Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -181.50 +/- 98.78
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f82040fa8b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f82040fa940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f82040fa9d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f82040faa60>", "_build": "<function ActorCriticPolicy._build at 0x7f82040faaf0>", "forward": "<function ActorCriticPolicy.forward at 0x7f82040fab80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f82040fac10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f82040faca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f82040fad30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f82040fadc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f82040fae50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f82040faee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f82040fe280>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 10, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676740235432649690, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVGQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMcy9ob21lL2toYWxkaS9hbmFjb25kYTMvZW52cy9odWdnaW5nLWZhY2VfZGVlcGxlYXJuaW5nL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHMvaG9tZS9raGFsZGkvYW5hY29uZGEzL2VudnMvaHVnZ2luZy1mYWNlX2RlZXBsZWFybmluZy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM25AD1VNbg/Ht4+PkkJt7ykZmY7TspwPAAAAAAAAAAAmtnXO0m6yT+g/r88bp6CPrt/rT3qfWI9AAAAAAAAAAAa27a9jJ5XP6obmb7uT1O/6N0JP2L1bz4AAAAAAAAAAD6HkL60nBs+piuhvyTp7L9itRhAc2IuPgAAAAAAAAAAQHGxPiBhQD9xpTI/Q9OFvwK7A742yWo9AAAAAAAAAADzzEm+ncUhPrxDQL4ET4q/Ph9Yvfl/Cj4AAAAAAAAAAEblDD6Dz3E/NpKwPiaEU78vYx08QrJIPgAAAAAAAAAAiYA/v1Adhz8LPYG/UTIov7kmAj7SWci+AAAAAAAAAACTudS+hdcwPnQwmb8dl7G/PXxuP0MYob4AAAAAAAAAAP2xg745t5s/cLU8v62o3r6CG9Q9SuDYuwAAAAAAAAAALX2ZPiUZCT+ShDI/elGTv9aAtr3W8Co6AAAAAAAAAABwsq2+9XOPP0SdGL8DUTW/wfiBPpCb3DwAAAAAAAAAAJpdvTtdA7M/1tgVP3vcDL8TNdu7OsUHvgAAAAAAAAAAXwAfv0H2r7wCmBq/T+qWv9NOUL0+WI89AAAAAAAAAAD9IaA+bdeSP9uNHT8ujg+/mfanvmyQgL4AAAAAAAAAAFpsNz5grZU/9McQP3rEIr+RzAg+eyJ/PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -1637.4, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzv3V4744V8CUhpRSlIwBbJRLRIwBdJRHQEGQTK1XvH91fZQoaAZoCWgPQwhv88ZJ4RlgwJSGlFKUaBVLQmgWR0BBkgLJCBwudX2UKGgGaAloD0MIaM9lahJOXsCUhpRSlGgVS2RoFkdAQZNxGUfPonV9lChoBmgJaA9DCP9dnznrWFHAlIaUUpRoFUuIaBZHQEGT08NhE0B1fZQoaAZoCWgPQwio4VtYN2VXwJSGlFKUaBVLWmgWR0BBlxHf/FR6dX2UKGgGaAloD0MIl1XYDDC9cMCUhpRSlGgVS2RoFkdAQZkXxe9i+nV9lChoBmgJaA9DCNQK0/eaGWLAlIaUUpRoFUujaBZHQEGZyzXz19R1fZQoaAZoCWgPQwgq4J7nT71cwJSGlFKUaBVLW2gWR0BBmifg75mAdX2UKGgGaAloD0MIahMn97v+acCUhpRSlGgVS45oFkdAQZ21pj+aSnV9lChoBmgJaA9DCNL+B1irgVjAlIaUUpRoFUtBaBZHQEGfLidat9x1fZQoaAZoCWgPQwg/4IEBhJlmwJSGlFKUaBVLU2gWR0BBoASnLq2SdX2UKGgGaAloD0MIJZNTO8M4UMCUhpRSlGgVS4xoFkdAQaHCZWq95HV9lChoBmgJaA9DCG9HOC14bVLAlIaUUpRoFUtBaBZHQEGiJKraM751fZQoaAZoCWgPQwh8m/7sR85RwJSGlFKUaBVLT2gWR0BBpOEEkjX4dX2UKGgGaAloD0MI+KV+3lRbWsCUhpRSlGgVS19oFkdAQaSdc0Ltu3V9lChoBmgJaA9DCPuVzofnR2fAlIaUUpRoFUs+aBZHQEGoE4//vOR1fZQoaAZoCWgPQwj1aRX9oSlHwJSGlFKUaBVLPmgWR0BBrSrHU+cIdX2UKGgGaAloD0MIpp2ay41oZcCUhpRSlGgVS1VoFkdAQa12JSBK+XV9lChoBmgJaA9DCKUw73EmKXjAlIaUUpRoFUtYaBZHQEGwDifg75p1fZQoaAZoCWgPQwjj4T0HlvhWwJSGlFKUaBVLUGgWR0BBsHxaxHG0dX2UKGgGaAloD0MIIy4AjdJEWsCUhpRSlGgVS3ZoFkdAQbFS0jTrmnV9lChoBmgJaA9DCILjMm5qo1nAlIaUUpRoFUtPaBZHQEGyLc9GI9F1fZQoaAZoCWgPQwhzZOWXwThKwJSGlFKUaBVLbmgWR0BBs58Sf16FdX2UKGgGaAloD0MIIQclzLRWVcCUhpRSlGgVS1BoFkdAQbXTG5tm+XV9lChoBmgJaA9DCJCF6BA4Q1nAlIaUUpRoFUtIaBZHQEG3CSidrft1fZQoaAZoCWgPQwhGQlvOpfVawJSGlFKUaBVLRGgWR0BBt/8l5WzXdX2UKGgGaAloD0MIp0HRPIBwYsCUhpRSlGgVS2hoFkdAQbiFsYVIqnV9lChoBmgJaA9DCIYBS67iHGzAlIaUUpRoFUtcaBZHQEG8aLn9vTB1fZQoaAZoCWgPQwjYKsHicNVswJSGlFKUaBVLaGgWR0BBvaCUX531dX2UKGgGaAloD0MIqMMKt3wyZcCUhpRSlGgVS2poFkdAQb6z3RG+bnV9lChoBmgJaA9DCIts5/upU2TAlIaUUpRoFUteaBZHQEG/fXPJJXh1fZQoaAZoCWgPQwg2yvrNxKhOwJSGlFKUaBVLSmgWR0BBwqKP4mCzdX2UKGgGaAloD0MIherm4m8UVcCUhpRSlGgVS0RoFkdAQcNc+qzZ6HV9lChoBmgJaA9DCIRJ8fEJ4FPAlIaUUpRoFUtBaBZHQEHFliBoVVR1fZQoaAZoCWgPQwixFMlXAgdSwJSGlFKUaBVLSmgWR0BBxs+u/1xsdX2UKGgGaAloD0MITimvldCbWcCUhpRSlGgVS25oFkdAQcdDYywfQ3V9lChoBmgJaA9DCMAiv36I9GTAlIaUUpRoFUtlaBZHQEHMOS4e9zx1fZQoaAZoCWgPQwgfEr73N9RdwJSGlFKUaBVLV2gWR0BBzl3yI55rdX2UKGgGaAloD0MI7swEw7mRVMCUhpRSlGgVS1RoFkdAQc7tNSIgvHV9lChoBmgJaA9DCJkqGJXUdVfAlIaUUpRoFUtVaBZHQEHQ3m3fAKx1fZQoaAZoCWgPQwh4uB0alndgwJSGlFKUaBVLdGgWR0BB0pYLb5/LdX2UKGgGaAloD0MIUKkSZW8AWcCUhpRSlGgVS4FoFkdAQdLTYukDZHV9lChoBmgJaA9DCJZ6FoTyxVjAlIaUUpRoFUtNaBZHQEHVbdrO7g91fZQoaAZoCWgPQwiWsgxxrHtawJSGlFKUaBVLZ2gWR0BB1mqgh8pkdX2UKGgGaAloD0MI0y6mme4QX8CUhpRSlGgVS1ZoFkdAQdiRISUTtnV9lChoBmgJaA9DCJ7TLNDu1VLAlIaUUpRoFUtQaBZHQEHa7r9l2/11fZQoaAZoCWgPQwiUTiSYautQwJSGlFKUaBVLTmgWR0BB3L39JjDsdX2UKGgGaAloD0MI3pOHhZo1d8CUhpRSlGgVS1toFkdAQd0k+otL+XV9lChoBmgJaA9DCDdQ4J18EFvAlIaUUpRoFUtyaBZHQEHdVnVXmvJ1fZQoaAZoCWgPQwig3SHFAFZiwJSGlFKUaBVLdWgWR0BB3zrE9+w1dX2UKGgGaAloD0MIdvpBXSSaasCUhpRSlGgVS1RoFkdAQd+M+/xlQXV9lChoBmgJaA9DCCr/Wl65z1vAlIaUUpRoFUtFaBZHQEHgPhAGB4F1fZQoaAZoCWgPQwhNMJxrmDhSwJSGlFKUaBVLUWgWR0BB5U5EMLF5dX2UKGgGaAloD0MICB7f3jVeWcCUhpRSlGgVS0toFkdAQedn003wTnV9lChoBmgJaA9DCEFl/PuMV1/AlIaUUpRoFUt0aBZHQEHoJZ4fOlh1fZQoaAZoCWgPQwj8/WK2ZCRTwJSGlFKUaBVLR2gWR0BB6iA+Y+jedX2UKGgGaAloD0MI+1ksRXJza8CUhpRSlGgVS2JoFkdAQev8TBZZCHV9lChoBmgJaA9DCA9j0t9LZ2PAlIaUUpRoFUtnaBZHQEHvZ/0/W2B1fZQoaAZoCWgPQwhOtoE7UCZowJSGlFKUaBVLbGgWR0BB85I6Kcd6dX2UKGgGaAloD0MIX16AffR5Y8CUhpRSlGgVS4RoFkdAQfTTSb6P83V9lChoBmgJaA9DCBlZMsfyeVrAlIaUUpRoFUtHaBZHQEH0zMRpUPx1fZQoaAZoCWgPQwgaGHlZE6tYwJSGlFKUaBVLT2gWR0BB9fe1rqMWdX2UKGgGaAloD0MI3GeVmdJLXsCUhpRSlGgVS1hoFkdAQfabWmP5pXV9lChoBmgJaA9DCPUqMjogcVrAlIaUUpRoFUteaBZHQEH4HQhOgxt1fZQoaAZoCWgPQwgpzeZxGNlWwJSGlFKUaBVLSGgWR0BB+v6j3225dX2UKGgGaAloD0MIIEQy5Nh1YsCUhpRSlGgVS3BoFkdAQf0kD6nBL3V9lChoBmgJaA9DCD0nvW98N1DAlIaUUpRoFUtPaBZHQEH+4//vOQh1fZQoaAZoCWgPQwifsMQDCgpwwJSGlFKUaBVLhmgWR0BB/0N8VpK0dX2UKGgGaAloD0MI5ggZyLPyU8CUhpRSlGgVS09oFkdAQf+EZiuuBHV9lChoBmgJaA9DCBHg9C7eI03AlIaUUpRoFUuDaBZHQEIAnwXqJMx1fZQoaAZoCWgPQwih9fBlIuVswJSGlFKUaBVLgWgWR0BCBLq2SdOJdX2UKGgGaAloD0MI1jibjgBOXcCUhpRSlGgVS2RoFkdAQgeD15B1LnV9lChoBmgJaA9DCMDpXbyfWmjAlIaUUpRoFUt0aBZHQEIOQwK0D2d1fZQoaAZoCWgPQwj11VWB2iJhwJSGlFKUaBVLVGgWR0BCDt1ZDArQdX2UKGgGaAloD0MI6L6c2a7+WcCUhpRSlGgVS1hoFkdAQg+QGOdXk3V9lChoBmgJaA9DCIVBmUaTTzPAlIaUUpRoFUtjaBZHQEIQvL5hz/91fZQoaAZoCWgPQwiZoIZvYd1awJSGlFKUaBVLQGgWR0BCEYywfQrudX2UKGgGaAloD0MICvZf56bgW8CUhpRSlGgVS0NoFkdAQhIJHAh0Q3V9lChoBmgJaA9DCC9OfLWjLVrAlIaUUpRoFUtYaBZHQEIWXgLqlgt1fZQoaAZoCWgPQwhmguFcQ0JlwJSGlFKUaBVLa2gWR0BCFwbMottidX2UKGgGaAloD0MIHzAPmfI7UMCUhpRSlGgVS4JoFkdAQhrqUu+RHXV9lChoBmgJaA9DCJyGqMJfCnPAlIaUUpRoFUtgaBZHQEIbfvWpZOl1fZQoaAZoCWgPQwhMqrab4K5bwJSGlFKUaBVLXGgWR0BCG1zhgmZ3dX2UKGgGaAloD0MInkXvVMAZYMCUhpRSlGgVS01oFkdAQhuUKRdQf3V9lChoBmgJaA9DCCo4vCAiflXAlIaUUpRoFUuFaBZHQEIb1U2kzoF1fZQoaAZoCWgPQwhcqtIW1wx2wJSGlFKUaBVLnGgWR0BCHTSCvovBdX2UKGgGaAloD0MIucSRByJUbsCUhpRSlGgVS3toFkdAQh4a5wwTNHV9lChoBmgJaA9DCMSXiSIkL2LAlIaUUpRoFUtRaBZHQEImUeuFHrh1fZQoaAZoCWgPQwg4onvWNd90wJSGlFKUaBVLVmgWR0BCJpCa7VawdX2UKGgGaAloD0MIJ/c7FAU/WcCUhpRSlGgVS1toFkdAQij4tYjjaXV9lChoBmgJaA9DCDVfJR87fWHAlIaUUpRoFUtaaBZHQEIqlXRw6yV1fZQoaAZoCWgPQwjfGAKAY75XwJSGlFKUaBVLe2gWR0BCKtTLns9kdX2UKGgGaAloD0MI2uIan8lKZ8CUhpRSlGgVS2NoFkdAQi5qKxcE/3V9lChoBmgJaA9DCGE2AYblpFbAlIaUUpRoFUtKaBZHQEIv2Bas6q91fZQoaAZoCWgPQwiU3GETmYpawJSGlFKUaBVLXmgWR0BCMdWp6yB1dX2UKGgGaAloD0MIcVXZd0UIZ8CUhpRSlGgVS2JoFkdAQjJVKf4AS3V9lChoBmgJaA9DCIZWJ2eoWGHAlIaUUpRoFUtXaBZHQEI0ghbGFSN1fZQoaAZoCWgPQwgfnbry2WpgwJSGlFKUaBVLgmgWR0BCNxgiNbTudX2UKGgGaAloD0MIcuFASBZFUsCUhpRSlGgVS19oFkdAQjgvL5h0AHV9lChoBmgJaA9DCJ0q3zMSnlDAlIaUUpRoFUtKaBZHQEI8Xrt3OfN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVGQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMcy9ob21lL2toYWxkaS9hbmFjb25kYTMvZW52cy9odWdnaW5nLWZhY2VfZGVlcGxlYXJuaW5nL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHMvaG9tZS9raGFsZGkvYW5hY29uZGEzL2VudnMvaHVnZ2luZy1mYWNlX2RlZXBsZWFybmluZy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-31-generic-x86_64-with-glibc2.36 # 32-Ubuntu SMP PREEMPT_DYNAMIC Fri Jan 20 15:20:08 UTC 2023", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d86ea71dabdd4c957744310696fca9577823832f29f3fa5e3dbc7a4add11192
|
3 |
+
size 147531
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f82040fa8b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f82040fa940>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f82040fa9d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f82040faa60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f82040faaf0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f82040fab80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f82040fac10>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f82040faca0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f82040fad30>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f82040fadc0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f82040fae50>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f82040faee0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f82040fe280>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 16384,
|
47 |
+
"_total_timesteps": 10,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1676740235432649690,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVGQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMcy9ob21lL2toYWxkaS9hbmFjb25kYTMvZW52cy9odWdnaW5nLWZhY2VfZGVlcGxlYXJuaW5nL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHMvaG9tZS9raGFsZGkvYW5hY29uZGEzL2VudnMvaHVnZ2luZy1mYWNlX2RlZXBsZWFybmluZy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM25AD1VNbg/Ht4+PkkJt7ykZmY7TspwPAAAAAAAAAAAmtnXO0m6yT+g/r88bp6CPrt/rT3qfWI9AAAAAAAAAAAa27a9jJ5XP6obmb7uT1O/6N0JP2L1bz4AAAAAAAAAAD6HkL60nBs+piuhvyTp7L9itRhAc2IuPgAAAAAAAAAAQHGxPiBhQD9xpTI/Q9OFvwK7A742yWo9AAAAAAAAAADzzEm+ncUhPrxDQL4ET4q/Ph9Yvfl/Cj4AAAAAAAAAAEblDD6Dz3E/NpKwPiaEU78vYx08QrJIPgAAAAAAAAAAiYA/v1Adhz8LPYG/UTIov7kmAj7SWci+AAAAAAAAAACTudS+hdcwPnQwmb8dl7G/PXxuP0MYob4AAAAAAAAAAP2xg745t5s/cLU8v62o3r6CG9Q9SuDYuwAAAAAAAAAALX2ZPiUZCT+ShDI/elGTv9aAtr3W8Co6AAAAAAAAAABwsq2+9XOPP0SdGL8DUTW/wfiBPpCb3DwAAAAAAAAAAJpdvTtdA7M/1tgVP3vcDL8TNdu7OsUHvgAAAAAAAAAAXwAfv0H2r7wCmBq/T+qWv9NOUL0+WI89AAAAAAAAAAD9IaA+bdeSP9uNHT8ujg+/mfanvmyQgL4AAAAAAAAAAFpsNz5grZU/9McQP3rEIr+RzAg+eyJ/PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -1637.4,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzv3V4744V8CUhpRSlIwBbJRLRIwBdJRHQEGQTK1XvH91fZQoaAZoCWgPQwhv88ZJ4RlgwJSGlFKUaBVLQmgWR0BBkgLJCBwudX2UKGgGaAloD0MIaM9lahJOXsCUhpRSlGgVS2RoFkdAQZNxGUfPonV9lChoBmgJaA9DCP9dnznrWFHAlIaUUpRoFUuIaBZHQEGT08NhE0B1fZQoaAZoCWgPQwio4VtYN2VXwJSGlFKUaBVLWmgWR0BBlxHf/FR6dX2UKGgGaAloD0MIl1XYDDC9cMCUhpRSlGgVS2RoFkdAQZkXxe9i+nV9lChoBmgJaA9DCNQK0/eaGWLAlIaUUpRoFUujaBZHQEGZyzXz19R1fZQoaAZoCWgPQwgq4J7nT71cwJSGlFKUaBVLW2gWR0BBmifg75mAdX2UKGgGaAloD0MIahMn97v+acCUhpRSlGgVS45oFkdAQZ21pj+aSnV9lChoBmgJaA9DCNL+B1irgVjAlIaUUpRoFUtBaBZHQEGfLidat9x1fZQoaAZoCWgPQwg/4IEBhJlmwJSGlFKUaBVLU2gWR0BBoASnLq2SdX2UKGgGaAloD0MIJZNTO8M4UMCUhpRSlGgVS4xoFkdAQaHCZWq95HV9lChoBmgJaA9DCG9HOC14bVLAlIaUUpRoFUtBaBZHQEGiJKraM751fZQoaAZoCWgPQwh8m/7sR85RwJSGlFKUaBVLT2gWR0BBpOEEkjX4dX2UKGgGaAloD0MI+KV+3lRbWsCUhpRSlGgVS19oFkdAQaSdc0Ltu3V9lChoBmgJaA9DCPuVzofnR2fAlIaUUpRoFUs+aBZHQEGoE4//vOR1fZQoaAZoCWgPQwj1aRX9oSlHwJSGlFKUaBVLPmgWR0BBrSrHU+cIdX2UKGgGaAloD0MIpp2ay41oZcCUhpRSlGgVS1VoFkdAQa12JSBK+XV9lChoBmgJaA9DCKUw73EmKXjAlIaUUpRoFUtYaBZHQEGwDifg75p1fZQoaAZoCWgPQwjj4T0HlvhWwJSGlFKUaBVLUGgWR0BBsHxaxHG0dX2UKGgGaAloD0MIIy4AjdJEWsCUhpRSlGgVS3ZoFkdAQbFS0jTrmnV9lChoBmgJaA9DCILjMm5qo1nAlIaUUpRoFUtPaBZHQEGyLc9GI9F1fZQoaAZoCWgPQwhzZOWXwThKwJSGlFKUaBVLbmgWR0BBs58Sf16FdX2UKGgGaAloD0MIIQclzLRWVcCUhpRSlGgVS1BoFkdAQbXTG5tm+XV9lChoBmgJaA9DCJCF6BA4Q1nAlIaUUpRoFUtIaBZHQEG3CSidrft1fZQoaAZoCWgPQwhGQlvOpfVawJSGlFKUaBVLRGgWR0BBt/8l5WzXdX2UKGgGaAloD0MIp0HRPIBwYsCUhpRSlGgVS2hoFkdAQbiFsYVIqnV9lChoBmgJaA9DCIYBS67iHGzAlIaUUpRoFUtcaBZHQEG8aLn9vTB1fZQoaAZoCWgPQwjYKsHicNVswJSGlFKUaBVLaGgWR0BBvaCUX531dX2UKGgGaAloD0MIqMMKt3wyZcCUhpRSlGgVS2poFkdAQb6z3RG+bnV9lChoBmgJaA9DCIts5/upU2TAlIaUUpRoFUteaBZHQEG/fXPJJXh1fZQoaAZoCWgPQwg2yvrNxKhOwJSGlFKUaBVLSmgWR0BBwqKP4mCzdX2UKGgGaAloD0MIherm4m8UVcCUhpRSlGgVS0RoFkdAQcNc+qzZ6HV9lChoBmgJaA9DCIRJ8fEJ4FPAlIaUUpRoFUtBaBZHQEHFliBoVVR1fZQoaAZoCWgPQwixFMlXAgdSwJSGlFKUaBVLSmgWR0BBxs+u/1xsdX2UKGgGaAloD0MITimvldCbWcCUhpRSlGgVS25oFkdAQcdDYywfQ3V9lChoBmgJaA9DCMAiv36I9GTAlIaUUpRoFUtlaBZHQEHMOS4e9zx1fZQoaAZoCWgPQwgfEr73N9RdwJSGlFKUaBVLV2gWR0BBzl3yI55rdX2UKGgGaAloD0MI7swEw7mRVMCUhpRSlGgVS1RoFkdAQc7tNSIgvHV9lChoBmgJaA9DCJkqGJXUdVfAlIaUUpRoFUtVaBZHQEHQ3m3fAKx1fZQoaAZoCWgPQwh4uB0alndgwJSGlFKUaBVLdGgWR0BB0pYLb5/LdX2UKGgGaAloD0MIUKkSZW8AWcCUhpRSlGgVS4FoFkdAQdLTYukDZHV9lChoBmgJaA9DCJZ6FoTyxVjAlIaUUpRoFUtNaBZHQEHVbdrO7g91fZQoaAZoCWgPQwiWsgxxrHtawJSGlFKUaBVLZ2gWR0BB1mqgh8pkdX2UKGgGaAloD0MI0y6mme4QX8CUhpRSlGgVS1ZoFkdAQdiRISUTtnV9lChoBmgJaA9DCJ7TLNDu1VLAlIaUUpRoFUtQaBZHQEHa7r9l2/11fZQoaAZoCWgPQwiUTiSYautQwJSGlFKUaBVLTmgWR0BB3L39JjDsdX2UKGgGaAloD0MI3pOHhZo1d8CUhpRSlGgVS1toFkdAQd0k+otL+XV9lChoBmgJaA9DCDdQ4J18EFvAlIaUUpRoFUtyaBZHQEHdVnVXmvJ1fZQoaAZoCWgPQwig3SHFAFZiwJSGlFKUaBVLdWgWR0BB3zrE9+w1dX2UKGgGaAloD0MIdvpBXSSaasCUhpRSlGgVS1RoFkdAQd+M+/xlQXV9lChoBmgJaA9DCCr/Wl65z1vAlIaUUpRoFUtFaBZHQEHgPhAGB4F1fZQoaAZoCWgPQwhNMJxrmDhSwJSGlFKUaBVLUWgWR0BB5U5EMLF5dX2UKGgGaAloD0MICB7f3jVeWcCUhpRSlGgVS0toFkdAQedn003wTnV9lChoBmgJaA9DCEFl/PuMV1/AlIaUUpRoFUt0aBZHQEHoJZ4fOlh1fZQoaAZoCWgPQwj8/WK2ZCRTwJSGlFKUaBVLR2gWR0BB6iA+Y+jedX2UKGgGaAloD0MI+1ksRXJza8CUhpRSlGgVS2JoFkdAQev8TBZZCHV9lChoBmgJaA9DCA9j0t9LZ2PAlIaUUpRoFUtnaBZHQEHvZ/0/W2B1fZQoaAZoCWgPQwhOtoE7UCZowJSGlFKUaBVLbGgWR0BB85I6Kcd6dX2UKGgGaAloD0MIX16AffR5Y8CUhpRSlGgVS4RoFkdAQfTTSb6P83V9lChoBmgJaA9DCBlZMsfyeVrAlIaUUpRoFUtHaBZHQEH0zMRpUPx1fZQoaAZoCWgPQwgaGHlZE6tYwJSGlFKUaBVLT2gWR0BB9fe1rqMWdX2UKGgGaAloD0MI3GeVmdJLXsCUhpRSlGgVS1hoFkdAQfabWmP5pXV9lChoBmgJaA9DCPUqMjogcVrAlIaUUpRoFUteaBZHQEH4HQhOgxt1fZQoaAZoCWgPQwgpzeZxGNlWwJSGlFKUaBVLSGgWR0BB+v6j3225dX2UKGgGaAloD0MIIEQy5Nh1YsCUhpRSlGgVS3BoFkdAQf0kD6nBL3V9lChoBmgJaA9DCD0nvW98N1DAlIaUUpRoFUtPaBZHQEH+4//vOQh1fZQoaAZoCWgPQwifsMQDCgpwwJSGlFKUaBVLhmgWR0BB/0N8VpK0dX2UKGgGaAloD0MI5ggZyLPyU8CUhpRSlGgVS09oFkdAQf+EZiuuBHV9lChoBmgJaA9DCBHg9C7eI03AlIaUUpRoFUuDaBZHQEIAnwXqJMx1fZQoaAZoCWgPQwih9fBlIuVswJSGlFKUaBVLgWgWR0BCBLq2SdOJdX2UKGgGaAloD0MI1jibjgBOXcCUhpRSlGgVS2RoFkdAQgeD15B1LnV9lChoBmgJaA9DCMDpXbyfWmjAlIaUUpRoFUt0aBZHQEIOQwK0D2d1fZQoaAZoCWgPQwj11VWB2iJhwJSGlFKUaBVLVGgWR0BCDt1ZDArQdX2UKGgGaAloD0MI6L6c2a7+WcCUhpRSlGgVS1hoFkdAQg+QGOdXk3V9lChoBmgJaA9DCIVBmUaTTzPAlIaUUpRoFUtjaBZHQEIQvL5hz/91fZQoaAZoCWgPQwiZoIZvYd1awJSGlFKUaBVLQGgWR0BCEYywfQrudX2UKGgGaAloD0MICvZf56bgW8CUhpRSlGgVS0NoFkdAQhIJHAh0Q3V9lChoBmgJaA9DCC9OfLWjLVrAlIaUUpRoFUtYaBZHQEIWXgLqlgt1fZQoaAZoCWgPQwhmguFcQ0JlwJSGlFKUaBVLa2gWR0BCFwbMottidX2UKGgGaAloD0MIHzAPmfI7UMCUhpRSlGgVS4JoFkdAQhrqUu+RHXV9lChoBmgJaA9DCJyGqMJfCnPAlIaUUpRoFUtgaBZHQEIbfvWpZOl1fZQoaAZoCWgPQwhMqrab4K5bwJSGlFKUaBVLXGgWR0BCG1zhgmZ3dX2UKGgGaAloD0MInkXvVMAZYMCUhpRSlGgVS01oFkdAQhuUKRdQf3V9lChoBmgJaA9DCCo4vCAiflXAlIaUUpRoFUuFaBZHQEIb1U2kzoF1fZQoaAZoCWgPQwhcqtIW1wx2wJSGlFKUaBVLnGgWR0BCHTSCvovBdX2UKGgGaAloD0MIucSRByJUbsCUhpRSlGgVS3toFkdAQh4a5wwTNHV9lChoBmgJaA9DCMSXiSIkL2LAlIaUUpRoFUtRaBZHQEImUeuFHrh1fZQoaAZoCWgPQwg4onvWNd90wJSGlFKUaBVLVmgWR0BCJpCa7VawdX2UKGgGaAloD0MIJ/c7FAU/WcCUhpRSlGgVS1toFkdAQij4tYjjaXV9lChoBmgJaA9DCDVfJR87fWHAlIaUUpRoFUtaaBZHQEIqlXRw6yV1fZQoaAZoCWgPQwjfGAKAY75XwJSGlFKUaBVLe2gWR0BCKtTLns9kdX2UKGgGaAloD0MI2uIan8lKZ8CUhpRSlGgVS2NoFkdAQi5qKxcE/3V9lChoBmgJaA9DCGE2AYblpFbAlIaUUpRoFUtKaBZHQEIv2Bas6q91fZQoaAZoCWgPQwiU3GETmYpawJSGlFKUaBVLXmgWR0BCMdWp6yB1dX2UKGgGaAloD0MIcVXZd0UIZ8CUhpRSlGgVS2JoFkdAQjJVKf4AS3V9lChoBmgJaA9DCIZWJ2eoWGHAlIaUUpRoFUtXaBZHQEI0ghbGFSN1fZQoaAZoCWgPQwgfnbry2WpgwJSGlFKUaBVLgmgWR0BCNxgiNbTudX2UKGgGaAloD0MIcuFASBZFUsCUhpRSlGgVS19oFkdAQjgvL5h0AHV9lChoBmgJaA9DCJ0q3zMSnlDAlIaUUpRoFUtKaBZHQEI8Xrt3OfN1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 12,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVGQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMcy9ob21lL2toYWxkaS9hbmFjb25kYTMvZW52cy9odWdnaW5nLWZhY2VfZGVlcGxlYXJuaW5nL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHMvaG9tZS9raGFsZGkvYW5hY29uZGEzL2VudnMvaHVnZ2luZy1mYWNlX2RlZXBsZWFybmluZy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8d1100604cfe7f8be7168732795807c7820b37a6d444490c0bcd6caf811e3b4
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42405cb89fc65dce3ef0498ccc0185f773bfa7f7cc729d14ed971a8003eb4bb5
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-31-generic-x86_64-with-glibc2.36 # 32-Ubuntu SMP PREEMPT_DYNAMIC Fri Jan 20 15:20:08 UTC 2023
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.2
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (169 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -181.50231120145764, "std_reward": 98.77859535912816, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-18T18:11:05.462320"}
|