lunar-lander-v2 / config.json
Jean-Baptiste's picture
init
4046241
raw
history blame
14.4 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f09c09bfbe0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f09c09bfc70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f09c09bfd00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f09c09bfd90>", "_build": "<function ActorCriticPolicy._build at 0x7f09c09bfe20>", "forward": "<function ActorCriticPolicy.forward at 0x7f09c09bfeb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f09c09bff40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f09c09c8040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f09c09c80d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f09c09c8160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f09c09c81f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f09c09c8280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f09c09c1fc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682699579554332075, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1Z5bzrOaQ++nLMO+7ElL46Zm281jjEvAAAAAAAAAAApm05Pn0tST414h++X4aCvqBPGTuQRtY8AAAAAAAAAABtaWO+lflVPs0ZzDxxdo++5TNZvWrXmj0AAAAAAAAAAAAbgjyXk58/CIw1PRrj6L4KRzw9bv3+PAAAAAAAAAAAgEBzvfaoV7rkGzQ9zRbUuAVAvLvDgtK3AACAPwAAgD8AqqE9sX+yPzp7Bj+WMii+3kw/PTMjVT4AAAAAAAAAAJoCyb3FMZ4/PhGwvp7zCb+rz7u9xh8+vgAAAAAAAAAA1lGivu42zz77Hc49NUqBvqcSfL3RRTE9AAAAAAAAAAAAmKA8C6ZEP4SaOTvWffW+el9BPShS0LwAAAAAAAAAAJoydr2D5gG8lBgQvelXyrzvYxq8lkZBvQAAgD8AAIA/zT7VPB+ipDy7WAg8VnUevlLwET0TQAs7AAAAAAAAAAAAeO09SZ2oP3Yu8T7gN9q+lRQoPv62HD4AAAAAAAAAAI26qr0Pb24/6vC1vfl+CL+Qg1m93teLvQAAAAAAAAAA4AgdPmzloD6DcmS9/gPCvgtzNz2N+Nq9AAAAAAAAAABG1EK+QbC2vN0knjpkugg5rFYgPhCEz7kAAIA/AACAP2b2mrrh2Jm6TtziOpxVyjXlC/e5igYDugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVVBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIW5avy3Dlb0CUhpRSlIwBbJRL9YwBdJRHQJ+KYNpdrwh1fZQoaAZoCWgPQwiT4A1pVI1vQJSGlFKUaBVL12gWR0CfipyjHn2adX2UKGgGaAloD0MIjiCVYseVcUCUhpRSlGgVS/JoFkdAn/Y6+vhZQ3V9lChoBmgJaA9DCOUOm8hMIW1AlIaUUpRoFU1CAWgWR0Cf9lSuhbnpdX2UKGgGaAloD0MIuf5dn3k+cUCUhpRSlGgVS9xoFkdAn/c1eBxxUHV9lChoBmgJaA9DCMTpJFvdwHBAlIaUUpRoFUv5aBZHQJ/4EaaTfSB1fZQoaAZoCWgPQwh6ibFMv7puQJSGlFKUaBVL2WgWR0Cf+CophF3IdX2UKGgGaAloD0MIms5OBkeeb0CUhpRSlGgVS9xoFkdAn/kxN/OMVHV9lChoBmgJaA9DCBHg9C5ewm9AlIaUUpRoFUvNaBZHQJ/6a4Ds+mp1fZQoaAZoCWgPQwimDvJ6cAlwQJSGlFKUaBVL82gWR0Cf+3w35vcadX2UKGgGaAloD0MIR8uBHurdcUCUhpRSlGgVS/hoFkdAn/5Son8baXV9lChoBmgJaA9DCNIYraMqT2tAlIaUUpRoFU3HA2gWR0Cf//cXm/34dX2UKGgGaAloD0MImKJcGr8lZkCUhpRSlGgVTegDaBZHQKABlV2A5Jd1fZQoaAZoCWgPQwhqpRDIJUFyQJSGlFKUaBVL52gWR0CgA09zGPxQdX2UKGgGaAloD0MIEqPnFjqBcUCUhpRSlGgVTYcBaBZHQKAEZLZi/fx1fZQoaAZoCWgPQwjnjv6XaxljQJSGlFKUaBVN6ANoFkdAoASE0gr6L3V9lChoBmgJaA9DCF4sDJHT1W9AlIaUUpRoFU0DAWgWR0CgBWZbyH2zdX2UKGgGaAloD0MIKXef4yMNbkCUhpRSlGgVTTgBaBZHQKAGiWQfZEl1fZQoaAZoCWgPQwjayeAoea1vQJSGlFKUaBVNYQFoFkdAoAaSfnOjZnV9lChoBmgJaA9DCHnKarpey3BAlIaUUpRoFU0PAWgWR0CgBtYb83uNdX2UKGgGaAloD0MIeR7cnfWycUCUhpRSlGgVS/xoFkdAoAbYG8mKInV9lChoBmgJaA9DCPHVjuJcJXNAlIaUUpRoFU0aAWgWR0CgCRIfCAMEdX2UKGgGaAloD0MIcodNZKbBcUCUhpRSlGgVS/9oFkdAoAokRradtnV9lChoBmgJaA9DCLjKEwi7y3FAlIaUUpRoFU3hAWgWR0CgCk7FsHjZdX2UKGgGaAloD0MIO8Q/bGk3cECUhpRSlGgVS/ZoFkdAoAr9QbdadXV9lChoBmgJaA9DCPEr1nCRMFxAlIaUUpRoFU3oA2gWR0CgCznqu8sddX2UKGgGaAloD0MI61bPSe/pcUCUhpRSlGgVS/JoFkdAoAt5djXnQ3V9lChoBmgJaA9DCCCb5Ef8iXBAlIaUUpRoFU0EAWgWR0CgC+RD1GsndX2UKGgGaAloD0MIUirhCX30ckCUhpRSlGgVS81oFkdAoAwEeCCjDnV9lChoBmgJaA9DCKnaboKvUHBAlIaUUpRoFUvhaBZHQKAMQpEx7At1fZQoaAZoCWgPQwiHqMKfof5wQJSGlFKUaBVNBQFoFkdAoAxXQ8fV7XV9lChoBmgJaA9DCMjrwaS4onBAlIaUUpRoFUvuaBZHQKAMd6AvtdB1fZQoaAZoCWgPQwjvycNCLUZwQJSGlFKUaBVL/WgWR0CgDNoGY8dQdX2UKGgGaAloD0MIrtNIS+WVY0CUhpRSlGgVTegDaBZHQKAOYlXRw611fZQoaAZoCWgPQwjTEcDNYo9xQJSGlFKUaBVNIQFoFkdAoA79v863iXV9lChoBmgJaA9DCBgjEoXWSnFAlIaUUpRoFU0MAWgWR0CgD4fKISDidX2UKGgGaAloD0MINV1PdN0IcECUhpRSlGgVS+loFkdAoA/fL5h0AHV9lChoBmgJaA9DCJY+dEH9L25AlIaUUpRoFUvRaBZHQKAQhjABT4t1fZQoaAZoCWgPQwiXAz3UNpRxQJSGlFKUaBVNGAFoFkdAoBC3DYRNAXV9lChoBmgJaA9DCN/DJccdj29AlIaUUpRoFU0CAWgWR0CgELtk4FRpdX2UKGgGaAloD0MIgGWlSeksckCUhpRSlGgVTUMBaBZHQKAQ8kuYhMd1fZQoaAZoCWgPQwg49YHkHV1yQJSGlFKUaBVL32gWR0CgERX+ERJ3dX2UKGgGaAloD0MIvcPt0DACYUCUhpRSlGgVTegDaBZHQKARZatcOb11fZQoaAZoCWgPQwj5LxAESNBwQJSGlFKUaBVNKgFoFkdAoBIXKW9lE3V9lChoBmgJaA9DCCnrNxPT+25AlIaUUpRoFU0bAWgWR0CgEiTuOS4fdX2UKGgGaAloD0MIWtWSjvJQb0CUhpRSlGgVTdMCaBZHQKASufra/RF1fZQoaAZoCWgPQwgXuaeru6xuQJSGlFKUaBVL9WgWR0CgE5ETHsC1dX2UKGgGaAloD0MIBfnZyHVrcUCUhpRSlGgVS+loFkdAoBPmlEZzgnV9lChoBmgJaA9DCBL27SSiXG1AlIaUUpRoFUvpaBZHQKAUsqdYnv51fZQoaAZoCWgPQwjxm8JKhaZiQJSGlFKUaBVN6ANoFkdAoBVMQ/X5FnV9lChoBmgJaA9DCNjyyvU2oG1AlIaUUpRoFU0qAWgWR0CgFcE8ifQKdX2UKGgGaAloD0MIgGQ6dHpFcUCUhpRSlGgVS/RoFkdAoBXsAHVwxXV9lChoBmgJaA9DCPZ9OEjI9nFAlIaUUpRoFU0IAWgWR0CgFns3IdU9dX2UKGgGaAloD0MI/Ul87gRycUCUhpRSlGgVTSgBaBZHQKAWznOB19x1fZQoaAZoCWgPQwjQe2MIQDJwQJSGlFKUaBVL9GgWR0CgFzYPGyX2dX2UKGgGaAloD0MICAQ6k7ZJbUCUhpRSlGgVTT0BaBZHQKAXRCHARCh1fZQoaAZoCWgPQwhIFcWr7JJxQJSGlFKUaBVNGgFoFkdAoBiuqm0mdHV9lChoBmgJaA9DCDF6bqFrEXJAlIaUUpRoFUvsaBZHQKAY69eyAx11fZQoaAZoCWgPQwhauReYVQhxQJSGlFKUaBVNBgFoFkdAoBksehf0E3V9lChoBmgJaA9DCNBCAkaXK29AlIaUUpRoFUviaBZHQKAaPW8RL9N1fZQoaAZoCWgPQwjo2az6XIJxQJSGlFKUaBVNhAFoFkdAoBpaL61stXV9lChoBmgJaA9DCN2VXTA4NG1AlIaUUpRoFUvtaBZHQKAa+S4e9zx1fZQoaAZoCWgPQwgW+mAZm91vQJSGlFKUaBVNLwFoFkdAoBtb7fpD/nV9lChoBmgJaA9DCL06x4CsQHFAlIaUUpRoFU0GAWgWR0CgG8AOSW7fdX2UKGgGaAloD0MIOiAJ+3YkcECUhpRSlGgVS+VoFkdAoBxU2YOUdXV9lChoBmgJaA9DCIiDhChfGHJAlIaUUpRoFUvsaBZHQKAciYXO4Xp1fZQoaAZoCWgPQwjM7PMY5ZlxQJSGlFKUaBVNEgFoFkdAoBzu+ueSS3V9lChoBmgJaA9DCBpNLsbAmXFAlIaUUpRoFU0tAWgWR0CgHVQbVBlddX2UKGgGaAloD0MIza57K9I0cECUhpRSlGgVS9toFkdAoB5Jle4TbnV9lChoBmgJaA9DCCTVd35Rjm9AlIaUUpRoFU0DAWgWR0CgHz72tdRjdX2UKGgGaAloD0MI93e2R2/qcUCUhpRSlGgVS+9oFkdAoCDkxbjcVXV9lChoBmgJaA9DCBcuq7CZ5WxAlIaUUpRoFUvXaBZHQKAhNPznRsx1fZQoaAZoCWgPQwhjuDoAIihyQJSGlFKUaBVL8GgWR0CgIrj5bhWHdX2UKGgGaAloD0MIzeUGQx1EYkCUhpRSlGgVTegDaBZHQKAjuXyAhB91fZQoaAZoCWgPQwhftTLhF1RvQJSGlFKUaBVNagFoFkdAoCPPPgNwznV9lChoBmgJaA9DCN4f71Wr/XFAlIaUUpRoFU0/AWgWR0CgJCJ5mh/RdX2UKGgGaAloD0MIelORCmPkcECUhpRSlGgVTScBaBZHQKAletDlYEJ1fZQoaAZoCWgPQwiF0axsnxVuQJSGlFKUaBVL9mgWR0CgJabXpW3jdX2UKGgGaAloD0MIhey8jc2AXUCUhpRSlGgVTegDaBZHQKAlsIqslsx1fZQoaAZoCWgPQwgmVHB4gQdyQJSGlFKUaBVNHQFoFkdAoCdG3BpHqnV9lChoBmgJaA9DCM3pspjYT3JAlIaUUpRoFU0bAWgWR0CgKDSdnTRZdX2UKGgGaAloD0MI56vkY3dDcUCUhpRSlGgVS9poFkdAoClKGahHsnV9lChoBmgJaA9DCBRZayg1rnJAlIaUUpRoFU0nAWgWR0CgKbyHdoFndX2UKGgGaAloD0MIXfqXpLIqcECUhpRSlGgVS/NoFkdAoCrKmhufmXV9lChoBmgJaA9DCGQHlbgO6WpAlIaUUpRoFU2vAWgWR0CgKtFv60pmdX2UKGgGaAloD0MIMISc93/fYUCUhpRSlGgVTegDaBZHQKAq/bjcVQB1fZQoaAZoCWgPQwjT2F4Lur9xQJSGlFKUaBVL8GgWR0CgKzl5GBnSdX2UKGgGaAloD0MISWdg5GW8WUCUhpRSlGgVTegDaBZHQKArygpSaVl1fZQoaAZoCWgPQwiEEfsEUBZwQJSGlFKUaBVL7GgWR0CgLBJDeCTVdX2UKGgGaAloD0MItrsH6H54cECUhpRSlGgVTQoBaBZHQKAsxLaEi+t1fZQoaAZoCWgPQwikiuJV1qZyQJSGlFKUaBVNEAFoFkdAoCzclkYoAnV9lChoBmgJaA9DCLbbLjTXk0BAlIaUUpRoFUvFaBZHQKAs85Etuk11fZQoaAZoCWgPQwi0yeGTTqtwQJSGlFKUaBVNTQFoFkdAoC07MaCL/HV9lChoBmgJaA9DCCLDKt4IMXFAlIaUUpRoFU1iAWgWR0CgLW7HAAQydX2UKGgGaAloD0MIZr6Dn/jAcUCUhpRSlGgVTRUBaBZHQKAt5JDmbLF1fZQoaAZoCWgPQwjGFKxxNslvQJSGlFKUaBVL62gWR0CgLguGj9GadX2UKGgGaAloD0MIcJUnEPYWbUCUhpRSlGgVS9JoFkdAoC7c+aBqbnV9lChoBmgJaA9DCMqNImuNY3FAlIaUUpRoFUvYaBZHQKAu9llK9PF1fZQoaAZoCWgPQwiUwOYcPH1yQJSGlFKUaBVNCQFoFkdAoC8DcRDkVHV9lChoBmgJaA9DCHlb6bVZJ3BAlIaUUpRoFU0KAmgWR0CgLzEh7mdRdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}