|
import multiprocessing |
|
import pickle |
|
import time |
|
import traceback |
|
|
|
import cv2 |
|
import numpy as np |
|
|
|
from core import mplib |
|
from core.joblib import SubprocessGenerator, ThisThreadGenerator |
|
from facelib import LandmarksProcessor |
|
from samplelib import (SampleGeneratorBase, SampleLoader, SampleProcessor, |
|
SampleType) |
|
|
|
|
|
class SampleGeneratorFaceTemporal(SampleGeneratorBase): |
|
def __init__ (self, samples_path, debug, batch_size, |
|
temporal_image_count=3, |
|
sample_process_options=SampleProcessor.Options(), |
|
output_sample_types=[], |
|
generators_count=2, |
|
**kwargs): |
|
super().__init__(debug, batch_size) |
|
|
|
self.temporal_image_count = temporal_image_count |
|
self.sample_process_options = sample_process_options |
|
self.output_sample_types = output_sample_types |
|
|
|
if self.debug: |
|
self.generators_count = 1 |
|
else: |
|
self.generators_count = generators_count |
|
|
|
samples = SampleLoader.load (SampleType.FACE_TEMPORAL_SORTED, samples_path) |
|
samples_len = len(samples) |
|
if samples_len == 0: |
|
raise ValueError('No training data provided.') |
|
|
|
mult_max = 1 |
|
l = samples_len - ( (self.temporal_image_count)*mult_max - (mult_max-1) ) |
|
index_host = mplib.IndexHost(l+1) |
|
|
|
pickled_samples = pickle.dumps(samples, 4) |
|
if self.debug: |
|
self.generators = [ThisThreadGenerator ( self.batch_func, (pickled_samples, index_host.create_cli(),) )] |
|
else: |
|
self.generators = [SubprocessGenerator ( self.batch_func, (pickled_samples, index_host.create_cli(),) ) for i in range(self.generators_count) ] |
|
|
|
self.generator_counter = -1 |
|
|
|
def __iter__(self): |
|
return self |
|
|
|
def __next__(self): |
|
self.generator_counter += 1 |
|
generator = self.generators[self.generator_counter % len(self.generators) ] |
|
return next(generator) |
|
|
|
def batch_func(self, param): |
|
mult_max = 1 |
|
bs = self.batch_size |
|
pickled_samples, index_host = param |
|
samples = pickle.loads(pickled_samples) |
|
|
|
while True: |
|
batches = None |
|
|
|
indexes = index_host.multi_get(bs) |
|
|
|
for n_batch in range(self.batch_size): |
|
idx = indexes[n_batch] |
|
|
|
temporal_samples = [] |
|
mult = np.random.randint(mult_max)+1 |
|
for i in range( self.temporal_image_count ): |
|
sample = samples[ idx+i*mult ] |
|
try: |
|
temporal_samples += SampleProcessor.process ([sample], self.sample_process_options, self.output_sample_types, self.debug)[0] |
|
except: |
|
raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) ) |
|
|
|
if batches is None: |
|
batches = [ [] for _ in range(len(temporal_samples)) ] |
|
|
|
for i in range(len(temporal_samples)): |
|
batches[i].append ( temporal_samples[i] ) |
|
|
|
yield [ np.array(batch) for batch in batches] |
|
|