Javiai commited on
Commit
500acb5
·
1 Parent(s): abb55ce

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -4
README.md CHANGED
@@ -9,7 +9,7 @@ pipeline_tag: object-detection
9
 
10
  # 3D Failures detection model based on Yolov5
11
 
12
- This model was created using ```YOLOv5``` in ultralytics Hub with the ```'Javiai/Javiai/failures-3D-print'```dataset.
13
 
14
  The idea is detect some failures in a 3D printing process. This model detect the part that is been printing, the extrusor, some errors and if
15
  there is a spaghetti error type
@@ -38,8 +38,8 @@ model = torch.hub.load('Ultralytics/yolov5', 'custom', model_path, verbose = Fal
38
  ### Prepare an image
39
 
40
  #### From the original dataset
41
- ```python
42
 
 
43
  from datasets import load_dataset
44
 
45
  dataset = load_dataset('Javiai/failures-3D-print')
@@ -50,7 +50,6 @@ image = dataset["train"][0]["image"]
50
  #### From local
51
 
52
  ```python
53
-
54
  from PIL import Image
55
 
56
  image = Image.load("path/to/image")
@@ -60,7 +59,6 @@ image = Image.load("path/to/image")
60
  ### Inference and show the detection
61
 
62
  ```python
63
-
64
  from PIL import ImageDraw
65
 
66
  draw = ImageDraw.Draw(image)
@@ -87,5 +85,9 @@ image
87
 
88
  ```
89
 
 
 
 
 
90
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63c9c08a5fdc575773c7549b/3ZSkBvN0o8sSpQjGxdwJx.png)
91
 
 
9
 
10
  # 3D Failures detection model based on Yolov5
11
 
12
+ This model was created using ```YOLOv5``` in ultralytics Hub with the [```'Javiai/failures-3D-print'```](https://huggingface.co/datasets/Javiai/failures-3D-print) dataset.
13
 
14
  The idea is detect some failures in a 3D printing process. This model detect the part that is been printing, the extrusor, some errors and if
15
  there is a spaghetti error type
 
38
  ### Prepare an image
39
 
40
  #### From the original dataset
 
41
 
42
+ ```python
43
  from datasets import load_dataset
44
 
45
  dataset = load_dataset('Javiai/failures-3D-print')
 
50
  #### From local
51
 
52
  ```python
 
53
  from PIL import Image
54
 
55
  image = Image.load("path/to/image")
 
59
  ### Inference and show the detection
60
 
61
  ```python
 
62
  from PIL import ImageDraw
63
 
64
  draw = ImageDraw.Draw(image)
 
85
 
86
  ```
87
 
88
+
89
+
90
+ ## Example image
91
+
92
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63c9c08a5fdc575773c7549b/3ZSkBvN0o8sSpQjGxdwJx.png)
93