|
import argparse |
|
import json |
|
import os |
|
import sys |
|
|
|
import torch |
|
import transformers |
|
import torch.distributed as dist |
|
from torch.utils.data.distributed import DistributedSampler |
|
from torch.nn.parallel import DistributedDataParallel |
|
from peft import PeftModel |
|
from torch.utils.data import DataLoader |
|
from tqdm import tqdm |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig |
|
|
|
from utils import * |
|
from collator import TestCollator |
|
from prompt import all_prompt |
|
from evaluate import get_topk_results, get_metrics_results |
|
|
|
|
|
def test_ddp(args): |
|
|
|
set_seed(args.seed) |
|
world_size = int(os.environ.get("WORLD_SIZE", 1)) |
|
local_rank = int(os.environ.get("LOCAL_RANK") or 0) |
|
torch.cuda.set_device(local_rank) |
|
if local_rank == 0: |
|
print(vars(args)) |
|
|
|
dist.init_process_group(backend="nccl", world_size=world_size, rank=local_rank) |
|
|
|
device_map = {"": local_rank} |
|
device = torch.device("cuda",local_rank) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.ckpt_path) |
|
|
|
if args.lora: |
|
model = AutoModelForCausalLM.from_pretrained( |
|
args.base_model, |
|
torch_dtype=torch.bfloat16, |
|
low_cpu_mem_usage=True, |
|
device_map=device_map, |
|
) |
|
model.resize_token_embeddings(len(tokenizer)) |
|
model = PeftModel.from_pretrained( |
|
model, |
|
args.ckpt_path, |
|
torch_dtype=torch.bfloat16, |
|
device_map=device_map, |
|
) |
|
else: |
|
model = AutoModelForCausalLM.from_pretrained( |
|
args.ckpt_path, |
|
torch_dtype=torch.bfloat16, |
|
low_cpu_mem_usage=True, |
|
device_map=device_map, |
|
) |
|
|
|
model = DistributedDataParallel(model, device_ids=[local_rank]) |
|
|
|
if args.test_prompt_ids == "all": |
|
if args.test_task.lower() == "seqrec": |
|
prompt_ids = range(len(all_prompt["seqrec"])) |
|
elif args.test_task.lower() == "itemsearch": |
|
prompt_ids = range(len(all_prompt["itemsearch"])) |
|
elif args.test_task.lower() == "fusionseqrec": |
|
prompt_ids = range(len(all_prompt["fusionseqrec"])) |
|
else: |
|
prompt_ids = [int(_) for _ in args.test_prompt_ids.split(",")] |
|
|
|
test_data = load_test_dataset(args) |
|
ddp_sampler = DistributedSampler(test_data, num_replicas=world_size, rank=local_rank, drop_last=True) |
|
|
|
test_data = load_test_dataset(args) |
|
collator = TestCollator(args, tokenizer) |
|
all_items = test_data.get_all_items() |
|
|
|
|
|
prefix_allowed_tokens = test_data.get_prefix_allowed_tokens_fn(tokenizer) |
|
|
|
|
|
test_loader = DataLoader(test_data, batch_size=args.test_batch_size, collate_fn=collator, |
|
sampler=ddp_sampler, num_workers=2, pin_memory=True) |
|
|
|
if local_rank == 0: |
|
print("data num:", len(test_data)) |
|
|
|
model.eval() |
|
|
|
metrics = args.metrics.split(",") |
|
all_prompt_results = [] |
|
with torch.no_grad(): |
|
|
|
for prompt_id in prompt_ids: |
|
|
|
if local_rank == 0: |
|
print("Start prompt: ",prompt_id) |
|
|
|
test_loader.dataset.set_prompt(prompt_id) |
|
metrics_results = {} |
|
total = 0 |
|
|
|
for step, batch in enumerate(tqdm(test_loader)): |
|
inputs = batch[0].to(device) |
|
targets = batch[1] |
|
bs = len(targets) |
|
num_beams = args.num_beams |
|
while True: |
|
try: |
|
output = model.module.generate( |
|
input_ids=inputs["input_ids"], |
|
attention_mask=inputs["attention_mask"], |
|
max_new_tokens=10, |
|
prefix_allowed_tokens_fn=prefix_allowed_tokens, |
|
num_beams=num_beams, |
|
num_return_sequences=num_beams, |
|
output_scores=True, |
|
return_dict_in_generate=True, |
|
early_stopping=True, |
|
) |
|
break |
|
except torch.cuda.OutOfMemoryError as e: |
|
print("Out of memory!") |
|
num_beams = num_beams -1 |
|
print("Beam:", num_beams) |
|
except Exception: |
|
raise RuntimeError |
|
|
|
output_ids = output["sequences"] |
|
scores = output["sequences_scores"] |
|
|
|
output = tokenizer.batch_decode( |
|
output_ids, skip_special_tokens=True |
|
) |
|
|
|
topk_res = get_topk_results(output, scores, targets, num_beams, |
|
all_items=all_items if args.filter_items else None) |
|
|
|
bs_gather_list = [None for _ in range(world_size)] |
|
dist.all_gather_object(obj=bs, object_list=bs_gather_list) |
|
total += sum(bs_gather_list) |
|
res_gather_list = [None for _ in range(world_size)] |
|
dist.all_gather_object(obj=topk_res, object_list=res_gather_list) |
|
|
|
|
|
if local_rank == 0: |
|
all_device_topk_res = [] |
|
for ga_res in res_gather_list: |
|
all_device_topk_res += ga_res |
|
batch_metrics_res = get_metrics_results(all_device_topk_res, metrics) |
|
for m, res in batch_metrics_res.items(): |
|
if m not in metrics_results: |
|
metrics_results[m] = res |
|
else: |
|
metrics_results[m] += res |
|
|
|
if (step + 1) % 50 == 0: |
|
temp = {} |
|
for m in metrics_results: |
|
temp[m] = metrics_results[m] / total |
|
print(temp) |
|
|
|
dist.barrier() |
|
|
|
if local_rank == 0: |
|
for m in metrics_results: |
|
metrics_results[m] = metrics_results[m] / total |
|
|
|
all_prompt_results.append(metrics_results) |
|
print("======================================================") |
|
print("Prompt {} results: ".format(prompt_id), metrics_results) |
|
print("======================================================") |
|
print("") |
|
|
|
dist.barrier() |
|
|
|
dist.barrier() |
|
|
|
if local_rank == 0: |
|
mean_results = {} |
|
min_results = {} |
|
max_results = {} |
|
|
|
for m in metrics: |
|
all_res = [_[m] for _ in all_prompt_results] |
|
mean_results[m] = sum(all_res)/len(all_res) |
|
min_results[m] = min(all_res) |
|
max_results[m] = max(all_res) |
|
|
|
print("======================================================") |
|
print("Mean results: ", mean_results) |
|
print("Min results: ", min_results) |
|
print("Max results: ", max_results) |
|
print("======================================================") |
|
|
|
|
|
save_data={} |
|
save_data["test_prompt_ids"] = args.test_prompt_ids |
|
save_data["mean_results"] = mean_results |
|
save_data["min_results"] = min_results |
|
save_data["max_results"] = max_results |
|
save_data["all_prompt_results"] = all_prompt_results |
|
|
|
with open(args.results_file, "w") as f: |
|
json.dump(save_data, f, indent=4) |
|
print("Save file: ", args.results_file) |
|
|
|
import smtplib |
|
from email.mime.text import MIMEText |
|
mail_host = 'smtp.qq.com' |
|
mail_code = 'ouzplpngooqndjcb' |
|
sender = '1849334588@qq.com' |
|
receiver = 'esperanto1949@foxmail.com' |
|
|
|
task = '[v67: evaluate lcrec]' |
|
message = MIMEText('Task {task} Finished'.format(task = task), 'plain', 'utf-8') |
|
message['Subject'] = 'Auto Email' |
|
message['From'] = sender |
|
message['To'] = receiver |
|
|
|
server = smtplib.SMTP_SSL("smtp.qq.com", 465) |
|
server.login(sender, mail_code) |
|
server.sendmail(sender, receiver, message.as_string()) |
|
|
|
server.quit() |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="LLMRec_test") |
|
parser = parse_global_args(parser) |
|
parser = parse_dataset_args(parser) |
|
parser = parse_test_args(parser) |
|
|
|
args = parser.parse_args() |
|
|
|
test_ddp(args) |
|
|