Update README.md
Browse files
README.md
CHANGED
@@ -27,6 +27,16 @@ Or with Conda:
|
|
27 |
conda install -c conda-forge huggingface_hub
|
28 |
```
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
### Speaker Embedding Extraction
|
31 |
|
32 |
Extracting speaker embeddings is easy and only requires a few lines of code:
|
@@ -34,17 +44,28 @@ Extracting speaker embeddings is easy and only requires a few lines of code:
|
|
34 |
```python
|
35 |
import torch
|
36 |
import torchaudio
|
37 |
-
from huggingface_hub import hf_hub_download
|
38 |
|
39 |
-
# automatically checks for cached file
|
40 |
-
model_file = hf_hub_download(repo_id='Jenthe/ECAPA2', filename='model.pt')
|
41 |
-
|
42 |
-
# change map_location to 'cuda' for GPU inference (recommended)
|
43 |
ecapa2_model = torch.jit.load(model_file, map_location='cpu')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
embedding = ecapa2_model(audio)
|
48 |
```
|
49 |
|
50 |
### Hierarchical Feature Extraction
|
|
|
27 |
conda install -c conda-forge huggingface_hub
|
28 |
```
|
29 |
|
30 |
+
Download model:
|
31 |
+
|
32 |
+
```python
|
33 |
+
from huggingface_hub import hf_hub_download
|
34 |
+
|
35 |
+
# automatically checks for cached file
|
36 |
+
model_file = hf_hub_download(repo_id='Jenthe/ECAPA2', filename='model.pt')
|
37 |
+
```
|
38 |
+
|
39 |
+
|
40 |
### Speaker Embedding Extraction
|
41 |
|
42 |
Extracting speaker embeddings is easy and only requires a few lines of code:
|
|
|
44 |
```python
|
45 |
import torch
|
46 |
import torchaudio
|
|
|
47 |
|
|
|
|
|
|
|
|
|
48 |
ecapa2_model = torch.jit.load(model_file, map_location='cpu')
|
49 |
+
audio, sr = torchaudio.load('sample.wav') # sample rate of 16 kHz expected
|
50 |
+
|
51 |
+
with torch.no_grad():
|
52 |
+
embedding = ecapa2_model(audio)
|
53 |
+
```
|
54 |
+
|
55 |
+
For faster, 16-bit half-precision CUDA inference (recommended):
|
56 |
+
|
57 |
+
```python
|
58 |
+
import torch
|
59 |
+
import torchaudio
|
60 |
+
|
61 |
+
ecapa2_model = torch.jit.load(model_file, map_location='cuda')
|
62 |
+
|
63 |
+
ecapa2_model.half() # optional, but results in faster inference
|
64 |
+
|
65 |
+
audio, sr = torchaudio.load('sample.wav') # sample rate of 16 kHz expected
|
66 |
|
67 |
+
with torch.no_grad():
|
68 |
+
embedding = ecapa2_model(audio)
|
|
|
69 |
```
|
70 |
|
71 |
### Hierarchical Feature Extraction
|