|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""GPTNeoX model configuration""" |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.modeling_rope_utils import rope_config_validation |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class GPTNeoXConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`GPTNeoXModel`]. It is used to instantiate an |
|
GPTNeoX model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the GPTNeoX |
|
[EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 50432): |
|
Vocabulary size of the GPTNeoX model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`GPTNeoXModel`]. |
|
hidden_size (`int`, *optional*, defaults to 6144): |
|
Dimension of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 44): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 64): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 24576): |
|
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` are supported. |
|
rotary_pct (`float`, *optional*, defaults to 0.25): |
|
percentage of hidden dimensions to allocate to rotary embeddings |
|
rotary_emb_base (`int`, *optional*, defaults to 10000) |
|
base for computing rotary embeddings frequency |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio probability of the attention score. |
|
hidden_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio of (1) the word embeddings, (2) the post-attention hidden states, and (3) the post-mlp |
|
hidden states. |
|
classifier_dropout (`float`, *optional*, defaults to 0.1): |
|
Argument used when doing token classification, used in the model [`GPTNeoXForTokenClassification`]. |
|
|
|
The dropout ratio for the hidden layer. |
|
max_position_embeddings (`int`, *optional*, defaults to 2048): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
initializer_range (`float`, *optional*, defaults to 1e-5): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
use_parallel_residual (`bool`, *optional*, defaults to `True`): |
|
Whether to use a "parallel" formulation in each Transformer layer, which can provide a slight training |
|
speedup at large scales (e.g. 20B). |
|
rope_scaling (`Dict`, *optional*): |
|
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type |
|
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value |
|
accordingly. |
|
Expected contents: |
|
`rope_type` (`str`): |
|
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', |
|
'llama3'], with 'default' being the original RoPE implementation. |
|
`factor` (`float`, *optional*): |
|
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In |
|
most scaling types, a `factor` of x will enable the model to handle sequences of length x * |
|
original maximum pre-trained length. |
|
`original_max_position_embeddings` (`int`, *optional*): |
|
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during |
|
pretraining. |
|
`attention_factor` (`float`, *optional*): |
|
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention |
|
computation. If unspecified, it defaults to value recommended by the implementation, using the |
|
`factor` field to infer the suggested value. |
|
`beta_fast` (`float`, *optional*): |
|
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear |
|
ramp function. If unspecified, it defaults to 32. |
|
`beta_slow` (`float`, *optional*): |
|
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear |
|
ramp function. If unspecified, it defaults to 1. |
|
`short_factor` (`List[float]`, *optional*): |
|
Only used with 'longrope'. The scaling factor to be applied to short contexts (< |
|
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden |
|
size divided by the number of attention heads divided by 2 |
|
`long_factor` (`List[float]`, *optional*): |
|
Only used with 'longrope'. The scaling factor to be applied to long contexts (< |
|
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden |
|
size divided by the number of attention heads divided by 2 |
|
`low_freq_factor` (`float`, *optional*): |
|
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE |
|
`high_freq_factor` (`float`, *optional*): |
|
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE |
|
attention_bias (`bool`, *optional*, defaults to `True`): |
|
Whether to use a bias in the query, key, value and output projection layers during self-attention. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import GPTNeoXConfig, GPTNeoXModel |
|
|
|
>>> # Initializing a GPTNeoX gpt-neox-20b style configuration |
|
>>> configuration = GPTNeoXConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the gpt-neox-20b style configuration |
|
>>> model = GPTNeoXModel(configuration) # doctest: +SKIP |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config # doctest: +SKIP |
|
```""" |
|
|
|
model_type = "gpt_neox" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=50432, |
|
hidden_size=6144, |
|
num_hidden_layers=44, |
|
num_attention_heads=64, |
|
intermediate_size=24576, |
|
hidden_act="gelu", |
|
rotary_pct=0.25, |
|
rotary_emb_base=10000, |
|
attention_dropout=0.0, |
|
hidden_dropout=0.0, |
|
classifier_dropout=0.1, |
|
max_position_embeddings=2048, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-5, |
|
use_cache=True, |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
tie_word_embeddings=False, |
|
use_parallel_residual=True, |
|
rope_scaling=None, |
|
attention_bias=True, |
|
**kwargs, |
|
): |
|
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.rotary_pct = rotary_pct |
|
self.partial_rotary_factor = rotary_pct |
|
self.rotary_emb_base = rotary_emb_base |
|
self.rope_theta = rotary_emb_base |
|
self.attention_dropout = attention_dropout |
|
self.hidden_dropout = hidden_dropout |
|
self.classifier_dropout = classifier_dropout |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.use_cache = use_cache |
|
self.tie_word_embeddings = tie_word_embeddings |
|
self.use_parallel_residual = use_parallel_residual |
|
self.rope_scaling = rope_scaling |
|
self.attention_bias = attention_bias |
|
|
|
|
|
if self.rope_scaling is not None and "type" in self.rope_scaling: |
|
self.rope_scaling["rope_type"] = self.rope_scaling["type"] |
|
rope_config_validation(self) |
|
|
|
if self.hidden_size % self.num_attention_heads != 0: |
|
raise ValueError( |
|
"The hidden size is not divisble by the number of attention heads! Make sure to update them!" |
|
) |
|
|