James-kc-min
commited on
Commit
•
c91574e
1
Parent(s):
7a6f838
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
model-index:
|
11 |
+
- name: L_Roberta3
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# L_Roberta3
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.2095
|
23 |
+
- Accuracy: 0.9555
|
24 |
+
- F1: 0.9555
|
25 |
+
- Precision: 0.9555
|
26 |
+
- Recall: 0.9555
|
27 |
+
- C Report: precision recall f1-score support
|
28 |
+
|
29 |
+
0 0.97 0.95 0.96 876
|
30 |
+
1 0.94 0.97 0.95 696
|
31 |
+
|
32 |
+
accuracy 0.96 1572
|
33 |
+
macro avg 0.95 0.96 0.96 1572
|
34 |
+
weighted avg 0.96 0.96 0.96 1572
|
35 |
+
|
36 |
+
- C Matrix: None
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 32
|
57 |
+
- eval_batch_size: 32
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 5
|
62 |
+
- mixed_precision_training: Native AMP
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | C Report | C Matrix |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:--------:|
|
68 |
+
| 0.2674 | 1.0 | 329 | 0.2436 | 0.9389 | 0.9389 | 0.9389 | 0.9389 | precision recall f1-score support
|
69 |
+
|
70 |
+
0 0.94 0.95 0.95 876
|
71 |
+
1 0.94 0.92 0.93 696
|
72 |
+
|
73 |
+
accuracy 0.94 1572
|
74 |
+
macro avg 0.94 0.94 0.94 1572
|
75 |
+
weighted avg 0.94 0.94 0.94 1572
|
76 |
+
| None |
|
77 |
+
| 0.1377 | 2.0 | 658 | 0.1506 | 0.9408 | 0.9408 | 0.9408 | 0.9408 | precision recall f1-score support
|
78 |
+
|
79 |
+
0 0.97 0.92 0.95 876
|
80 |
+
1 0.91 0.96 0.94 696
|
81 |
+
|
82 |
+
accuracy 0.94 1572
|
83 |
+
macro avg 0.94 0.94 0.94 1572
|
84 |
+
weighted avg 0.94 0.94 0.94 1572
|
85 |
+
| None |
|
86 |
+
| 0.0898 | 3.0 | 987 | 0.1491 | 0.9548 | 0.9548 | 0.9548 | 0.9548 | precision recall f1-score support
|
87 |
+
|
88 |
+
0 0.96 0.96 0.96 876
|
89 |
+
1 0.95 0.95 0.95 696
|
90 |
+
|
91 |
+
accuracy 0.95 1572
|
92 |
+
macro avg 0.95 0.95 0.95 1572
|
93 |
+
weighted avg 0.95 0.95 0.95 1572
|
94 |
+
| None |
|
95 |
+
| 0.0543 | 4.0 | 1316 | 0.1831 | 0.9561 | 0.9561 | 0.9561 | 0.9561 | precision recall f1-score support
|
96 |
+
|
97 |
+
0 0.97 0.95 0.96 876
|
98 |
+
1 0.94 0.96 0.95 696
|
99 |
+
|
100 |
+
accuracy 0.96 1572
|
101 |
+
macro avg 0.95 0.96 0.96 1572
|
102 |
+
weighted avg 0.96 0.96 0.96 1572
|
103 |
+
| None |
|
104 |
+
| 0.0394 | 5.0 | 1645 | 0.2095 | 0.9555 | 0.9555 | 0.9555 | 0.9555 | precision recall f1-score support
|
105 |
+
|
106 |
+
0 0.97 0.95 0.96 876
|
107 |
+
1 0.94 0.97 0.95 696
|
108 |
+
|
109 |
+
accuracy 0.96 1572
|
110 |
+
macro avg 0.95 0.96 0.96 1572
|
111 |
+
weighted avg 0.96 0.96 0.96 1572
|
112 |
+
| None |
|
113 |
+
|
114 |
+
|
115 |
+
### Framework versions
|
116 |
+
|
117 |
+
- Transformers 4.18.0
|
118 |
+
- Pytorch 1.10.2+cu102
|
119 |
+
- Datasets 2.2.2
|
120 |
+
- Tokenizers 0.12.1
|