|
import multiprocessing |
|
import pickle |
|
import time |
|
import traceback |
|
from enum import IntEnum |
|
|
|
import cv2 |
|
import numpy as np |
|
|
|
from core import imagelib, mplib, pathex |
|
from core.imagelib import sd |
|
from core.cv2ex import * |
|
from core.interact import interact as io |
|
from core.joblib import SubprocessGenerator, ThisThreadGenerator |
|
from facelib import LandmarksProcessor |
|
from samplelib import (SampleGeneratorBase, SampleLoader, SampleProcessor, SampleType) |
|
|
|
class MaskType(IntEnum): |
|
none = 0, |
|
cloth = 1, |
|
ear_r = 2, |
|
eye_g = 3, |
|
hair = 4, |
|
hat = 5, |
|
l_brow = 6, |
|
l_ear = 7, |
|
l_eye = 8, |
|
l_lip = 9, |
|
mouth = 10, |
|
neck = 11, |
|
neck_l = 12, |
|
nose = 13, |
|
r_brow = 14, |
|
r_ear = 15, |
|
r_eye = 16, |
|
skin = 17, |
|
u_lip = 18 |
|
|
|
|
|
|
|
MaskType_to_name = { |
|
int(MaskType.none ) : 'none', |
|
int(MaskType.cloth ) : 'cloth', |
|
int(MaskType.ear_r ) : 'ear_r', |
|
int(MaskType.eye_g ) : 'eye_g', |
|
int(MaskType.hair ) : 'hair', |
|
int(MaskType.hat ) : 'hat', |
|
int(MaskType.l_brow) : 'l_brow', |
|
int(MaskType.l_ear ) : 'l_ear', |
|
int(MaskType.l_eye ) : 'l_eye', |
|
int(MaskType.l_lip ) : 'l_lip', |
|
int(MaskType.mouth ) : 'mouth', |
|
int(MaskType.neck ) : 'neck', |
|
int(MaskType.neck_l) : 'neck_l', |
|
int(MaskType.nose ) : 'nose', |
|
int(MaskType.r_brow) : 'r_brow', |
|
int(MaskType.r_ear ) : 'r_ear', |
|
int(MaskType.r_eye ) : 'r_eye', |
|
int(MaskType.skin ) : 'skin', |
|
int(MaskType.u_lip ) : 'u_lip', |
|
} |
|
|
|
MaskType_from_name = { MaskType_to_name[k] : k for k in MaskType_to_name.keys() } |
|
|
|
class SampleGeneratorFaceSkinSegDataset(SampleGeneratorBase): |
|
def __init__ (self, root_path, debug=False, batch_size=1, resolution=256, face_type=None, |
|
generators_count=4, data_format="NHWC", |
|
**kwargs): |
|
|
|
super().__init__(debug, batch_size) |
|
self.initialized = False |
|
|
|
|
|
aligned_path = root_path /'aligned' |
|
if not aligned_path.exists(): |
|
raise ValueError(f'Unable to find {aligned_path}') |
|
|
|
obstructions_path = root_path / 'obstructions' |
|
|
|
obstructions_images_paths = pathex.get_image_paths(obstructions_path, image_extensions=['.png'], subdirs=True) |
|
|
|
samples = SampleLoader.load (SampleType.FACE, aligned_path, subdirs=True) |
|
self.samples_len = len(samples) |
|
|
|
pickled_samples = pickle.dumps(samples, 4) |
|
|
|
if self.debug: |
|
self.generators_count = 1 |
|
else: |
|
self.generators_count = max(1, generators_count) |
|
|
|
if self.debug: |
|
self.generators = [ThisThreadGenerator ( self.batch_func, (pickled_samples, obstructions_images_paths, resolution, face_type, data_format) )] |
|
else: |
|
self.generators = [SubprocessGenerator ( self.batch_func, (pickled_samples, obstructions_images_paths, resolution, face_type, data_format), start_now=False ) \ |
|
for i in range(self.generators_count) ] |
|
|
|
SubprocessGenerator.start_in_parallel( self.generators ) |
|
|
|
self.generator_counter = -1 |
|
|
|
self.initialized = True |
|
|
|
|
|
def is_initialized(self): |
|
return self.initialized |
|
|
|
def __iter__(self): |
|
return self |
|
|
|
def __next__(self): |
|
self.generator_counter += 1 |
|
generator = self.generators[self.generator_counter % len(self.generators) ] |
|
return next(generator) |
|
|
|
def batch_func(self, param ): |
|
pickled_samples, obstructions_images_paths, resolution, face_type, data_format = param |
|
|
|
samples = pickle.loads(pickled_samples) |
|
|
|
obstructions_images_paths_len = len(obstructions_images_paths) |
|
shuffle_o_idxs = [] |
|
o_idxs = [*range(obstructions_images_paths_len)] |
|
|
|
shuffle_idxs = [] |
|
idxs = [*range(len(samples))] |
|
|
|
random_flip = True |
|
rotation_range=[-10,10] |
|
scale_range=[-0.05, 0.05] |
|
tx_range=[-0.05, 0.05] |
|
ty_range=[-0.05, 0.05] |
|
|
|
o_random_flip = True |
|
o_rotation_range=[-180,180] |
|
o_scale_range=[-0.5, 0.05] |
|
o_tx_range=[-0.5, 0.5] |
|
o_ty_range=[-0.5, 0.5] |
|
|
|
random_bilinear_resize_chance, random_bilinear_resize_max_size_per = 25,75 |
|
motion_blur_chance, motion_blur_mb_max_size = 25, 5 |
|
gaussian_blur_chance, gaussian_blur_kernel_max_size = 25, 5 |
|
|
|
bs = self.batch_size |
|
while True: |
|
batches = [ [], [] ] |
|
|
|
n_batch = 0 |
|
while n_batch < bs: |
|
try: |
|
if len(shuffle_idxs) == 0: |
|
shuffle_idxs = idxs.copy() |
|
np.random.shuffle(shuffle_idxs) |
|
|
|
idx = shuffle_idxs.pop() |
|
|
|
sample = samples[idx] |
|
|
|
img = sample.load_bgr() |
|
h,w,c = img.shape |
|
|
|
mask = np.zeros ((h,w,1), dtype=np.float32) |
|
sample.ie_polys.overlay_mask(mask) |
|
|
|
warp_params = imagelib.gen_warp_params(resolution, random_flip, rotation_range=rotation_range, scale_range=scale_range, tx_range=tx_range, ty_range=ty_range ) |
|
|
|
if face_type == sample.face_type: |
|
if w != resolution: |
|
img = cv2.resize( img, (resolution, resolution), cv2.INTER_LANCZOS4 ) |
|
mask = cv2.resize( mask, (resolution, resolution), cv2.INTER_LANCZOS4 ) |
|
else: |
|
mat = LandmarksProcessor.get_transform_mat (sample.landmarks, resolution, face_type) |
|
img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=cv2.BORDER_CONSTANT, flags=cv2.INTER_LANCZOS4 ) |
|
mask = cv2.warpAffine( mask, mat, (resolution,resolution), borderMode=cv2.BORDER_CONSTANT, flags=cv2.INTER_LANCZOS4 ) |
|
|
|
if len(mask.shape) == 2: |
|
mask = mask[...,None] |
|
|
|
if obstructions_images_paths_len != 0: |
|
|
|
if len(shuffle_o_idxs) == 0: |
|
shuffle_o_idxs = o_idxs.copy() |
|
np.random.shuffle(shuffle_o_idxs) |
|
o_idx = shuffle_o_idxs.pop() |
|
o_img = cv2_imread (obstructions_images_paths[o_idx]).astype(np.float32) / 255.0 |
|
oh,ow,oc = o_img.shape |
|
if oc == 4: |
|
ohw = max(oh,ow) |
|
scale = resolution / ohw |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mat = cv2.getRotationMatrix2D( (ow/2,oh/2), |
|
np.random.uniform( o_rotation_range[0], o_rotation_range[1] ), |
|
1.0 ) |
|
|
|
mat += np.float32( [[0,0, -ow/2 ], |
|
[0,0, -oh/2 ]]) |
|
mat *= scale * np.random.uniform(1 +o_scale_range[0], 1 +o_scale_range[1]) |
|
mat += np.float32( [[0, 0, resolution/2 + resolution*np.random.uniform( o_tx_range[0], o_tx_range[1] ) ], |
|
[0, 0, resolution/2 + resolution*np.random.uniform( o_ty_range[0], o_ty_range[1] ) ] ]) |
|
|
|
|
|
o_img = cv2.warpAffine( o_img, mat, (resolution,resolution), borderMode=cv2.BORDER_CONSTANT, flags=cv2.INTER_LANCZOS4 ) |
|
|
|
if o_random_flip and np.random.randint(10) < 4: |
|
o_img = o_img[:,::-1,...] |
|
|
|
o_mask = o_img[...,3:4] |
|
o_mask[o_mask>0] = 1.0 |
|
|
|
|
|
o_mask = cv2.erode (o_mask, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5)), iterations = 1 ) |
|
o_mask = cv2.GaussianBlur(o_mask, (5, 5) , 0)[...,None] |
|
|
|
img = img*(1-o_mask) + o_img[...,0:3]*o_mask |
|
|
|
o_mask[o_mask<0.5] = 0.0 |
|
|
|
|
|
|
|
|
|
mask *= (1-o_mask) |
|
|
|
|
|
|
|
|
|
|
|
|
|
img = imagelib.warp_by_params (warp_params, img, can_warp=True, can_transform=True, can_flip=True, border_replicate=False) |
|
mask = imagelib.warp_by_params (warp_params, mask, can_warp=True, can_transform=True, can_flip=True, border_replicate=False) |
|
|
|
|
|
img = np.clip(img.astype(np.float32), 0, 1) |
|
mask[mask < 0.5] = 0.0 |
|
mask[mask >= 0.5] = 1.0 |
|
mask = np.clip(mask, 0, 1) |
|
|
|
|
|
img = imagelib.apply_random_hsv_shift(img, mask=sd.random_circle_faded ([resolution,resolution])) |
|
img = imagelib.apply_random_motion_blur( img, motion_blur_chance, motion_blur_mb_max_size, mask=sd.random_circle_faded ([resolution,resolution])) |
|
img = imagelib.apply_random_gaussian_blur( img, gaussian_blur_chance, gaussian_blur_kernel_max_size, mask=sd.random_circle_faded ([resolution,resolution])) |
|
img = imagelib.apply_random_bilinear_resize( img, random_bilinear_resize_chance, random_bilinear_resize_max_size_per, mask=sd.random_circle_faded ([resolution,resolution])) |
|
|
|
if data_format == "NCHW": |
|
img = np.transpose(img, (2,0,1) ) |
|
mask = np.transpose(mask, (2,0,1) ) |
|
|
|
batches[0].append ( img ) |
|
batches[1].append ( mask ) |
|
|
|
n_batch += 1 |
|
except: |
|
io.log_err ( traceback.format_exc() ) |
|
|
|
yield [ np.array(batch) for batch in batches] |
|
|