|
import collections |
|
import math |
|
from enum import IntEnum |
|
|
|
import cv2 |
|
import numpy as np |
|
|
|
from core import imagelib |
|
from core.cv2ex import * |
|
from core.imagelib import sd |
|
from facelib import FaceType, LandmarksProcessor |
|
|
|
|
|
class SampleProcessor(object): |
|
class SampleType(IntEnum): |
|
NONE = 0 |
|
IMAGE = 1 |
|
FACE_IMAGE = 2 |
|
FACE_MASK = 3 |
|
LANDMARKS_ARRAY = 4 |
|
PITCH_YAW_ROLL = 5 |
|
PITCH_YAW_ROLL_SIGMOID = 6 |
|
|
|
class ChannelType(IntEnum): |
|
NONE = 0 |
|
BGR = 1 |
|
G = 2 |
|
GGG = 3 |
|
|
|
class FaceMaskType(IntEnum): |
|
NONE = 0 |
|
FULL_FACE = 1 |
|
EYES = 2 |
|
EYES_MOUTH = 3 |
|
|
|
class Options(object): |
|
def __init__(self, random_flip = True, rotation_range=[-10,10], scale_range=[-0.05, 0.05], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05] ): |
|
self.random_flip = random_flip |
|
self.rotation_range = rotation_range |
|
self.scale_range = scale_range |
|
self.tx_range = tx_range |
|
self.ty_range = ty_range |
|
|
|
@staticmethod |
|
def process (samples, sample_process_options, output_sample_types, debug, ct_sample=None): |
|
SPST = SampleProcessor.SampleType |
|
SPCT = SampleProcessor.ChannelType |
|
SPFMT = SampleProcessor.FaceMaskType |
|
|
|
|
|
outputs = [] |
|
for sample in samples: |
|
sample_rnd_seed = np.random.randint(0x80000000) |
|
|
|
sample_face_type = sample.face_type |
|
sample_bgr = sample.load_bgr() |
|
sample_landmarks = sample.landmarks |
|
ct_sample_bgr = None |
|
h,w,c = sample_bgr.shape |
|
|
|
def get_full_face_mask(): |
|
xseg_mask = sample.get_xseg_mask() |
|
if xseg_mask is not None: |
|
if xseg_mask.shape[0] != h or xseg_mask.shape[1] != w: |
|
xseg_mask = cv2.resize(xseg_mask, (w,h), interpolation=cv2.INTER_CUBIC) |
|
xseg_mask = imagelib.normalize_channels(xseg_mask, 1) |
|
return np.clip(xseg_mask, 0, 1) |
|
else: |
|
full_face_mask = LandmarksProcessor.get_image_hull_mask (sample_bgr.shape, sample_landmarks, eyebrows_expand_mod=sample.eyebrows_expand_mod ) |
|
return np.clip(full_face_mask, 0, 1) |
|
|
|
def get_eyes_mask(): |
|
eyes_mask = LandmarksProcessor.get_image_eye_mask (sample_bgr.shape, sample_landmarks) |
|
return np.clip(eyes_mask, 0, 1) |
|
|
|
def get_eyes_mouth_mask(): |
|
eyes_mask = LandmarksProcessor.get_image_eye_mask (sample_bgr.shape, sample_landmarks) |
|
mouth_mask = LandmarksProcessor.get_image_mouth_mask (sample_bgr.shape, sample_landmarks) |
|
mask = eyes_mask + mouth_mask |
|
return np.clip(mask, 0, 1) |
|
|
|
is_face_sample = sample_landmarks is not None |
|
|
|
if debug and is_face_sample: |
|
LandmarksProcessor.draw_landmarks (sample_bgr, sample_landmarks, (0, 1, 0)) |
|
|
|
outputs_sample = [] |
|
for opts in output_sample_types: |
|
resolution = opts.get('resolution', 0) |
|
sample_type = opts.get('sample_type', SPST.NONE) |
|
channel_type = opts.get('channel_type', SPCT.NONE) |
|
nearest_resize_to = opts.get('nearest_resize_to', None) |
|
warp = opts.get('warp', False) |
|
transform = opts.get('transform', False) |
|
random_hsv_shift_amount = opts.get('random_hsv_shift_amount', 0) |
|
normalize_tanh = opts.get('normalize_tanh', False) |
|
ct_mode = opts.get('ct_mode', None) |
|
data_format = opts.get('data_format', 'NHWC') |
|
|
|
rnd_seed_shift = opts.get('rnd_seed_shift', 0) |
|
warp_rnd_seed_shift = opts.get('warp_rnd_seed_shift', rnd_seed_shift) |
|
|
|
rnd_state = np.random.RandomState (sample_rnd_seed+rnd_seed_shift) |
|
warp_rnd_state = np.random.RandomState (sample_rnd_seed+warp_rnd_seed_shift) |
|
|
|
warp_params = imagelib.gen_warp_params(resolution, |
|
sample_process_options.random_flip, |
|
rotation_range=sample_process_options.rotation_range, |
|
scale_range=sample_process_options.scale_range, |
|
tx_range=sample_process_options.tx_range, |
|
ty_range=sample_process_options.ty_range, |
|
rnd_state=rnd_state, |
|
warp_rnd_state=warp_rnd_state, |
|
) |
|
|
|
if sample_type == SPST.FACE_MASK or sample_type == SPST.IMAGE: |
|
border_replicate = False |
|
elif sample_type == SPST.FACE_IMAGE: |
|
border_replicate = True |
|
|
|
|
|
border_replicate = opts.get('border_replicate', border_replicate) |
|
borderMode = cv2.BORDER_REPLICATE if border_replicate else cv2.BORDER_CONSTANT |
|
|
|
|
|
if sample_type == SPST.FACE_IMAGE or sample_type == SPST.FACE_MASK: |
|
if not is_face_sample: |
|
raise ValueError("face_samples should be provided for sample_type FACE_*") |
|
|
|
if sample_type == SPST.FACE_IMAGE or sample_type == SPST.FACE_MASK: |
|
face_type = opts.get('face_type', None) |
|
face_mask_type = opts.get('face_mask_type', SPFMT.NONE) |
|
|
|
if face_type is None: |
|
raise ValueError("face_type must be defined for face samples") |
|
|
|
if sample_type == SPST.FACE_MASK: |
|
if face_mask_type == SPFMT.FULL_FACE: |
|
img = get_full_face_mask() |
|
elif face_mask_type == SPFMT.EYES: |
|
img = get_eyes_mask() |
|
elif face_mask_type == SPFMT.EYES_MOUTH: |
|
mask = get_full_face_mask().copy() |
|
mask[mask != 0.0] = 1.0 |
|
img = get_eyes_mouth_mask()*mask |
|
else: |
|
img = np.zeros ( sample_bgr.shape[0:2]+(1,), dtype=np.float32) |
|
|
|
if sample_face_type == FaceType.MARK_ONLY: |
|
raise NotImplementedError() |
|
mat = LandmarksProcessor.get_transform_mat (sample_landmarks, warp_resolution, face_type) |
|
img = cv2.warpAffine( img, mat, (warp_resolution, warp_resolution), flags=cv2.INTER_LINEAR ) |
|
|
|
img = imagelib.warp_by_params (warp_params, img, warp, transform, can_flip=True, border_replicate=border_replicate, cv2_inter=cv2.INTER_LINEAR) |
|
img = cv2.resize( img, (resolution,resolution), interpolation=cv2.INTER_LINEAR ) |
|
else: |
|
if face_type != sample_face_type: |
|
mat = LandmarksProcessor.get_transform_mat (sample_landmarks, resolution, face_type) |
|
img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=borderMode, flags=cv2.INTER_LINEAR ) |
|
else: |
|
if w != resolution: |
|
img = cv2.resize( img, (resolution, resolution), interpolation=cv2.INTER_LINEAR ) |
|
|
|
img = imagelib.warp_by_params (warp_params, img, warp, transform, can_flip=True, border_replicate=border_replicate, cv2_inter=cv2.INTER_LINEAR) |
|
|
|
if face_mask_type == SPFMT.EYES_MOUTH: |
|
div = img.max() |
|
if div != 0.0: |
|
img = img / div |
|
|
|
if len(img.shape) == 2: |
|
img = img[...,None] |
|
|
|
if channel_type == SPCT.G: |
|
out_sample = img.astype(np.float32) |
|
else: |
|
raise ValueError("only channel_type.G supported for the mask") |
|
|
|
elif sample_type == SPST.FACE_IMAGE: |
|
img = sample_bgr |
|
|
|
if face_type != sample_face_type: |
|
mat = LandmarksProcessor.get_transform_mat (sample_landmarks, resolution, face_type) |
|
img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=borderMode, flags=cv2.INTER_CUBIC ) |
|
else: |
|
if w != resolution: |
|
img = cv2.resize( img, (resolution, resolution), interpolation=cv2.INTER_CUBIC ) |
|
|
|
|
|
if ct_mode is not None and ct_sample is not None: |
|
if ct_sample_bgr is None: |
|
ct_sample_bgr = ct_sample.load_bgr() |
|
img = imagelib.color_transfer (ct_mode, img, cv2.resize( ct_sample_bgr, (resolution,resolution), interpolation=cv2.INTER_LINEAR ) ) |
|
|
|
if random_hsv_shift_amount != 0: |
|
a = random_hsv_shift_amount |
|
h_amount = max(1, int(360*a*0.5)) |
|
img_h, img_s, img_v = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) |
|
img_h = (img_h + rnd_state.randint(-h_amount, h_amount+1) ) % 360 |
|
img_s = np.clip (img_s + (rnd_state.random()-0.5)*a, 0, 1 ) |
|
img_v = np.clip (img_v + (rnd_state.random()-0.5)*a, 0, 1 ) |
|
img = np.clip( cv2.cvtColor(cv2.merge([img_h, img_s, img_v]), cv2.COLOR_HSV2BGR) , 0, 1 ) |
|
|
|
img = imagelib.warp_by_params (warp_params, img, warp, transform, can_flip=True, border_replicate=border_replicate) |
|
|
|
img = np.clip(img.astype(np.float32), 0, 1) |
|
|
|
|
|
if channel_type == SPCT.BGR: |
|
out_sample = img |
|
elif channel_type == SPCT.G: |
|
out_sample = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[...,None] |
|
elif channel_type == SPCT.GGG: |
|
out_sample = np.repeat ( np.expand_dims(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY),-1), (3,), -1) |
|
|
|
|
|
if nearest_resize_to is not None: |
|
out_sample = cv2_resize(out_sample, (nearest_resize_to,nearest_resize_to), interpolation=cv2.INTER_NEAREST) |
|
|
|
if not debug: |
|
if normalize_tanh: |
|
out_sample = np.clip (out_sample * 2.0 - 1.0, -1.0, 1.0) |
|
if data_format == "NCHW": |
|
out_sample = np.transpose(out_sample, (2,0,1) ) |
|
elif sample_type == SPST.IMAGE: |
|
img = sample_bgr |
|
img = imagelib.warp_by_params (warp_params, img, warp, transform, can_flip=True, border_replicate=True) |
|
img = cv2.resize( img, (resolution, resolution), interpolation=cv2.INTER_CUBIC ) |
|
out_sample = img |
|
|
|
if data_format == "NCHW": |
|
out_sample = np.transpose(out_sample, (2,0,1) ) |
|
|
|
|
|
elif sample_type == SPST.LANDMARKS_ARRAY: |
|
l = sample_landmarks |
|
l = np.concatenate ( [ np.expand_dims(l[:,0] / w,-1), np.expand_dims(l[:,1] / h,-1) ], -1 ) |
|
l = np.clip(l, 0.0, 1.0) |
|
out_sample = l |
|
elif sample_type == SPST.PITCH_YAW_ROLL or sample_type == SPST.PITCH_YAW_ROLL_SIGMOID: |
|
pitch,yaw,roll = sample.get_pitch_yaw_roll() |
|
if warp_params['flip']: |
|
yaw = -yaw |
|
|
|
if sample_type == SPST.PITCH_YAW_ROLL_SIGMOID: |
|
pitch = np.clip( (pitch / math.pi) / 2.0 + 0.5, 0, 1) |
|
yaw = np.clip( (yaw / math.pi) / 2.0 + 0.5, 0, 1) |
|
roll = np.clip( (roll / math.pi) / 2.0 + 0.5, 0, 1) |
|
|
|
out_sample = (pitch, yaw) |
|
else: |
|
raise ValueError ('expected sample_type') |
|
|
|
outputs_sample.append ( out_sample ) |
|
outputs += [outputs_sample] |
|
|
|
return outputs |
|
|
|
|