Upload balanced_train_full.py
Browse files- balanced_train_full.py +98 -0
balanced_train_full.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
df = pd.read_feather("//media/data/mbti-reddit/disprop_sample100k_total.feather") #change this to proper path
|
4 |
+
#'/content/drive/MyDrive/Colab Notebooks/clickbait_hold_X.csv'
|
5 |
+
df=df.drop(columns=['authors','subreddit'])
|
6 |
+
|
7 |
+
df=df.sample(80000, random_state=1) #random sampling
|
8 |
+
|
9 |
+
|
10 |
+
df['labels'] = df['labels'].replace(['INTP','ISTP','ENTP','ESTP','INFP','ISFP','ENFP','ESFP', \
|
11 |
+
'INTJ','ISTJ','ENTJ','ESTJ','INFJ','ISFJ','ENFJ','ESFJ'], \
|
12 |
+
[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15])
|
13 |
+
df=df.rename(columns={'labels':'labels','comments':'text'})
|
14 |
+
|
15 |
+
from datasets import Dataset
|
16 |
+
|
17 |
+
dataset = Dataset.from_pandas(df)
|
18 |
+
dataset.shuffle(seed=27)
|
19 |
+
split_set = dataset.train_test_split(test_size=0.2)
|
20 |
+
|
21 |
+
from transformers import AlbertTokenizer, AlbertModel
|
22 |
+
|
23 |
+
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
|
24 |
+
|
25 |
+
from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer
|
26 |
+
|
27 |
+
model = AutoModelForSequenceClassification.from_pretrained("albert-base-v2", num_labels=16)
|
28 |
+
|
29 |
+
|
30 |
+
def preprocess_function(examples):
|
31 |
+
return tokenizer(examples["text"], truncation=True)
|
32 |
+
|
33 |
+
tokenized_dataset = split_set.map(preprocess_function, batched=True)
|
34 |
+
|
35 |
+
|
36 |
+
from transformers import DataCollatorWithPadding
|
37 |
+
#tokenized_datasets = tokenized_datasets.remove_columns(books_dataset["train"].column_names)
|
38 |
+
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
39 |
+
|
40 |
+
|
41 |
+
import evaluate
|
42 |
+
import numpy as np
|
43 |
+
def compute_metrics(eval_preds):
|
44 |
+
metric = evaluate.combine([
|
45 |
+
|
46 |
+
evaluate.load("precision"),
|
47 |
+
evaluate.load("recall")])
|
48 |
+
|
49 |
+
|
50 |
+
#evaluate.load("precision", average="weighted"),
|
51 |
+
#evaluate.load("recall", average="weighted")])
|
52 |
+
|
53 |
+
logits, labels = eval_preds
|
54 |
+
predictions = np.argmax(logits, axis=-1)
|
55 |
+
return metric.compute(predictions=predictions, references=labels, average='weighted')
|
56 |
+
|
57 |
+
|
58 |
+
training_args = TrainingArguments(
|
59 |
+
|
60 |
+
evaluation_strategy="epoch",
|
61 |
+
#save_strategy="epoch",
|
62 |
+
|
63 |
+
output_dir="/home/deimann/mbti-project/balanced_train",
|
64 |
+
|
65 |
+
#save_total_limit=5,
|
66 |
+
#load_best_model_at_end = True,
|
67 |
+
|
68 |
+
learning_rate=2e-5,#2e
|
69 |
+
|
70 |
+
per_device_train_batch_size=36 ,#16
|
71 |
+
|
72 |
+
per_device_eval_batch_size=16,#16
|
73 |
+
|
74 |
+
num_train_epochs=10,
|
75 |
+
|
76 |
+
weight_decay=0.01,
|
77 |
+
|
78 |
+
)
|
79 |
+
|
80 |
+
trainer = Trainer(
|
81 |
+
|
82 |
+
model=model,
|
83 |
+
|
84 |
+
args=training_args,
|
85 |
+
|
86 |
+
train_dataset=tokenized_dataset["train"],
|
87 |
+
|
88 |
+
eval_dataset=tokenized_dataset["test"],
|
89 |
+
|
90 |
+
tokenizer=tokenizer,
|
91 |
+
|
92 |
+
data_collator=data_collator,
|
93 |
+
|
94 |
+
#compute_metrics=compute_metrics,
|
95 |
+
|
96 |
+
)
|
97 |
+
|
98 |
+
trainer.train()
|