Update README.md
Browse files
README.md
CHANGED
@@ -38,18 +38,26 @@ from huggingface_hub import hf_hub_download
|
|
38 |
|
39 |
# automatically checks for cached file
|
40 |
model_file = hf_hub_download(repo_id='Jenthe/ECAPA2', filename='model.pt')
|
41 |
-
|
42 |
|
43 |
# input audio should have a sample rate of 16 kHz
|
44 |
audio, sr = torchaudio.load('sample.wav')
|
45 |
-
embedding =
|
46 |
```
|
47 |
|
48 |
### Hierarchical Feature Extraction
|
49 |
|
50 |
-
For the extraction of other hierachical features, a
|
|
|
51 |
```
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
```
|
54 |
|
55 |
The following table describes the available features:
|
|
|
38 |
|
39 |
# automatically checks for cached file
|
40 |
model_file = hf_hub_download(repo_id='Jenthe/ECAPA2', filename='model.pt')
|
41 |
+
ecapa2_model = torch.jit.load(model_file, map_location='cpu')
|
42 |
|
43 |
# input audio should have a sample rate of 16 kHz
|
44 |
audio, sr = torchaudio.load('sample.wav')
|
45 |
+
embedding = ecapa2_model(audio)
|
46 |
```
|
47 |
|
48 |
### Hierarchical Feature Extraction
|
49 |
|
50 |
+
For the extraction of other hierachical features, the 'label' argument can be used, which accepts a string containing the feature ids separated with '|':
|
51 |
+
|
52 |
```
|
53 |
+
# only extracts embedding, same as previous example
|
54 |
+
feature = ecapa2_model(audio, label='embedding')
|
55 |
+
|
56 |
+
# concatenates the gfe_1, pool and embedding features
|
57 |
+
feature = ecapa2_model(audio, label='gfe_1|pool|embedding')
|
58 |
+
|
59 |
+
# returns the same output as previous example, concatenation always follows the order of the network
|
60 |
+
feature = ecapa2_model(audio, label='embedding|gfe_1|pool')
|
61 |
```
|
62 |
|
63 |
The following table describes the available features:
|