|
import argparse |
|
import collections |
|
import gzip |
|
import html |
|
import json |
|
import os |
|
import random |
|
import re |
|
import torch |
|
from tqdm import tqdm |
|
import numpy as np |
|
from utils import check_path, clean_text, amazon18_dataset2fullname,write_json_file,write_remap_index |
|
|
|
def load_ratings(file): |
|
users, items, inters = set(), set(), set() |
|
with open(file, 'r') as fp: |
|
for line in tqdm(fp, desc='Load ratings'): |
|
try: |
|
item, user, rating, time = line.strip().split(',') |
|
users.add(user) |
|
items.add(item) |
|
inters.add((user, item, float(rating), int(time))) |
|
except ValueError: |
|
print(line) |
|
return users, items, inters |
|
|
|
|
|
def load_meta_items(file): |
|
items = {} |
|
|
|
with gzip.open(file, "r") as fp: |
|
for line in tqdm(fp, desc="Load metas"): |
|
data = json.loads(line) |
|
item = data["asin"] |
|
title = clean_text(data["title"]) |
|
|
|
descriptions = data["description"] |
|
descriptions = clean_text(descriptions) |
|
|
|
|
|
|
|
|
|
|
|
|
|
brand = data["brand"].replace("by\n", "").strip() |
|
|
|
categories = data["category"] |
|
new_categories = [] |
|
for category in categories: |
|
if "</span>" in category: |
|
break |
|
new_categories.append(category.strip()) |
|
categories = ",".join(new_categories[1:]).strip() |
|
|
|
items[item] = {"title": title, "description": descriptions, "brand": brand, "categories": categories} |
|
|
|
return items |
|
|
|
|
|
def get_user2count(inters): |
|
user2count = collections.defaultdict(int) |
|
for unit in inters: |
|
user2count[unit[0]] += 1 |
|
return user2count |
|
|
|
|
|
def get_item2count(inters): |
|
item2count = collections.defaultdict(int) |
|
for unit in inters: |
|
item2count[unit[1]] += 1 |
|
return item2count |
|
|
|
|
|
def generate_candidates(unit2count, threshold): |
|
cans = set() |
|
for unit, count in unit2count.items(): |
|
if count >= threshold: |
|
cans.add(unit) |
|
return cans, len(unit2count) - len(cans) |
|
|
|
|
|
def filter_inters(inters, can_items=None, |
|
user_k_core_threshold=0, item_k_core_threshold=0): |
|
new_inters = [] |
|
|
|
|
|
if can_items: |
|
print('\nFiltering by meta items: ') |
|
for unit in inters: |
|
if unit[1] in can_items.keys(): |
|
new_inters.append(unit) |
|
inters, new_inters = new_inters, [] |
|
print(' The number of inters: ', len(inters)) |
|
|
|
|
|
if user_k_core_threshold or item_k_core_threshold: |
|
print('\nFiltering by k-core:') |
|
idx = 0 |
|
user2count = get_user2count(inters) |
|
item2count = get_item2count(inters) |
|
|
|
while True: |
|
new_user2count = collections.defaultdict(int) |
|
new_item2count = collections.defaultdict(int) |
|
users, n_filtered_users = generate_candidates( |
|
user2count, user_k_core_threshold) |
|
items, n_filtered_items = generate_candidates( |
|
item2count, item_k_core_threshold) |
|
if n_filtered_users == 0 and n_filtered_items == 0: |
|
break |
|
for unit in inters: |
|
if unit[0] in users and unit[1] in items: |
|
new_inters.append(unit) |
|
new_user2count[unit[0]] += 1 |
|
new_item2count[unit[1]] += 1 |
|
idx += 1 |
|
inters, new_inters = new_inters, [] |
|
user2count, item2count = new_user2count, new_item2count |
|
print(' Epoch %d The number of inters: %d, users: %d, items: %d' |
|
% (idx, len(inters), len(user2count), len(item2count))) |
|
return inters |
|
|
|
|
|
def make_inters_in_order(inters): |
|
user2inters, new_inters = collections.defaultdict(list), list() |
|
for inter in inters: |
|
user, item, rating, timestamp = inter |
|
user2inters[user].append((user, item, rating, timestamp)) |
|
for user in user2inters: |
|
user_inters = user2inters[user] |
|
user_inters.sort(key=lambda d: d[3]) |
|
interacted_item = set() |
|
for inter in user_inters: |
|
if inter[1] in interacted_item: |
|
continue |
|
interacted_item.add(inter[1]) |
|
new_inters.append(inter) |
|
return new_inters |
|
|
|
|
|
def preprocess_rating(args): |
|
dataset_full_name = amazon18_dataset2fullname[args.dataset] |
|
|
|
print('Process rating data: ') |
|
print(' Dataset: ', args.dataset) |
|
|
|
|
|
rating_file_path = os.path.join(args.input_path, 'Ratings', dataset_full_name + '.csv') |
|
rating_users, rating_items, rating_inters = load_ratings(rating_file_path) |
|
|
|
|
|
meta_file_path = os.path.join(args.input_path, 'Metadata', f'meta_{dataset_full_name}.json.gz') |
|
meta_items = load_meta_items(meta_file_path) |
|
|
|
|
|
|
|
print('The number of raw inters: ', len(rating_inters)) |
|
|
|
rating_inters = make_inters_in_order(rating_inters) |
|
|
|
rating_inters = filter_inters(rating_inters, can_items=meta_items, |
|
user_k_core_threshold=args.user_k, |
|
item_k_core_threshold=args.item_k) |
|
|
|
|
|
rating_inters = make_inters_in_order(rating_inters) |
|
print('\n') |
|
|
|
|
|
return rating_inters, meta_items |
|
|
|
def save_inter(args, inters): |
|
print('Convert dataset: ') |
|
print(' Dataset: ', args.dataset) |
|
|
|
with open(os.path.join(args.output_path, args.dataset, f'{args.dataset}.inter'), 'w') as file: |
|
file.write('user_id:token\titem_id:token\trating:float\ttimestamp:float\n') |
|
for inter in inters: |
|
user, item, rating, timestamp = inter |
|
file.write(f'{user}\t{item}\t{rating}\t{timestamp}\n') |
|
|
|
|
|
def save_feat(args, feat, all_items): |
|
iid_list = list(feat.keys()) |
|
num_item = 0 |
|
with open(os.path.join(args.output_path, args.dataset, f'{args.dataset}.item'), 'w') as file: |
|
|
|
file.write('item_id:token\ttitle:token_seq\tbrand:token\tcategories:token_seq\n') |
|
for iid in iid_list: |
|
if iid in all_items: |
|
num_item += 1 |
|
title, brand, categories = feat[iid]["title"], feat[iid]["brand"], feat[iid]["categories"] |
|
file.write(f'{iid}\t{title}\t{brand}\t{categories}\n') |
|
print("num_item: ", num_item) |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--dataset', type=str, default='Arts', help='Instruments / Arts / Games') |
|
parser.add_argument('--user_k', type=int, default=5, help='user k-core filtering') |
|
parser.add_argument('--item_k', type=int, default=5, help='item k-core filtering') |
|
parser.add_argument('--input_path', type=str, default='') |
|
parser.add_argument('--output_path', type=str, default='') |
|
return parser.parse_args() |
|
|
|
|
|
if __name__ == '__main__': |
|
args = parse_args() |
|
|
|
|
|
rating_inters, meta_items = preprocess_rating(args) |
|
|
|
check_path(os.path.join(args.output_path, args.dataset)) |
|
|
|
|
|
all_items = set() |
|
for inter in rating_inters: |
|
user, item, rating, timestamp = inter |
|
all_items.add(item) |
|
|
|
print("total item: ", len(list(all_items))) |
|
|
|
save_inter(args,rating_inters) |
|
save_feat(args,meta_items, all_items) |
|
|
|
|
|
|