)
|
257 |
+
|
258 |
+
if quantization_cache is not None:
|
259 |
+
out = quantization_cache
|
260 |
+
func(
|
261 |
+
ctypes.c_void_p(weight.data_ptr()),
|
262 |
+
ctypes.c_void_p(scale_list.data_ptr()),
|
263 |
+
ctypes.c_void_p(out.data_ptr()),
|
264 |
+
ctypes.c_int32(n),
|
265 |
+
ctypes.c_int32(m)
|
266 |
+
)
|
267 |
+
return out.tensor
|
268 |
+
else:
|
269 |
+
out = torch.empty(n, m * (8 // source_bit_width), dtype=torch.float, device="cpu")
|
270 |
+
func(
|
271 |
+
ctypes.c_void_p(weight.data_ptr()),
|
272 |
+
ctypes.c_void_p(scale_list.data_ptr()),
|
273 |
+
ctypes.c_void_p(out.data_ptr()),
|
274 |
+
ctypes.c_int32(n),
|
275 |
+
ctypes.c_int32(m)
|
276 |
+
)
|
277 |
+
return out
|
278 |
+
|
279 |
+
|
280 |
+
class CacheTensor():
|
281 |
+
def __init__(self, *args, **kwargs):
|
282 |
+
self.tensor = torch.empty(*args, **kwargs)
|
283 |
+
|
284 |
+
def to(self, *args, **kwargs):
|
285 |
+
self.tensor = self.tensor.to(*args, **kwargs)
|
286 |
+
|
287 |
+
def data_ptr(self):
|
288 |
+
return self.tensor.data_ptr()
|
289 |
+
|
290 |
+
|
291 |
+
class QuantizedLinear(Linear):
|
292 |
+
def __init__(self, weight_bit_width: int, weight_tensor=None, bias_tensor=None, quantized_weight=None, quantized_weight_scale=None, quantization_cache=None, empty_init=False, *args, **kwargs):
|
293 |
+
super(QuantizedLinear, self).__init__(*args, **kwargs)
|
294 |
+
self.weight_bit_width = weight_bit_width
|
295 |
+
self.quantization_cache = quantization_cache
|
296 |
+
|
297 |
+
if (quantized_weight is not None) and (quantized_weight_scale is not None):
|
298 |
+
del self.weight
|
299 |
+
self.weight = Parameter(quantized_weight.to(kwargs["device"]), requires_grad=False)
|
300 |
+
self.weight_scale = Parameter(quantized_weight_scale.to(kwargs["device"]), requires_grad=False)
|
301 |
+
else:
|
302 |
+
shape = self.weight.shape
|
303 |
+
del self.weight
|
304 |
+
|
305 |
+
if weight_tensor is None or empty_init:
|
306 |
+
self.weight = torch.empty(
|
307 |
+
shape[0], shape[1] * weight_bit_width // 8, dtype=torch.int8, device=kwargs["device"]
|
308 |
+
)
|
309 |
+
self.weight_scale = torch.empty(shape[0], dtype=kwargs["dtype"], device=kwargs["device"])
|
310 |
+
else:
|
311 |
+
self.weight_scale = (weight_tensor.abs().max(dim=-1).values / ((2 ** (weight_bit_width - 1)) - 1)).to(kwargs["dtype"])
|
312 |
+
self.weight = torch.round(weight_tensor / self.weight_scale[:, None]).to(torch.int8)
|
313 |
+
if weight_bit_width == 4:
|
314 |
+
self.weight = compress_int4_weight(self.weight)
|
315 |
+
|
316 |
+
self.weight = Parameter(self.weight.to(kwargs["device"]), requires_grad=False)
|
317 |
+
self.weight_scale = Parameter(self.weight_scale.to(kwargs["device"]), requires_grad=False)
|
318 |
+
|
319 |
+
if bias_tensor is not None:
|
320 |
+
self.bias = Parameter(bias_tensor.to(kwargs["device"]), requires_grad=False)
|
321 |
+
else:
|
322 |
+
self.bias = None
|
323 |
+
|
324 |
+
def reset_parameters(self):
|
325 |
+
"""To accelerate initialization"""
|
326 |
+
pass
|
327 |
+
|
328 |
+
def forward(self, input):
|
329 |
+
if self.weight.device == torch.device("cpu"):
|
330 |
+
output = W8A16LinearCPU.apply(input, self.weight, self.weight_scale, self.weight_bit_width, self.quantization_cache)
|
331 |
+
else:
|
332 |
+
output = W8A16Linear.apply(input, self.weight, self.weight_scale, self.weight_bit_width)
|
333 |
+
if self.bias is not None:
|
334 |
+
output = output + self.bias
|
335 |
+
return output
|
336 |
+
|
337 |
+
def _apply(self, fn):
|
338 |
+
self_obj = super()._apply(fn)
|
339 |
+
if self.quantization_cache is not None:
|
340 |
+
self.quantization_cache.to(self_obj.weight.device)
|
341 |
+
self.quantization_cache.to(self_obj.weight_scale.dtype)
|
342 |
+
return self_obj
|
343 |
+
|
344 |
+
|
345 |
+
class QuantizedEmbedding(Embedding): # TODO: backward, check empty_init
|
346 |
+
def __init__(self, weight_bit_width: int, weight_tensor=None, quantized_weight=None, quantized_weight_scale=None, empty_init=False, *args, **kwargs):
|
347 |
+
super(QuantizedEmbedding, self).__init__(*args, **kwargs)
|
348 |
+
self.weight_bit_width = weight_bit_width
|
349 |
+
|
350 |
+
if (quantized_weight is not None) and (quantized_weight_scale is not None):
|
351 |
+
del self.weight
|
352 |
+
self.weight = Parameter(quantized_weight.to(kwargs["device"]), requires_grad=False)
|
353 |
+
self.weight_scale = Parameter(quantized_weight_scale.to(kwargs["device"]), requires_grad=False)
|
354 |
+
else:
|
355 |
+
shape = self.weight.shape
|
356 |
+
del self.weight
|
357 |
+
|
358 |
+
if weight_tensor is None or empty_init:
|
359 |
+
self.weight = torch.empty(
|
360 |
+
shape[0], shape[1] * weight_bit_width // 8, dtype=torch.int8, device=kwargs["device"]
|
361 |
+
)
|
362 |
+
self.weight_scale = torch.empty(shape[0], dtype=kwargs["dtype"], device=kwargs["device"])
|
363 |
+
else:
|
364 |
+
self.weight_scale = (weight_tensor.abs().max(dim=-1).values / ((2 ** (weight_bit_width - 1)) - 1)).half()
|
365 |
+
self.weight = torch.round(weight_tensor / self.weight_scale[:, None]).to(torch.int8)
|
366 |
+
if weight_bit_width == 4:
|
367 |
+
self.weight = compress_int4_weight(self.weight)
|
368 |
+
|
369 |
+
self.weight = Parameter(self.weight.to(kwargs["device"]), requires_grad=False)
|
370 |
+
self.weight_scale = Parameter(self.weight_scale.to(kwargs["device"]), requires_grad=False)
|
371 |
+
|
372 |
+
def forward(self, input):
|
373 |
+
if self.weight.device == torch.device("cpu"):
|
374 |
+
original_weight = extract_weight_to_float(weight=self.weight, scale_list=self.weight_scale, source_bit_width=self.weight_bit_width)
|
375 |
+
else:
|
376 |
+
original_weight = extract_weight_to_half(weight=self.weight, scale_list=self.weight_scale, source_bit_width=self.weight_bit_width)
|
377 |
+
output = F.embedding(
|
378 |
+
input, original_weight, self.padding_idx, self.max_norm,
|
379 |
+
self.norm_type, self.scale_grad_by_freq, self.sparse
|
380 |
+
)
|
381 |
+
return output
|
382 |
+
|
383 |
+
|
384 |
+
def load_cpu_kernel(**kwargs):
|
385 |
+
global cpu_kernels
|
386 |
+
cpu_kernels = CPUKernel(**kwargs)
|
387 |
+
assert cpu_kernels.load
|
388 |
+
|
389 |
+
|
390 |
+
def quantize(model, weight_bit_width, use_quantization_cache=False, empty_init=False, **kwargs):
|
391 |
+
"""Replace fp16 linear with quantized linear"""
|
392 |
+
|
393 |
+
query_key_value_quantization_cache = None
|
394 |
+
dense_quantization_cache = None
|
395 |
+
dense_h_to_4h_quantization_cache = None
|
396 |
+
dense_4h_to_h_quantization_cache = None
|
397 |
+
|
398 |
+
try:
|
399 |
+
load_cpu_kernel(**kwargs)
|
400 |
+
except:
|
401 |
+
print("Cannot load cpu kernel, don't use quantized model on cpu.")
|
402 |
+
|
403 |
+
current_device = model.device
|
404 |
+
|
405 |
+
if model.device == torch.device("cpu"):
|
406 |
+
dtype=torch.float32
|
407 |
+
else:
|
408 |
+
dtype = torch.half
|
409 |
+
|
410 |
+
QuantizedLinearWithPara = partial(
|
411 |
+
QuantizedLinear,
|
412 |
+
weight_bit_width=weight_bit_width,
|
413 |
+
bias=True,
|
414 |
+
dtype=dtype,
|
415 |
+
empty_init=empty_init
|
416 |
+
)
|
417 |
+
|
418 |
+
if use_quantization_cache:
|
419 |
+
print("Using quantization cache")
|
420 |
+
layer = model.layers[0]
|
421 |
+
weight = layer.attention.query_key_value.weight
|
422 |
+
n, m = weight.size(0), weight.size(1)
|
423 |
+
query_key_value_quantization_cache = CacheTensor(n, m, dtype=dtype, device=current_device, requires_grad=False)
|
424 |
+
weight = layer.attention.dense.weight
|
425 |
+
n, m = weight.size(0), weight.size(1)
|
426 |
+
dense_quantization_cache = CacheTensor(n, m, dtype=dtype, device=current_device, requires_grad=False)
|
427 |
+
weight = layer.mlp.dense_h_to_4h.weight
|
428 |
+
n, m = weight.size(0), weight.size(1)
|
429 |
+
dense_h_to_4h_quantization_cache = CacheTensor(n, m, dtype=dtype, device=current_device, requires_grad=False)
|
430 |
+
weight = layer.mlp.dense_4h_to_h.weight
|
431 |
+
n, m = weight.size(0), weight.size(1)
|
432 |
+
dense_4h_to_h_quantization_cache = CacheTensor(n, m, dtype=dtype, device=current_device, requires_grad=False)
|
433 |
+
|
434 |
+
print("Applying quantization to glm layers")
|
435 |
+
|
436 |
+
for layer in model.layers:
|
437 |
+
layer.attention.query_key_value = QuantizedLinearWithPara(
|
438 |
+
weight_tensor=layer.attention.query_key_value.weight.to(current_device),
|
439 |
+
bias_tensor=layer.attention.query_key_value.bias,
|
440 |
+
in_features=layer.attention.query_key_value.in_features,
|
441 |
+
out_features=layer.attention.query_key_value.out_features,
|
442 |
+
device=layer.attention.query_key_value.weight.device,
|
443 |
+
quantization_cache=query_key_value_quantization_cache
|
444 |
+
)
|
445 |
+
layer.attention.dense = QuantizedLinearWithPara(
|
446 |
+
weight_tensor=layer.attention.dense.weight.to(current_device),
|
447 |
+
bias_tensor=layer.attention.dense.bias,
|
448 |
+
in_features=layer.attention.dense.in_features,
|
449 |
+
out_features=layer.attention.dense.out_features,
|
450 |
+
device=layer.attention.dense.weight.device,
|
451 |
+
quantization_cache=dense_quantization_cache
|
452 |
+
)
|
453 |
+
layer.mlp.dense_h_to_4h = QuantizedLinearWithPara(
|
454 |
+
weight_tensor=layer.mlp.dense_h_to_4h.weight.to(current_device),
|
455 |
+
bias_tensor=layer.mlp.dense_h_to_4h.bias,
|
456 |
+
in_features=layer.mlp.dense_h_to_4h.in_features,
|
457 |
+
out_features=layer.mlp.dense_h_to_4h.out_features,
|
458 |
+
device=layer.mlp.dense_h_to_4h.weight.device,
|
459 |
+
quantization_cache=dense_h_to_4h_quantization_cache
|
460 |
+
)
|
461 |
+
layer.mlp.dense_4h_to_h = QuantizedLinearWithPara(
|
462 |
+
weight_tensor=layer.mlp.dense_4h_to_h.weight.to(current_device),
|
463 |
+
bias_tensor=layer.mlp.dense_4h_to_h.bias,
|
464 |
+
in_features=layer.mlp.dense_4h_to_h.in_features,
|
465 |
+
out_features=layer.mlp.dense_4h_to_h.out_features,
|
466 |
+
device=layer.mlp.dense_4h_to_h.weight.device,
|
467 |
+
quantization_cache=dense_4h_to_h_quantization_cache
|
468 |
+
)
|
469 |
+
return model
|