Upload 133 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- One-2-3-45-master 2/.DS_Store +0 -0
- One-2-3-45-master 2/.gitattributes +35 -0
- One-2-3-45-master 2/.gitignore +11 -0
- One-2-3-45-master 2/LICENSE +201 -0
- One-2-3-45-master 2/README.md +221 -0
- One-2-3-45-master 2/configs/sd-objaverse-finetune-c_concat-256.yaml +117 -0
- One-2-3-45-master 2/demo/.DS_Store +0 -0
- One-2-3-45-master 2/demo/.gitattributes +36 -0
- One-2-3-45-master 2/demo/.gitignore +4 -0
- One-2-3-45-master 2/demo/app.py +639 -0
- One-2-3-45-master 2/demo/demo_tmp/.gitignore +1 -0
- One-2-3-45-master 2/demo/demo_tmp/.gitkeep +0 -0
- One-2-3-45-master 2/demo/instructions_12345.md +10 -0
- One-2-3-45-master 2/demo/memora/.gitattributes +35 -0
- One-2-3-45-master 2/demo/memora/README.md +12 -0
- One-2-3-45-master 2/demo/style.css +33 -0
- One-2-3-45-master 2/download_ckpt.py +30 -0
- One-2-3-45-master 2/elevation_estimate/.gitignore +3 -0
- One-2-3-45-master 2/elevation_estimate/__init__.py +0 -0
- One-2-3-45-master 2/elevation_estimate/estimate_wild_imgs.py +10 -0
- One-2-3-45-master 2/elevation_estimate/loftr/__init__.py +2 -0
- One-2-3-45-master 2/elevation_estimate/loftr/backbone/__init__.py +11 -0
- One-2-3-45-master 2/elevation_estimate/loftr/backbone/resnet_fpn.py +199 -0
- One-2-3-45-master 2/elevation_estimate/loftr/loftr.py +81 -0
- One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/__init__.py +2 -0
- One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/fine_preprocess.py +59 -0
- One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/linear_attention.py +81 -0
- One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/transformer.py +101 -0
- One-2-3-45-master 2/elevation_estimate/loftr/utils/coarse_matching.py +261 -0
- One-2-3-45-master 2/elevation_estimate/loftr/utils/cvpr_ds_config.py +50 -0
- One-2-3-45-master 2/elevation_estimate/loftr/utils/fine_matching.py +74 -0
- One-2-3-45-master 2/elevation_estimate/loftr/utils/geometry.py +54 -0
- One-2-3-45-master 2/elevation_estimate/loftr/utils/position_encoding.py +42 -0
- One-2-3-45-master 2/elevation_estimate/loftr/utils/supervision.py +151 -0
- One-2-3-45-master 2/elevation_estimate/pyproject.toml +7 -0
- One-2-3-45-master 2/elevation_estimate/utils/__init__.py +0 -0
- One-2-3-45-master 2/elevation_estimate/utils/elev_est_api.py +205 -0
- One-2-3-45-master 2/elevation_estimate/utils/plotting.py +154 -0
- One-2-3-45-master 2/elevation_estimate/utils/plt_utils.py +318 -0
- One-2-3-45-master 2/elevation_estimate/utils/utils3d.py +62 -0
- One-2-3-45-master 2/elevation_estimate/utils/weights/.gitkeep +0 -0
- One-2-3-45-master 2/example.ipynb +0 -0
- One-2-3-45-master 2/ldm/data/__init__.py +0 -0
- One-2-3-45-master 2/ldm/data/base.py +40 -0
- One-2-3-45-master 2/ldm/data/coco.py +253 -0
- One-2-3-45-master 2/ldm/data/dummy.py +34 -0
- One-2-3-45-master 2/ldm/data/imagenet.py +394 -0
- One-2-3-45-master 2/ldm/data/inpainting/__init__.py +0 -0
- One-2-3-45-master 2/ldm/data/inpainting/synthetic_mask.py +166 -0
- One-2-3-45-master 2/ldm/data/laion.py +537 -0
One-2-3-45-master 2/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
One-2-3-45-master 2/.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
One-2-3-45-master 2/.gitignore
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
exp/
|
3 |
+
src/
|
4 |
+
*.DS_Store
|
5 |
+
*.ipynb
|
6 |
+
*.egg-info/
|
7 |
+
*.ckpt
|
8 |
+
*.pth
|
9 |
+
|
10 |
+
!example.ipynb
|
11 |
+
!reconstruction/exp
|
One-2-3-45-master 2/LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
One-2-3-45-master 2/README.md
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p align="center" width="100%">
|
2 |
+
<img src="https://github.com/Dustinpro/Dustinpro/assets/23076389/0fbdb69a-0fb4-4b42-b9da-e0b28532bdfd" width="80%" height="80%">
|
3 |
+
</p>
|
4 |
+
|
5 |
+
|
6 |
+
<p align="center">
|
7 |
+
[<a href="https://arxiv.org/pdf/2306.16928.pdf"><strong>Paper</strong></a>]
|
8 |
+
[<a href="http://one-2-3-45.com"><strong>Project</strong></a>]
|
9 |
+
[<a href="https://huggingface.co/spaces/One-2-3-45/One-2-3-45"><strong>Demo</strong></a>]
|
10 |
+
[<a href="#citation"><strong>BibTeX</strong></a>]
|
11 |
+
</p>
|
12 |
+
|
13 |
+
<p align="center">
|
14 |
+
<a href="https://huggingface.co/spaces/One-2-3-45/One-2-3-45">
|
15 |
+
<img alt="Hugging Face Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Space_of_the_Week_%F0%9F%94%A5-blue">
|
16 |
+
</a>
|
17 |
+
</p>
|
18 |
+
|
19 |
+
One-2-3-45 rethinks how to leverage 2D diffusion models for 3D AIGC and introduces a novel forward-only paradigm that avoids the time-consuming optimization.
|
20 |
+
|
21 |
+
https://github.com/One-2-3-45/One-2-3-45/assets/16759292/a81d6e32-8d29-43a5-b044-b5112b9f9664
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
https://github.com/One-2-3-45/One-2-3-45/assets/16759292/5ecd45ef-8fd3-4643-af4c-fac3050a0428
|
26 |
+
|
27 |
+
|
28 |
+
## News
|
29 |
+
**[09/21/2023]**
|
30 |
+
One-2-3-45 is accepted by NeurIPS 2023. See you in New Orleans!
|
31 |
+
|
32 |
+
**[09/11/2023]**
|
33 |
+
Training code released.
|
34 |
+
|
35 |
+
**[08/18/2023]**
|
36 |
+
Inference code released.
|
37 |
+
|
38 |
+
**[07/24/2023]**
|
39 |
+
Our demo reached the HuggingFace top 4 trending and was featured in 🤗 Spaces of the Week 🔥! Special thanks to HuggingFace 🤗 for sponsoring this demo!!
|
40 |
+
|
41 |
+
**[07/11/2023]**
|
42 |
+
[Online interactive demo](https://huggingface.co/spaces/One-2-3-45/One-2-3-45) released! Explore it and create your own 3D models in just 45 seconds!
|
43 |
+
|
44 |
+
**[06/29/2023]**
|
45 |
+
Check out our [paper](https://arxiv.org/pdf/2306.16928.pdf). [[X](https://twitter.com/_akhaliq/status/1674617785119305728)]
|
46 |
+
|
47 |
+
## Installation
|
48 |
+
Hardware requirement: an NVIDIA GPU with memory >=18GB (_e.g._, RTX 3090 or A10). Tested on Ubuntu.
|
49 |
+
|
50 |
+
We offer two ways to setup the environment:
|
51 |
+
|
52 |
+
### Traditional Installation
|
53 |
+
<details>
|
54 |
+
<summary>Step 1: Install Debian packages. </summary>
|
55 |
+
|
56 |
+
```bash
|
57 |
+
sudo apt update && sudo apt install git-lfs libsparsehash-dev build-essential
|
58 |
+
```
|
59 |
+
</details>
|
60 |
+
|
61 |
+
<details>
|
62 |
+
<summary>Step 2: Create and activate a conda environment. </summary>
|
63 |
+
|
64 |
+
```bash
|
65 |
+
conda create -n One2345 python=3.10
|
66 |
+
conda activate One2345
|
67 |
+
```
|
68 |
+
</details>
|
69 |
+
|
70 |
+
<details>
|
71 |
+
<summary>Step 3: Clone the repository to the local machine. </summary>
|
72 |
+
|
73 |
+
```bash
|
74 |
+
# Make sure you have git-lfs installed.
|
75 |
+
git lfs install
|
76 |
+
git clone https://github.com/One-2-3-45/One-2-3-45
|
77 |
+
cd One-2-3-45
|
78 |
+
```
|
79 |
+
</details>
|
80 |
+
|
81 |
+
<details>
|
82 |
+
<summary>Step 4: Install project dependencies using pip. </summary>
|
83 |
+
|
84 |
+
```bash
|
85 |
+
# Ensure that the installed CUDA version matches the torch's cuda version.
|
86 |
+
# Example: CUDA 11.8 installation
|
87 |
+
wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
|
88 |
+
sudo sh cuda_11.8.0_520.61.05_linux.run
|
89 |
+
export PATH="/usr/local/cuda-11.8/bin:$PATH"
|
90 |
+
export LD_LIBRARY_PATH="/usr/local/cuda-11.8/lib64:$LD_LIBRARY_PATH"
|
91 |
+
# Install PyTorch 2.0
|
92 |
+
pip install --no-cache-dir torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
|
93 |
+
# Install dependencies
|
94 |
+
pip install -r requirements.txt
|
95 |
+
# Install inplace_abn and torchsparse
|
96 |
+
export TORCH_CUDA_ARCH_LIST="7.0;7.2;8.0;8.6+PTX" # CUDA architectures. Modify according to your hardware.
|
97 |
+
export IABN_FORCE_CUDA=1
|
98 |
+
pip install inplace_abn
|
99 |
+
FORCE_CUDA=1 pip install --no-cache-dir git+https://github.com/mit-han-lab/torchsparse.git@v1.4.0
|
100 |
+
```
|
101 |
+
</details>
|
102 |
+
|
103 |
+
<details>
|
104 |
+
<summary>Step 5: Download model checkpoints. </summary>
|
105 |
+
|
106 |
+
```bash
|
107 |
+
python download_ckpt.py
|
108 |
+
```
|
109 |
+
</details>
|
110 |
+
|
111 |
+
|
112 |
+
### Installation by Docker Images
|
113 |
+
<details>
|
114 |
+
<summary>Option 1: Pull and Play (environment and checkpoints). (~22.3G)</summary>
|
115 |
+
|
116 |
+
```bash
|
117 |
+
# Pull the Docker image that contains the full repository.
|
118 |
+
docker pull chaoxu98/one2345:demo_1.0
|
119 |
+
# An interactive demo will be launched automatically upon running the container.
|
120 |
+
# This will provide a public URL like XXXXXXX.gradio.live
|
121 |
+
docker run --name One-2-3-45_demo --gpus all -it chaoxu98/one2345:demo_1.0
|
122 |
+
```
|
123 |
+
</details>
|
124 |
+
|
125 |
+
<details>
|
126 |
+
<summary>Option 2: Environment Only. (~7.3G)</summary>
|
127 |
+
|
128 |
+
```bash
|
129 |
+
# Pull the Docker image that installed all project dependencies.
|
130 |
+
docker pull chaoxu98/one2345:1.0
|
131 |
+
# Start a Docker container named One2345.
|
132 |
+
docker run --name One-2-3-45 --gpus all -it chaoxu98/one2345:1.0
|
133 |
+
# Get a bash shell in the container.
|
134 |
+
docker exec -it One-2-3-45 /bin/bash
|
135 |
+
# Clone the repository to the local machine.
|
136 |
+
git clone https://github.com/One-2-3-45/One-2-3-45
|
137 |
+
cd One-2-3-45
|
138 |
+
# Download model checkpoints.
|
139 |
+
python download_ckpt.py
|
140 |
+
# Refer to getting started for inference.
|
141 |
+
```
|
142 |
+
</details>
|
143 |
+
|
144 |
+
## Getting Started (Inference)
|
145 |
+
|
146 |
+
First-time running will take longer time to compile the models.
|
147 |
+
|
148 |
+
Expected time cost per image: 40s on an NVIDIA A6000.
|
149 |
+
```bash
|
150 |
+
# 1. Script
|
151 |
+
python run.py --img_path PATH_TO_INPUT_IMG --half_precision
|
152 |
+
|
153 |
+
# 2. Interactive demo (Gradio) with a friendly web interface
|
154 |
+
# An URL will be provided in the output
|
155 |
+
# (Local: 127.0.0.1:7860; Public: XXXXXXX.gradio.live)
|
156 |
+
cd demo/
|
157 |
+
python app.py
|
158 |
+
|
159 |
+
# 3. Jupyter Notebook
|
160 |
+
example.ipynb
|
161 |
+
```
|
162 |
+
|
163 |
+
## Training Your Own Model
|
164 |
+
|
165 |
+
### Data Preparation
|
166 |
+
We use Objaverse-LVIS dataset for training and render the selected shapes (with CC-BY license) into 2D images with Blender.
|
167 |
+
#### Download the training images.
|
168 |
+
Download all One2345.zip.part-* files (5 files in total) from <a href="https://huggingface.co/datasets/One-2-3-45/training_data/tree/main">here</a> and then cat them into a single .zip file using the following command:
|
169 |
+
```bash
|
170 |
+
cat One2345.zip.part-* > One2345.zip
|
171 |
+
```
|
172 |
+
|
173 |
+
#### Unzip the training images zip file.
|
174 |
+
Unzip the zip file into a folder specified by yourself (`YOUR_BASE_FOLDER`) with the following command:
|
175 |
+
|
176 |
+
```bash
|
177 |
+
unzip One2345.zip -d YOUR_BASE_FOLDER
|
178 |
+
```
|
179 |
+
|
180 |
+
#### Download meta files.
|
181 |
+
|
182 |
+
Download `One2345_training_pose.json` and `lvis_split_cc_by.json` from <a href="https://huggingface.co/datasets/One-2-3-45/training_data/tree/main">here</a> and put them into the same folder as the training images (`YOUR_BASE_FOLDER`).
|
183 |
+
|
184 |
+
Your file structure should look like this:
|
185 |
+
```
|
186 |
+
# One2345 is your base folder used in the previous steps
|
187 |
+
|
188 |
+
One2345
|
189 |
+
├── One2345_training_pose.json
|
190 |
+
├── lvis_split_cc_by.json
|
191 |
+
└── zero12345_narrow
|
192 |
+
├── 000-000
|
193 |
+
├── 000-001
|
194 |
+
├── 000-002
|
195 |
+
...
|
196 |
+
└── 000-159
|
197 |
+
|
198 |
+
```
|
199 |
+
|
200 |
+
### Training
|
201 |
+
Specify the `trainpath`, `valpath`, and `testpath` in the config file `./reconstruction/confs/one2345_lod_train.conf` to be `YOUR_BASE_FOLDER` used in data preparation steps and run the following command:
|
202 |
+
```bash
|
203 |
+
cd reconstruction
|
204 |
+
python exp_runner_generic_blender_train.py --mode train --conf confs/one2345_lod_train.conf
|
205 |
+
```
|
206 |
+
Experiment logs and checkpoints will be saved in `./reconstruction/exp/`.
|
207 |
+
|
208 |
+
## Citation
|
209 |
+
|
210 |
+
If you find our code helpful, please cite our paper:
|
211 |
+
|
212 |
+
```
|
213 |
+
@misc{liu2023one2345,
|
214 |
+
title={One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization},
|
215 |
+
author={Minghua Liu and Chao Xu and Haian Jin and Linghao Chen and Mukund Varma T and Zexiang Xu and Hao Su},
|
216 |
+
year={2023},
|
217 |
+
eprint={2306.16928},
|
218 |
+
archivePrefix={arXiv},
|
219 |
+
primaryClass={cs.CV}
|
220 |
+
}
|
221 |
+
```
|
One-2-3-45-master 2/configs/sd-objaverse-finetune-c_concat-256.yaml
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 1.0e-04
|
3 |
+
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
4 |
+
params:
|
5 |
+
linear_start: 0.00085
|
6 |
+
linear_end: 0.0120
|
7 |
+
num_timesteps_cond: 1
|
8 |
+
log_every_t: 200
|
9 |
+
timesteps: 1000
|
10 |
+
first_stage_key: "image_target"
|
11 |
+
cond_stage_key: "image_cond"
|
12 |
+
image_size: 32
|
13 |
+
channels: 4
|
14 |
+
cond_stage_trainable: false # Note: different from the one we trained before
|
15 |
+
conditioning_key: hybrid
|
16 |
+
monitor: val/loss_simple_ema
|
17 |
+
scale_factor: 0.18215
|
18 |
+
|
19 |
+
scheduler_config: # 10000 warmup steps
|
20 |
+
target: ldm.lr_scheduler.LambdaLinearScheduler
|
21 |
+
params:
|
22 |
+
warm_up_steps: [ 100 ]
|
23 |
+
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
24 |
+
f_start: [ 1.e-6 ]
|
25 |
+
f_max: [ 1. ]
|
26 |
+
f_min: [ 1. ]
|
27 |
+
|
28 |
+
unet_config:
|
29 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
30 |
+
params:
|
31 |
+
image_size: 32 # unused
|
32 |
+
in_channels: 8
|
33 |
+
out_channels: 4
|
34 |
+
model_channels: 320
|
35 |
+
attention_resolutions: [ 4, 2, 1 ]
|
36 |
+
num_res_blocks: 2
|
37 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
38 |
+
num_heads: 8
|
39 |
+
use_spatial_transformer: True
|
40 |
+
transformer_depth: 1
|
41 |
+
context_dim: 768
|
42 |
+
use_checkpoint: True
|
43 |
+
legacy: False
|
44 |
+
|
45 |
+
first_stage_config:
|
46 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
47 |
+
params:
|
48 |
+
embed_dim: 4
|
49 |
+
monitor: val/rec_loss
|
50 |
+
ddconfig:
|
51 |
+
double_z: true
|
52 |
+
z_channels: 4
|
53 |
+
resolution: 256
|
54 |
+
in_channels: 3
|
55 |
+
out_ch: 3
|
56 |
+
ch: 128
|
57 |
+
ch_mult:
|
58 |
+
- 1
|
59 |
+
- 2
|
60 |
+
- 4
|
61 |
+
- 4
|
62 |
+
num_res_blocks: 2
|
63 |
+
attn_resolutions: []
|
64 |
+
dropout: 0.0
|
65 |
+
lossconfig:
|
66 |
+
target: torch.nn.Identity
|
67 |
+
|
68 |
+
cond_stage_config:
|
69 |
+
target: ldm.modules.encoders.modules.FrozenCLIPImageEmbedder
|
70 |
+
|
71 |
+
|
72 |
+
data:
|
73 |
+
target: ldm.data.simple.ObjaverseDataModuleFromConfig
|
74 |
+
params:
|
75 |
+
root_dir: 'views_whole_sphere'
|
76 |
+
batch_size: 192
|
77 |
+
num_workers: 16
|
78 |
+
total_view: 4
|
79 |
+
train:
|
80 |
+
validation: False
|
81 |
+
image_transforms:
|
82 |
+
size: 256
|
83 |
+
|
84 |
+
validation:
|
85 |
+
validation: True
|
86 |
+
image_transforms:
|
87 |
+
size: 256
|
88 |
+
|
89 |
+
|
90 |
+
lightning:
|
91 |
+
find_unused_parameters: false
|
92 |
+
metrics_over_trainsteps_checkpoint: True
|
93 |
+
modelcheckpoint:
|
94 |
+
params:
|
95 |
+
every_n_train_steps: 5000
|
96 |
+
callbacks:
|
97 |
+
image_logger:
|
98 |
+
target: main.ImageLogger
|
99 |
+
params:
|
100 |
+
batch_frequency: 500
|
101 |
+
max_images: 32
|
102 |
+
increase_log_steps: False
|
103 |
+
log_first_step: True
|
104 |
+
log_images_kwargs:
|
105 |
+
use_ema_scope: False
|
106 |
+
inpaint: False
|
107 |
+
plot_progressive_rows: False
|
108 |
+
plot_diffusion_rows: False
|
109 |
+
N: 32
|
110 |
+
unconditional_guidance_scale: 3.0
|
111 |
+
unconditional_guidance_label: [""]
|
112 |
+
|
113 |
+
trainer:
|
114 |
+
benchmark: True
|
115 |
+
val_check_interval: 5000000 # really sorry
|
116 |
+
num_sanity_val_steps: 0
|
117 |
+
accumulate_grad_batches: 1
|
One-2-3-45-master 2/demo/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
One-2-3-45-master 2/demo/.gitattributes
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
One-2-3-45-master 2/demo/.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
weights/
|
2 |
+
data/
|
3 |
+
*.ipynb
|
4 |
+
demo_examples_*
|
One-2-3-45-master 2/demo/app.py
ADDED
@@ -0,0 +1,639 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import shutil
|
4 |
+
import torch
|
5 |
+
import fire
|
6 |
+
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
import cv2
|
9 |
+
from PIL import Image
|
10 |
+
import plotly.graph_objects as go
|
11 |
+
from functools import partial
|
12 |
+
import trimesh
|
13 |
+
import tempfile
|
14 |
+
from rembg import remove
|
15 |
+
|
16 |
+
code_dir = "../"
|
17 |
+
sys.path.append(code_dir)
|
18 |
+
from utils.zero123_utils import init_model, predict_stage1_gradio, zero123_infer
|
19 |
+
from utils.sam_utils import sam_init, sam_out_nosave
|
20 |
+
from utils.utils import image_preprocess_nosave, gen_poses
|
21 |
+
from elevation_estimate.estimate_wild_imgs import estimate_elev
|
22 |
+
|
23 |
+
_GPU_INDEX = 0
|
24 |
+
_HALF_PRECISION = True
|
25 |
+
_MESH_RESOLUTION = 256
|
26 |
+
|
27 |
+
_TITLE = '''One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization'''
|
28 |
+
_DESCRIPTION = '''
|
29 |
+
<div>
|
30 |
+
<a style="display:inline-block" href="http://one-2-3-45.com"><img src="https://img.shields.io/badge/Project_Homepage-f9f7f7?logo="></a>
|
31 |
+
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2306.16928"><img src="https://img.shields.io/badge/2306.16928-f9f7f7?logo="></a>
|
32 |
+
<a style="display:inline-block; margin-left: .5em" href='https://github.com/One-2-3-45/One-2-3-45'><img src='https://img.shields.io/github/stars/One-2-3-45/One-2-3-45?style=social' /></a>
|
33 |
+
</div>
|
34 |
+
We reconstruct a 3D textured mesh from a single image by initially predicting multi-view images and then lifting them to 3D.
|
35 |
+
'''
|
36 |
+
_USER_GUIDE = "Please upload an image in the block above (or choose an example above) and click **Run Generation**."
|
37 |
+
_BBOX_1 = "Predicting bounding box for the input image..."
|
38 |
+
_BBOX_2 = "Bounding box adjusted. Continue adjusting or **Run Generation**."
|
39 |
+
_BBOX_3 = "Bounding box predicted. Adjust it using sliders or **Run Generation**."
|
40 |
+
_SAM = "Preprocessing the input image... (safety check, SAM segmentation, *etc*.)"
|
41 |
+
_GEN_1 = "Predicting multi-view images... (may take \~13 seconds) <br> Images will be shown in the bottom right blocks."
|
42 |
+
_GEN_2 = "Predicting nearby views and generating mesh... (may take \~33 seconds) <br> Mesh will be shown on the right."
|
43 |
+
_DONE = "Done! Mesh is shown on the right. <br> If it is not satisfactory, please select **Retry view** checkboxes for inaccurate views and click **Regenerate selected view(s)** at the bottom."
|
44 |
+
_REGEN_1 = "Selected view(s) are regenerated. You can click **Regenerate nearby views and mesh**. <br> Alternatively, if the regenerated view(s) are still not satisfactory, you can repeat the previous step (select the view and regenerate)."
|
45 |
+
_REGEN_2 = "Regeneration done. Mesh is shown on the right."
|
46 |
+
|
47 |
+
|
48 |
+
def calc_cam_cone_pts_3d(polar_deg, azimuth_deg, radius_m, fov_deg):
|
49 |
+
'''
|
50 |
+
:param polar_deg (float).
|
51 |
+
:param azimuth_deg (float).
|
52 |
+
:param radius_m (float).
|
53 |
+
:param fov_deg (float).
|
54 |
+
:return (5, 3) array of float with (x, y, z).
|
55 |
+
'''
|
56 |
+
polar_rad = np.deg2rad(polar_deg)
|
57 |
+
azimuth_rad = np.deg2rad(azimuth_deg)
|
58 |
+
fov_rad = np.deg2rad(fov_deg)
|
59 |
+
polar_rad = -polar_rad # NOTE: Inverse of how used_x relates to x.
|
60 |
+
|
61 |
+
# Camera pose center:
|
62 |
+
cam_x = radius_m * np.cos(azimuth_rad) * np.cos(polar_rad)
|
63 |
+
cam_y = radius_m * np.sin(azimuth_rad) * np.cos(polar_rad)
|
64 |
+
cam_z = radius_m * np.sin(polar_rad)
|
65 |
+
|
66 |
+
# Obtain four corners of camera frustum, assuming it is looking at origin.
|
67 |
+
# First, obtain camera extrinsics (rotation matrix only):
|
68 |
+
camera_R = np.array([[np.cos(azimuth_rad) * np.cos(polar_rad),
|
69 |
+
-np.sin(azimuth_rad),
|
70 |
+
-np.cos(azimuth_rad) * np.sin(polar_rad)],
|
71 |
+
[np.sin(azimuth_rad) * np.cos(polar_rad),
|
72 |
+
np.cos(azimuth_rad),
|
73 |
+
-np.sin(azimuth_rad) * np.sin(polar_rad)],
|
74 |
+
[np.sin(polar_rad),
|
75 |
+
0.0,
|
76 |
+
np.cos(polar_rad)]])
|
77 |
+
|
78 |
+
# Multiply by corners in camera space to obtain go to space:
|
79 |
+
corn1 = [-1.0, np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0)]
|
80 |
+
corn2 = [-1.0, -np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0)]
|
81 |
+
corn3 = [-1.0, -np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0)]
|
82 |
+
corn4 = [-1.0, np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0)]
|
83 |
+
corn1 = np.dot(camera_R, corn1)
|
84 |
+
corn2 = np.dot(camera_R, corn2)
|
85 |
+
corn3 = np.dot(camera_R, corn3)
|
86 |
+
corn4 = np.dot(camera_R, corn4)
|
87 |
+
|
88 |
+
# Now attach as offset to actual 3D camera position:
|
89 |
+
corn1 = np.array(corn1) / np.linalg.norm(corn1, ord=2)
|
90 |
+
corn_x1 = cam_x + corn1[0]
|
91 |
+
corn_y1 = cam_y + corn1[1]
|
92 |
+
corn_z1 = cam_z + corn1[2]
|
93 |
+
corn2 = np.array(corn2) / np.linalg.norm(corn2, ord=2)
|
94 |
+
corn_x2 = cam_x + corn2[0]
|
95 |
+
corn_y2 = cam_y + corn2[1]
|
96 |
+
corn_z2 = cam_z + corn2[2]
|
97 |
+
corn3 = np.array(corn3) / np.linalg.norm(corn3, ord=2)
|
98 |
+
corn_x3 = cam_x + corn3[0]
|
99 |
+
corn_y3 = cam_y + corn3[1]
|
100 |
+
corn_z3 = cam_z + corn3[2]
|
101 |
+
corn4 = np.array(corn4) / np.linalg.norm(corn4, ord=2)
|
102 |
+
corn_x4 = cam_x + corn4[0]
|
103 |
+
corn_y4 = cam_y + corn4[1]
|
104 |
+
corn_z4 = cam_z + corn4[2]
|
105 |
+
|
106 |
+
xs = [cam_x, corn_x1, corn_x2, corn_x3, corn_x4]
|
107 |
+
ys = [cam_y, corn_y1, corn_y2, corn_y3, corn_y4]
|
108 |
+
zs = [cam_z, corn_z1, corn_z2, corn_z3, corn_z4]
|
109 |
+
|
110 |
+
return np.array([xs, ys, zs]).T
|
111 |
+
|
112 |
+
class CameraVisualizer:
|
113 |
+
def __init__(self, gradio_plot):
|
114 |
+
self._gradio_plot = gradio_plot
|
115 |
+
self._fig = None
|
116 |
+
self._polar = 0.0
|
117 |
+
self._azimuth = 0.0
|
118 |
+
self._radius = 0.0
|
119 |
+
self._raw_image = None
|
120 |
+
self._8bit_image = None
|
121 |
+
self._image_colorscale = None
|
122 |
+
|
123 |
+
def encode_image(self, raw_image, elev=90):
|
124 |
+
'''
|
125 |
+
:param raw_image (H, W, 3) array of uint8 in [0, 255].
|
126 |
+
'''
|
127 |
+
# https://stackoverflow.com/questions/60685749/python-plotly-how-to-add-an-image-to-a-3d-scatter-plot
|
128 |
+
|
129 |
+
dum_img = Image.fromarray(np.ones((3, 3, 3), dtype='uint8')).convert('P', palette='WEB')
|
130 |
+
idx_to_color = np.array(dum_img.getpalette()).reshape((-1, 3))
|
131 |
+
|
132 |
+
self._raw_image = raw_image
|
133 |
+
self._8bit_image = Image.fromarray(raw_image).convert('P', palette='WEB', dither=None)
|
134 |
+
# self._8bit_image = Image.fromarray(raw_image.clip(0, 254)).convert(
|
135 |
+
# 'P', palette='WEB', dither=None)
|
136 |
+
self._image_colorscale = [
|
137 |
+
[i / 255.0, 'rgb({}, {}, {})'.format(*rgb)] for i, rgb in enumerate(idx_to_color)]
|
138 |
+
self._elev = elev
|
139 |
+
# return self.update_figure()
|
140 |
+
|
141 |
+
def update_figure(self):
|
142 |
+
fig = go.Figure()
|
143 |
+
|
144 |
+
if self._raw_image is not None:
|
145 |
+
(H, W, C) = self._raw_image.shape
|
146 |
+
|
147 |
+
x = np.zeros((H, W))
|
148 |
+
(y, z) = np.meshgrid(np.linspace(-1.0, 1.0, W), np.linspace(1.0, -1.0, H) * H / W)
|
149 |
+
|
150 |
+
angle_deg = self._elev-90
|
151 |
+
angle = np.radians(90-self._elev)
|
152 |
+
rotation_matrix = np.array([
|
153 |
+
[np.cos(angle), 0, np.sin(angle)],
|
154 |
+
[0, 1, 0],
|
155 |
+
[-np.sin(angle), 0, np.cos(angle)]
|
156 |
+
])
|
157 |
+
# Assuming x, y, z are the original 3D coordinates of the image
|
158 |
+
coordinates = np.stack((x, y, z), axis=-1) # Combine x, y, z into a single array
|
159 |
+
# Apply the rotation matrix
|
160 |
+
rotated_coordinates = np.matmul(coordinates, rotation_matrix)
|
161 |
+
# Extract the new x, y, z coordinates from the rotated coordinates
|
162 |
+
x, y, z = rotated_coordinates[..., 0], rotated_coordinates[..., 1], rotated_coordinates[..., 2]
|
163 |
+
|
164 |
+
fig.add_trace(go.Surface(
|
165 |
+
x=x, y=y, z=z,
|
166 |
+
surfacecolor=self._8bit_image,
|
167 |
+
cmin=0,
|
168 |
+
cmax=255,
|
169 |
+
colorscale=self._image_colorscale,
|
170 |
+
showscale=False,
|
171 |
+
lighting_diffuse=1.0,
|
172 |
+
lighting_ambient=1.0,
|
173 |
+
lighting_fresnel=1.0,
|
174 |
+
lighting_roughness=1.0,
|
175 |
+
lighting_specular=0.3))
|
176 |
+
|
177 |
+
scene_bounds = 3.5
|
178 |
+
base_radius = 2.5
|
179 |
+
zoom_scale = 1.5 # Note that input radius offset is in [-0.5, 0.5].
|
180 |
+
fov_deg = 50.0
|
181 |
+
edges = [(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (2, 3), (3, 4), (4, 1)]
|
182 |
+
|
183 |
+
input_cone = calc_cam_cone_pts_3d(
|
184 |
+
angle_deg, 0.0, base_radius, fov_deg) # (5, 3).
|
185 |
+
output_cone = calc_cam_cone_pts_3d(
|
186 |
+
self._polar, self._azimuth, base_radius + self._radius * zoom_scale, fov_deg) # (5, 3).
|
187 |
+
output_cones = []
|
188 |
+
for i in range(1,4):
|
189 |
+
output_cones.append(calc_cam_cone_pts_3d(
|
190 |
+
angle_deg, i*90, base_radius + self._radius * zoom_scale, fov_deg))
|
191 |
+
delta_deg = 30 if angle_deg <= -15 else -30
|
192 |
+
for i in range(4):
|
193 |
+
output_cones.append(calc_cam_cone_pts_3d(
|
194 |
+
angle_deg+delta_deg, 30+i*90, base_radius + self._radius * zoom_scale, fov_deg))
|
195 |
+
|
196 |
+
cones = [(input_cone, 'rgb(174, 54, 75)', 'Input view (Predicted view 1)')]
|
197 |
+
for i in range(len(output_cones)):
|
198 |
+
cones.append((output_cones[i], 'rgb(32, 77, 125)', f'Predicted view {i+2}'))
|
199 |
+
|
200 |
+
for idx, (cone, clr, legend) in enumerate(cones):
|
201 |
+
|
202 |
+
for (i, edge) in enumerate(edges):
|
203 |
+
(x1, x2) = (cone[edge[0], 0], cone[edge[1], 0])
|
204 |
+
(y1, y2) = (cone[edge[0], 1], cone[edge[1], 1])
|
205 |
+
(z1, z2) = (cone[edge[0], 2], cone[edge[1], 2])
|
206 |
+
fig.add_trace(go.Scatter3d(
|
207 |
+
x=[x1, x2], y=[y1, y2], z=[z1, z2], mode='lines',
|
208 |
+
line=dict(color=clr, width=3),
|
209 |
+
name=legend, showlegend=(i == 1) and (idx <= 1)))
|
210 |
+
|
211 |
+
# Add label.
|
212 |
+
if cone[0, 2] <= base_radius / 2.0:
|
213 |
+
fig.add_trace(go.Scatter3d(
|
214 |
+
x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] - 0.05], showlegend=False,
|
215 |
+
mode='text', text=legend, textposition='bottom center'))
|
216 |
+
else:
|
217 |
+
fig.add_trace(go.Scatter3d(
|
218 |
+
x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] + 0.05], showlegend=False,
|
219 |
+
mode='text', text=legend, textposition='top center'))
|
220 |
+
|
221 |
+
# look at center of scene
|
222 |
+
fig.update_layout(
|
223 |
+
# width=640,
|
224 |
+
# height=480,
|
225 |
+
# height=400,
|
226 |
+
height=450,
|
227 |
+
autosize=True,
|
228 |
+
hovermode=False,
|
229 |
+
margin=go.layout.Margin(l=0, r=0, b=0, t=0),
|
230 |
+
showlegend=False,
|
231 |
+
legend=dict(
|
232 |
+
yanchor='bottom',
|
233 |
+
y=0.01,
|
234 |
+
xanchor='right',
|
235 |
+
x=0.99,
|
236 |
+
),
|
237 |
+
scene=dict(
|
238 |
+
aspectmode='manual',
|
239 |
+
aspectratio=dict(x=1, y=1, z=1.0),
|
240 |
+
camera=dict(
|
241 |
+
eye=dict(x=base_radius - 1.6, y=0.0, z=0.6),
|
242 |
+
center=dict(x=0.0, y=0.0, z=0.0),
|
243 |
+
up=dict(x=0.0, y=0.0, z=1.0)),
|
244 |
+
xaxis_title='',
|
245 |
+
yaxis_title='',
|
246 |
+
zaxis_title='',
|
247 |
+
xaxis=dict(
|
248 |
+
range=[-scene_bounds, scene_bounds],
|
249 |
+
showticklabels=False,
|
250 |
+
showgrid=True,
|
251 |
+
zeroline=False,
|
252 |
+
showbackground=True,
|
253 |
+
showspikes=False,
|
254 |
+
showline=False,
|
255 |
+
ticks=''),
|
256 |
+
yaxis=dict(
|
257 |
+
range=[-scene_bounds, scene_bounds],
|
258 |
+
showticklabels=False,
|
259 |
+
showgrid=True,
|
260 |
+
zeroline=False,
|
261 |
+
showbackground=True,
|
262 |
+
showspikes=False,
|
263 |
+
showline=False,
|
264 |
+
ticks=''),
|
265 |
+
zaxis=dict(
|
266 |
+
range=[-scene_bounds, scene_bounds],
|
267 |
+
showticklabels=False,
|
268 |
+
showgrid=True,
|
269 |
+
zeroline=False,
|
270 |
+
showbackground=True,
|
271 |
+
showspikes=False,
|
272 |
+
showline=False,
|
273 |
+
ticks='')))
|
274 |
+
|
275 |
+
self._fig = fig
|
276 |
+
return fig
|
277 |
+
|
278 |
+
|
279 |
+
def stage1_run(models, device, cam_vis, tmp_dir,
|
280 |
+
input_im, scale, ddim_steps, elev=None, rerun_all=[],
|
281 |
+
*btn_retrys):
|
282 |
+
is_rerun = True if cam_vis is None else False
|
283 |
+
model = models['turncam']
|
284 |
+
|
285 |
+
stage1_dir = os.path.join(tmp_dir, "stage1_8")
|
286 |
+
if not is_rerun:
|
287 |
+
os.makedirs(stage1_dir, exist_ok=True)
|
288 |
+
output_ims = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(4)), device=device, ddim_steps=ddim_steps, scale=scale)
|
289 |
+
stage2_steps = 50 # ddim_steps
|
290 |
+
zero123_infer(model, tmp_dir, indices=[0], device=device, ddim_steps=stage2_steps, scale=scale)
|
291 |
+
try:
|
292 |
+
elev_output = estimate_elev(tmp_dir)
|
293 |
+
except:
|
294 |
+
print("Failed to estimate polar angle")
|
295 |
+
elev_output = 90
|
296 |
+
print("Estimated polar angle:", elev_output)
|
297 |
+
gen_poses(tmp_dir, elev_output)
|
298 |
+
show_in_im1 = np.asarray(input_im, dtype=np.uint8)
|
299 |
+
cam_vis.encode_image(show_in_im1, elev=elev_output)
|
300 |
+
new_fig = cam_vis.update_figure()
|
301 |
+
|
302 |
+
flag_lower_cam = elev_output <= 75
|
303 |
+
if flag_lower_cam:
|
304 |
+
output_ims_2 = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(4,8)), device=device, ddim_steps=ddim_steps, scale=scale)
|
305 |
+
else:
|
306 |
+
output_ims_2 = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(8,12)), device=device, ddim_steps=ddim_steps, scale=scale)
|
307 |
+
torch.cuda.empty_cache()
|
308 |
+
return (90-elev_output, new_fig, *output_ims, *output_ims_2)
|
309 |
+
else:
|
310 |
+
rerun_idx = [i for i in range(len(btn_retrys)) if btn_retrys[i]]
|
311 |
+
if 90-int(elev["label"]) > 75:
|
312 |
+
rerun_idx_in = [i if i < 4 else i+4 for i in rerun_idx]
|
313 |
+
else:
|
314 |
+
rerun_idx_in = rerun_idx
|
315 |
+
for idx in rerun_idx_in:
|
316 |
+
if idx not in rerun_all:
|
317 |
+
rerun_all.append(idx)
|
318 |
+
print("rerun_idx", rerun_all)
|
319 |
+
output_ims = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=rerun_idx_in, device=device, ddim_steps=ddim_steps, scale=scale)
|
320 |
+
outputs = [gr.update(visible=True)] * 8
|
321 |
+
for idx, view_idx in enumerate(rerun_idx):
|
322 |
+
outputs[view_idx] = output_ims[idx]
|
323 |
+
reset = [gr.update(value=False)] * 8
|
324 |
+
torch.cuda.empty_cache()
|
325 |
+
return (rerun_all, *reset, *outputs)
|
326 |
+
|
327 |
+
def stage2_run(models, device, tmp_dir,
|
328 |
+
elev, scale, is_glb=False, rerun_all=[], stage2_steps=50):
|
329 |
+
flag_lower_cam = 90-int(elev["label"]) <= 75
|
330 |
+
is_rerun = True if rerun_all else False
|
331 |
+
model = models['turncam']
|
332 |
+
if not is_rerun:
|
333 |
+
if flag_lower_cam:
|
334 |
+
zero123_infer(model, tmp_dir, indices=list(range(1,8)), device=device, ddim_steps=stage2_steps, scale=scale)
|
335 |
+
else:
|
336 |
+
zero123_infer(model, tmp_dir, indices=list(range(1,4))+list(range(8,12)), device=device, ddim_steps=stage2_steps, scale=scale)
|
337 |
+
else:
|
338 |
+
print("rerun_idx", rerun_all)
|
339 |
+
zero123_infer(model, tmp_dir, indices=rerun_all, device=device, ddim_steps=stage2_steps, scale=scale)
|
340 |
+
|
341 |
+
dataset = tmp_dir
|
342 |
+
main_dir_path = os.path.dirname(__file__)
|
343 |
+
torch.cuda.empty_cache()
|
344 |
+
os.chdir(os.path.join(code_dir, 'reconstruction/'))
|
345 |
+
|
346 |
+
bash_script = f'CUDA_VISIBLE_DEVICES={_GPU_INDEX} python exp_runner_generic_blender_val.py \
|
347 |
+
--specific_dataset_name {dataset} \
|
348 |
+
--mode export_mesh \
|
349 |
+
--conf confs/one2345_lod0_val_demo.conf \
|
350 |
+
--resolution {_MESH_RESOLUTION}'
|
351 |
+
print(bash_script)
|
352 |
+
os.system(bash_script)
|
353 |
+
os.chdir(main_dir_path)
|
354 |
+
|
355 |
+
ply_path = os.path.join(tmp_dir, f"mesh.ply")
|
356 |
+
mesh_ext = ".glb" if is_glb else ".obj"
|
357 |
+
mesh_path = os.path.join(tmp_dir, f"mesh{mesh_ext}")
|
358 |
+
# Read the textured mesh from .ply file
|
359 |
+
mesh = trimesh.load_mesh(ply_path)
|
360 |
+
rotation_matrix = trimesh.transformations.rotation_matrix(np.pi/2, [1, 0, 0])
|
361 |
+
mesh.apply_transform(rotation_matrix)
|
362 |
+
rotation_matrix = trimesh.transformations.rotation_matrix(np.pi, [0, 0, 1])
|
363 |
+
mesh.apply_transform(rotation_matrix)
|
364 |
+
# flip x
|
365 |
+
mesh.vertices[:, 0] = -mesh.vertices[:, 0]
|
366 |
+
mesh.faces = np.fliplr(mesh.faces)
|
367 |
+
# Export the mesh as .obj file with colors
|
368 |
+
if not is_glb:
|
369 |
+
mesh.export(mesh_path, file_type='obj', include_color=True)
|
370 |
+
else:
|
371 |
+
mesh.export(mesh_path, file_type='glb')
|
372 |
+
torch.cuda.empty_cache()
|
373 |
+
|
374 |
+
if not is_rerun:
|
375 |
+
return (mesh_path)
|
376 |
+
else:
|
377 |
+
return (mesh_path, gr.update(value=[]), gr.update(visible=False), gr.update(visible=False))
|
378 |
+
|
379 |
+
def nsfw_check(models, raw_im, device='cuda'):
|
380 |
+
safety_checker_input = models['clip_fe'](raw_im, return_tensors='pt').to(device)
|
381 |
+
(_, has_nsfw_concept) = models['nsfw'](
|
382 |
+
images=np.ones((1, 3)), clip_input=safety_checker_input.pixel_values)
|
383 |
+
del safety_checker_input
|
384 |
+
if np.any(has_nsfw_concept):
|
385 |
+
print('NSFW content detected.')
|
386 |
+
return Image.open("unsafe.png")
|
387 |
+
else:
|
388 |
+
print('Safety check passed.')
|
389 |
+
return False
|
390 |
+
|
391 |
+
def preprocess_run(predictor, models, raw_im, lower_contrast, *bbox_sliders):
|
392 |
+
raw_im.thumbnail([512, 512], Image.Resampling.LANCZOS)
|
393 |
+
check_results = nsfw_check(models, raw_im, device=predictor.device)
|
394 |
+
if check_results:
|
395 |
+
return check_results
|
396 |
+
image_sam = sam_out_nosave(predictor, raw_im.convert("RGB"), *bbox_sliders)
|
397 |
+
input_256 = image_preprocess_nosave(image_sam, lower_contrast=lower_contrast, rescale=True)
|
398 |
+
torch.cuda.empty_cache()
|
399 |
+
return input_256
|
400 |
+
|
401 |
+
def on_coords_slider(image, x_min, y_min, x_max, y_max, color=(88, 191, 131, 255)):
|
402 |
+
"""Draw a bounding box annotation for an image."""
|
403 |
+
print("Slider adjusted, drawing bbox...")
|
404 |
+
image.thumbnail([512, 512], Image.Resampling.LANCZOS)
|
405 |
+
image_size = image.size
|
406 |
+
if max(image_size) > 224:
|
407 |
+
image.thumbnail([224, 224], Image.Resampling.LANCZOS)
|
408 |
+
shrink_ratio = max(image.size) / max(image_size)
|
409 |
+
x_min = int(x_min * shrink_ratio)
|
410 |
+
y_min = int(y_min * shrink_ratio)
|
411 |
+
x_max = int(x_max * shrink_ratio)
|
412 |
+
y_max = int(y_max * shrink_ratio)
|
413 |
+
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGBA2BGRA)
|
414 |
+
image = cv2.rectangle(image, (x_min, y_min), (x_max, y_max), color, int(max(max(image.shape) / 400*2, 2)))
|
415 |
+
return cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA) # image[:, :, ::-1]
|
416 |
+
|
417 |
+
def init_bbox(image):
|
418 |
+
image.thumbnail([512, 512], Image.Resampling.LANCZOS)
|
419 |
+
width, height = image.size
|
420 |
+
image_rem = image.convert('RGBA')
|
421 |
+
image_nobg = remove(image_rem, alpha_matting=True)
|
422 |
+
arr = np.asarray(image_nobg)[:,:,-1]
|
423 |
+
x_nonzero = np.nonzero(arr.sum(axis=0))
|
424 |
+
y_nonzero = np.nonzero(arr.sum(axis=1))
|
425 |
+
x_min = int(x_nonzero[0].min())
|
426 |
+
y_min = int(y_nonzero[0].min())
|
427 |
+
x_max = int(x_nonzero[0].max())
|
428 |
+
y_max = int(y_nonzero[0].max())
|
429 |
+
image_mini = image.copy()
|
430 |
+
image_mini.thumbnail([224, 224], Image.Resampling.LANCZOS)
|
431 |
+
shrink_ratio = max(image_mini.size) / max(width, height)
|
432 |
+
x_min_shrink = int(x_min * shrink_ratio)
|
433 |
+
y_min_shrink = int(y_min * shrink_ratio)
|
434 |
+
x_max_shrink = int(x_max * shrink_ratio)
|
435 |
+
y_max_shrink = int(y_max * shrink_ratio)
|
436 |
+
|
437 |
+
return [on_coords_slider(image_mini, x_min_shrink, y_min_shrink, x_max_shrink, y_max_shrink),
|
438 |
+
gr.update(value=x_min, maximum=width),
|
439 |
+
gr.update(value=y_min, maximum=height),
|
440 |
+
gr.update(value=x_max, maximum=width),
|
441 |
+
gr.update(value=y_max, maximum=height)]
|
442 |
+
|
443 |
+
|
444 |
+
def run_demo(
|
445 |
+
device_idx=_GPU_INDEX,
|
446 |
+
ckpt='zero123-xl.ckpt'):
|
447 |
+
|
448 |
+
device = f"cuda:{device_idx}" if torch.cuda.is_available() else "cpu"
|
449 |
+
models = init_model(device, os.path.join(code_dir, 'zero123-xl.ckpt'), half_precision=_HALF_PRECISION)
|
450 |
+
|
451 |
+
# init sam model
|
452 |
+
predictor = sam_init(device_idx)
|
453 |
+
|
454 |
+
with open('instructions_12345.md', 'r') as f:
|
455 |
+
article = f.read()
|
456 |
+
|
457 |
+
# NOTE: Examples must match inputs
|
458 |
+
example_folder = os.path.join(os.path.dirname(__file__), 'demo_examples')
|
459 |
+
example_fns = os.listdir(example_folder)
|
460 |
+
example_fns.sort()
|
461 |
+
examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')]
|
462 |
+
|
463 |
+
# Compose demo layout & data flow.
|
464 |
+
with gr.Blocks(title=_TITLE, css="style.css") as demo:
|
465 |
+
with gr.Row():
|
466 |
+
with gr.Column(scale=1):
|
467 |
+
gr.Markdown('# ' + _TITLE)
|
468 |
+
with gr.Column(scale=0):
|
469 |
+
gr.DuplicateButton(value='Duplicate Space for private use',
|
470 |
+
elem_id='duplicate-button')
|
471 |
+
gr.Markdown(_DESCRIPTION)
|
472 |
+
|
473 |
+
with gr.Row(variant='panel'):
|
474 |
+
with gr.Column(scale=1.2):
|
475 |
+
image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image', tool=None)
|
476 |
+
|
477 |
+
gr.Examples(
|
478 |
+
examples=examples_full, # NOTE: elements must match inputs list!
|
479 |
+
inputs=[image_block],
|
480 |
+
outputs=[image_block],
|
481 |
+
cache_examples=False,
|
482 |
+
label='Examples (click one of the images below to start)',
|
483 |
+
examples_per_page=40
|
484 |
+
)
|
485 |
+
preprocess_chk = gr.Checkbox(
|
486 |
+
False, label='Reduce image contrast (mitigate shadows on the backside)')
|
487 |
+
with gr.Accordion('Advanced options', open=False):
|
488 |
+
scale_slider = gr.Slider(0, 30, value=3, step=1,
|
489 |
+
label='Diffusion guidance scale')
|
490 |
+
steps_slider = gr.Slider(5, 200, value=75, step=5,
|
491 |
+
label='Number of diffusion inference steps')
|
492 |
+
glb_chk = gr.Checkbox(
|
493 |
+
False, label='Export the mesh in .glb format')
|
494 |
+
|
495 |
+
run_btn = gr.Button('Run Generation', variant='primary', interactive=False)
|
496 |
+
guide_text = gr.Markdown(_USER_GUIDE, visible=True)
|
497 |
+
|
498 |
+
with gr.Column(scale=.8):
|
499 |
+
with gr.Row():
|
500 |
+
bbox_block = gr.Image(type='pil', label="Bounding box", height=290, interactive=False)
|
501 |
+
sam_block = gr.Image(type='pil', label="SAM output", interactive=False)
|
502 |
+
max_width = max_height = 256
|
503 |
+
with gr.Row():
|
504 |
+
x_min_slider = gr.Slider(label="X min", interactive=True, value=0, minimum=0, maximum=max_width, step=1)
|
505 |
+
y_min_slider = gr.Slider(label="Y min", interactive=True, value=0, minimum=0, maximum=max_height, step=1)
|
506 |
+
with gr.Row():
|
507 |
+
x_max_slider = gr.Slider(label="X max", interactive=True, value=max_width, minimum=0, maximum=max_width, step=1)
|
508 |
+
y_max_slider = gr.Slider(label="Y max", interactive=True, value=max_height, minimum=0, maximum=max_height, step=1)
|
509 |
+
bbox_sliders = [x_min_slider, y_min_slider, x_max_slider, y_max_slider]
|
510 |
+
|
511 |
+
mesh_output = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="One-2-3-45's Textured Mesh", elem_id="model-3d-out")
|
512 |
+
|
513 |
+
with gr.Row(variant='panel'):
|
514 |
+
with gr.Column(scale=0.85):
|
515 |
+
elev_output = gr.Label(label='Estimated elevation (degree, w.r.t. the horizontal plane)')
|
516 |
+
vis_output = gr.Plot(label='Camera poses of the input view (red) and predicted views (blue)', elem_id="plot-out")
|
517 |
+
|
518 |
+
with gr.Column(scale=1.15):
|
519 |
+
gr.Markdown('Predicted multi-view images')
|
520 |
+
with gr.Row():
|
521 |
+
view_1 = gr.Image(interactive=False, height=200, show_label=False)
|
522 |
+
view_2 = gr.Image(interactive=False, height=200, show_label=False)
|
523 |
+
view_3 = gr.Image(interactive=False, height=200, show_label=False)
|
524 |
+
view_4 = gr.Image(interactive=False, height=200, show_label=False)
|
525 |
+
with gr.Row():
|
526 |
+
btn_retry_1 = gr.Checkbox(label='Retry view 1')
|
527 |
+
btn_retry_2 = gr.Checkbox(label='Retry view 2')
|
528 |
+
btn_retry_3 = gr.Checkbox(label='Retry view 3')
|
529 |
+
btn_retry_4 = gr.Checkbox(label='Retry view 4')
|
530 |
+
with gr.Row():
|
531 |
+
view_5 = gr.Image(interactive=False, height=200, show_label=False)
|
532 |
+
view_6 = gr.Image(interactive=False, height=200, show_label=False)
|
533 |
+
view_7 = gr.Image(interactive=False, height=200, show_label=False)
|
534 |
+
view_8 = gr.Image(interactive=False, height=200, show_label=False)
|
535 |
+
with gr.Row():
|
536 |
+
btn_retry_5 = gr.Checkbox(label='Retry view 5')
|
537 |
+
btn_retry_6 = gr.Checkbox(label='Retry view 6')
|
538 |
+
btn_retry_7 = gr.Checkbox(label='Retry view 7')
|
539 |
+
btn_retry_8 = gr.Checkbox(label='Retry view 8')
|
540 |
+
with gr.Row():
|
541 |
+
regen_view_btn = gr.Button('1. Regenerate selected view(s)', variant='secondary', visible=False)
|
542 |
+
regen_mesh_btn = gr.Button('2. Regenerate nearby views and mesh', variant='secondary', visible=False)
|
543 |
+
|
544 |
+
gr.Markdown(article)
|
545 |
+
gr.HTML("""
|
546 |
+
<div class="footer">
|
547 |
+
<p>
|
548 |
+
One-2-3-45 Demo by <a style="text-decoration:none" href="https://chaoxu.xyz" target="_blank">Chao Xu</a>
|
549 |
+
</p>
|
550 |
+
</div>
|
551 |
+
""")
|
552 |
+
|
553 |
+
update_guide = lambda GUIDE_TEXT: gr.update(value=GUIDE_TEXT)
|
554 |
+
|
555 |
+
views = [view_1, view_2, view_3, view_4, view_5, view_6, view_7, view_8]
|
556 |
+
btn_retrys = [btn_retry_1, btn_retry_2, btn_retry_3, btn_retry_4, btn_retry_5, btn_retry_6, btn_retry_7, btn_retry_8]
|
557 |
+
|
558 |
+
rerun_idx = gr.State([])
|
559 |
+
tmp_dir = gr.State('./demo_tmp/tmp_dir')
|
560 |
+
|
561 |
+
def refresh(tmp_dir):
|
562 |
+
if os.path.exists(tmp_dir):
|
563 |
+
shutil.rmtree(tmp_dir)
|
564 |
+
tmp_dir = tempfile.TemporaryDirectory(dir=os.path.join(os.path.dirname(__file__), 'demo_tmp'))
|
565 |
+
print("create tmp_dir", tmp_dir.name)
|
566 |
+
clear = [gr.update(value=[])] + [None] * 5 + [gr.update(visible=False)] * 2 + [None] * 8 + [gr.update(value=False)] * 8
|
567 |
+
return (tmp_dir.name, *clear)
|
568 |
+
|
569 |
+
placeholder = gr.Image(visible=False)
|
570 |
+
tmp_func = lambda x: False if not x else gr.update(visible=False)
|
571 |
+
disable_func = lambda x: gr.update(interactive=False)
|
572 |
+
enable_func = lambda x: gr.update(interactive=True)
|
573 |
+
image_block.change(disable_func, inputs=run_btn, outputs=run_btn, queue=False
|
574 |
+
).success(fn=refresh,
|
575 |
+
inputs=[tmp_dir],
|
576 |
+
outputs=[tmp_dir, rerun_idx, bbox_block, sam_block, elev_output, vis_output, mesh_output, regen_view_btn, regen_mesh_btn, *views, *btn_retrys],
|
577 |
+
queue=False
|
578 |
+
).success(fn=tmp_func, inputs=[image_block], outputs=[placeholder], queue=False
|
579 |
+
).success(fn=partial(update_guide, _BBOX_1), outputs=[guide_text], queue=False
|
580 |
+
).success(fn=init_bbox,
|
581 |
+
inputs=[image_block],
|
582 |
+
outputs=[bbox_block, *bbox_sliders], queue=False
|
583 |
+
).success(fn=partial(update_guide, _BBOX_3), outputs=[guide_text], queue=False
|
584 |
+
).success(enable_func, inputs=run_btn, outputs=run_btn, queue=False)
|
585 |
+
|
586 |
+
|
587 |
+
for bbox_slider in bbox_sliders:
|
588 |
+
bbox_slider.release(fn=on_coords_slider,
|
589 |
+
inputs=[image_block, *bbox_sliders],
|
590 |
+
outputs=[bbox_block],
|
591 |
+
queue=False
|
592 |
+
).success(fn=partial(update_guide, _BBOX_2), outputs=[guide_text], queue=False)
|
593 |
+
|
594 |
+
cam_vis = CameraVisualizer(vis_output)
|
595 |
+
|
596 |
+
# Define the function to be called when any of the btn_retry buttons are clicked
|
597 |
+
def on_retry_button_click(*btn_retrys):
|
598 |
+
any_checked = any([btn_retry for btn_retry in btn_retrys])
|
599 |
+
print('any_checked:', any_checked, [btn_retry for btn_retry in btn_retrys])
|
600 |
+
if any_checked:
|
601 |
+
return (gr.update(visible=True), gr.update(visible=True))
|
602 |
+
else:
|
603 |
+
return (gr.update(), gr.update())
|
604 |
+
# make regen_btn visible when any of the btn_retry is checked
|
605 |
+
for btn_retry in btn_retrys:
|
606 |
+
# Add the event handlers to the btn_retry buttons
|
607 |
+
btn_retry.change(fn=on_retry_button_click, inputs=[*btn_retrys], outputs=[regen_view_btn, regen_mesh_btn], queue=False)
|
608 |
+
|
609 |
+
|
610 |
+
run_btn.click(fn=partial(update_guide, _SAM), outputs=[guide_text], queue=False
|
611 |
+
).success(fn=partial(preprocess_run, predictor, models),
|
612 |
+
inputs=[image_block, preprocess_chk, *bbox_sliders],
|
613 |
+
outputs=[sam_block]
|
614 |
+
).success(fn=partial(update_guide, _GEN_1), outputs=[guide_text], queue=False
|
615 |
+
).success(fn=partial(stage1_run, models, device, cam_vis),
|
616 |
+
inputs=[tmp_dir, sam_block, scale_slider, steps_slider],
|
617 |
+
outputs=[elev_output, vis_output, *views]
|
618 |
+
).success(fn=partial(update_guide, _GEN_2), outputs=[guide_text], queue=False
|
619 |
+
).success(fn=partial(stage2_run, models, device),
|
620 |
+
inputs=[tmp_dir, elev_output, scale_slider, glb_chk],
|
621 |
+
outputs=[mesh_output]
|
622 |
+
).success(fn=partial(update_guide, _DONE), outputs=[guide_text], queue=False)
|
623 |
+
|
624 |
+
|
625 |
+
regen_view_btn.click(fn=partial(stage1_run, models, device, None),
|
626 |
+
inputs=[tmp_dir, sam_block, scale_slider, steps_slider, elev_output, rerun_idx, *btn_retrys],
|
627 |
+
outputs=[rerun_idx, *btn_retrys, *views]
|
628 |
+
).success(fn=partial(update_guide, _REGEN_1), outputs=[guide_text], queue=False)
|
629 |
+
regen_mesh_btn.click(fn=partial(stage2_run, models, device),
|
630 |
+
inputs=[tmp_dir, elev_output, scale_slider, glb_chk, rerun_idx],
|
631 |
+
outputs=[mesh_output, rerun_idx, regen_view_btn, regen_mesh_btn]
|
632 |
+
).success(fn=partial(update_guide, _REGEN_2), outputs=[guide_text], queue=False)
|
633 |
+
|
634 |
+
|
635 |
+
demo.queue().launch(share=True, max_threads=80) # auth=("admin", os.environ['PASSWD'])
|
636 |
+
|
637 |
+
|
638 |
+
if __name__ == '__main__':
|
639 |
+
fire.Fire(run_demo)
|
One-2-3-45-master 2/demo/demo_tmp/.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
tmp*
|
One-2-3-45-master 2/demo/demo_tmp/.gitkeep
ADDED
File without changes
|
One-2-3-45-master 2/demo/instructions_12345.md
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Tuning Tips:
|
2 |
+
|
3 |
+
1. The multi-view prediction module (Zero123) operates probabilistically. If some of the predicted views are not satisfactory, you may select and regenerate them.
|
4 |
+
|
5 |
+
2. In “advanced options”, you can tune two parameters as in other common diffusion models:
|
6 |
+
- Diffusion Guidance Scale determines how much you want the model to respect the input information (input image + viewpoints). Increasing the scale typically results in better adherence, less diversity, and also higher image distortion.
|
7 |
+
|
8 |
+
- Number of diffusion inference steps controls the number of diffusion steps applied to generate each image. Generally, a higher value yields better results but with diminishing returns.
|
9 |
+
|
10 |
+
Enjoy creating your 3D asset!
|
One-2-3-45-master 2/demo/memora/.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
One-2-3-45-master 2/demo/memora/README.md
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Memora
|
3 |
+
emoji: 🐨
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: green
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.47.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
One-2-3-45-master 2/demo/style.css
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#model-3d-out {
|
2 |
+
height: 400px;
|
3 |
+
}
|
4 |
+
|
5 |
+
#plot-out {
|
6 |
+
height: 450px;
|
7 |
+
}
|
8 |
+
|
9 |
+
#duplicate-button {
|
10 |
+
margin-left: auto;
|
11 |
+
color: #fff;
|
12 |
+
background: #1565c0;
|
13 |
+
}
|
14 |
+
|
15 |
+
.footer {
|
16 |
+
margin-bottom: 45px;
|
17 |
+
margin-top: 10px;
|
18 |
+
text-align: center;
|
19 |
+
border-bottom: 1px solid #e5e5e5;
|
20 |
+
}
|
21 |
+
.footer>p {
|
22 |
+
font-size: .8rem;
|
23 |
+
display: inline-block;
|
24 |
+
padding: 0 10px;
|
25 |
+
transform: translateY(10px);
|
26 |
+
background: white;
|
27 |
+
}
|
28 |
+
.dark .footer {
|
29 |
+
border-color: #303030;
|
30 |
+
}
|
31 |
+
.dark .footer>p {
|
32 |
+
background: #0b0f19;
|
33 |
+
}
|
One-2-3-45-master 2/download_ckpt.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import urllib.request
|
2 |
+
from tqdm import tqdm
|
3 |
+
|
4 |
+
def download_checkpoint(url, save_path):
|
5 |
+
try:
|
6 |
+
with urllib.request.urlopen(url) as response, open(save_path, 'wb') as file:
|
7 |
+
file_size = int(response.info().get('Content-Length', -1))
|
8 |
+
chunk_size = 8192
|
9 |
+
num_chunks = file_size // chunk_size if file_size > chunk_size else 1
|
10 |
+
|
11 |
+
with tqdm(total=file_size, unit='B', unit_scale=True, desc='Downloading', ncols=100) as pbar:
|
12 |
+
for chunk in iter(lambda: response.read(chunk_size), b''):
|
13 |
+
file.write(chunk)
|
14 |
+
pbar.update(len(chunk))
|
15 |
+
|
16 |
+
print(f"Checkpoint downloaded and saved to: {save_path}")
|
17 |
+
except Exception as e:
|
18 |
+
print(f"Error downloading checkpoint: {e}")
|
19 |
+
|
20 |
+
if __name__ == "__main__":
|
21 |
+
ckpts = {
|
22 |
+
"sam_vit_h_4b8939.pth": "https://huggingface.co/One-2-3-45/code/resolve/main/sam_vit_h_4b8939.pth",
|
23 |
+
"zero123-xl.ckpt": "https://huggingface.co/One-2-3-45/code/resolve/main/zero123-xl.ckpt",
|
24 |
+
"elevation_estimate/utils/weights/indoor_ds_new.ckpt" : "https://huggingface.co/One-2-3-45/code/resolve/main/one2345_elev_est/tools/weights/indoor_ds_new.ckpt",
|
25 |
+
"reconstruction/exp/lod0/checkpoints/ckpt_215000.pth": "https://huggingface.co/One-2-3-45/code/resolve/main/SparseNeuS_demo_v1/exp/lod0/checkpoints/ckpt_215000.pth"
|
26 |
+
}
|
27 |
+
for ckpt_name, ckpt_url in ckpts.items():
|
28 |
+
print(f"Downloading checkpoint: {ckpt_name}")
|
29 |
+
download_checkpoint(ckpt_url, ckpt_name)
|
30 |
+
|
One-2-3-45-master 2/elevation_estimate/.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
build/
|
2 |
+
.idea/
|
3 |
+
*.egg-info/
|
One-2-3-45-master 2/elevation_estimate/__init__.py
ADDED
File without changes
|
One-2-3-45-master 2/elevation_estimate/estimate_wild_imgs.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path as osp
|
2 |
+
from .utils.elev_est_api import elev_est_api
|
3 |
+
|
4 |
+
def estimate_elev(root_dir):
|
5 |
+
img_dir = osp.join(root_dir, "stage2_8")
|
6 |
+
img_paths = []
|
7 |
+
for i in range(4):
|
8 |
+
img_paths.append(f"{img_dir}/0_{i}.png")
|
9 |
+
elev = elev_est_api(img_paths)
|
10 |
+
return elev
|
One-2-3-45-master 2/elevation_estimate/loftr/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .loftr import LoFTR
|
2 |
+
from .utils.cvpr_ds_config import default_cfg
|
One-2-3-45-master 2/elevation_estimate/loftr/backbone/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .resnet_fpn import ResNetFPN_8_2, ResNetFPN_16_4
|
2 |
+
|
3 |
+
|
4 |
+
def build_backbone(config):
|
5 |
+
if config['backbone_type'] == 'ResNetFPN':
|
6 |
+
if config['resolution'] == (8, 2):
|
7 |
+
return ResNetFPN_8_2(config['resnetfpn'])
|
8 |
+
elif config['resolution'] == (16, 4):
|
9 |
+
return ResNetFPN_16_4(config['resnetfpn'])
|
10 |
+
else:
|
11 |
+
raise ValueError(f"LOFTR.BACKBONE_TYPE {config['backbone_type']} not supported.")
|
One-2-3-45-master 2/elevation_estimate/loftr/backbone/resnet_fpn.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torch.nn.functional as F
|
3 |
+
|
4 |
+
|
5 |
+
def conv1x1(in_planes, out_planes, stride=1):
|
6 |
+
"""1x1 convolution without padding"""
|
7 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=0, bias=False)
|
8 |
+
|
9 |
+
|
10 |
+
def conv3x3(in_planes, out_planes, stride=1):
|
11 |
+
"""3x3 convolution with padding"""
|
12 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
13 |
+
|
14 |
+
|
15 |
+
class BasicBlock(nn.Module):
|
16 |
+
def __init__(self, in_planes, planes, stride=1):
|
17 |
+
super().__init__()
|
18 |
+
self.conv1 = conv3x3(in_planes, planes, stride)
|
19 |
+
self.conv2 = conv3x3(planes, planes)
|
20 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
21 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
22 |
+
self.relu = nn.ReLU(inplace=True)
|
23 |
+
|
24 |
+
if stride == 1:
|
25 |
+
self.downsample = None
|
26 |
+
else:
|
27 |
+
self.downsample = nn.Sequential(
|
28 |
+
conv1x1(in_planes, planes, stride=stride),
|
29 |
+
nn.BatchNorm2d(planes)
|
30 |
+
)
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
y = x
|
34 |
+
y = self.relu(self.bn1(self.conv1(y)))
|
35 |
+
y = self.bn2(self.conv2(y))
|
36 |
+
|
37 |
+
if self.downsample is not None:
|
38 |
+
x = self.downsample(x)
|
39 |
+
|
40 |
+
return self.relu(x+y)
|
41 |
+
|
42 |
+
|
43 |
+
class ResNetFPN_8_2(nn.Module):
|
44 |
+
"""
|
45 |
+
ResNet+FPN, output resolution are 1/8 and 1/2.
|
46 |
+
Each block has 2 layers.
|
47 |
+
"""
|
48 |
+
|
49 |
+
def __init__(self, config):
|
50 |
+
super().__init__()
|
51 |
+
# Config
|
52 |
+
block = BasicBlock
|
53 |
+
initial_dim = config['initial_dim']
|
54 |
+
block_dims = config['block_dims']
|
55 |
+
|
56 |
+
# Class Variable
|
57 |
+
self.in_planes = initial_dim
|
58 |
+
|
59 |
+
# Networks
|
60 |
+
self.conv1 = nn.Conv2d(1, initial_dim, kernel_size=7, stride=2, padding=3, bias=False)
|
61 |
+
self.bn1 = nn.BatchNorm2d(initial_dim)
|
62 |
+
self.relu = nn.ReLU(inplace=True)
|
63 |
+
|
64 |
+
self.layer1 = self._make_layer(block, block_dims[0], stride=1) # 1/2
|
65 |
+
self.layer2 = self._make_layer(block, block_dims[1], stride=2) # 1/4
|
66 |
+
self.layer3 = self._make_layer(block, block_dims[2], stride=2) # 1/8
|
67 |
+
|
68 |
+
# 3. FPN upsample
|
69 |
+
self.layer3_outconv = conv1x1(block_dims[2], block_dims[2])
|
70 |
+
self.layer2_outconv = conv1x1(block_dims[1], block_dims[2])
|
71 |
+
self.layer2_outconv2 = nn.Sequential(
|
72 |
+
conv3x3(block_dims[2], block_dims[2]),
|
73 |
+
nn.BatchNorm2d(block_dims[2]),
|
74 |
+
nn.LeakyReLU(),
|
75 |
+
conv3x3(block_dims[2], block_dims[1]),
|
76 |
+
)
|
77 |
+
self.layer1_outconv = conv1x1(block_dims[0], block_dims[1])
|
78 |
+
self.layer1_outconv2 = nn.Sequential(
|
79 |
+
conv3x3(block_dims[1], block_dims[1]),
|
80 |
+
nn.BatchNorm2d(block_dims[1]),
|
81 |
+
nn.LeakyReLU(),
|
82 |
+
conv3x3(block_dims[1], block_dims[0]),
|
83 |
+
)
|
84 |
+
|
85 |
+
for m in self.modules():
|
86 |
+
if isinstance(m, nn.Conv2d):
|
87 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
88 |
+
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
89 |
+
nn.init.constant_(m.weight, 1)
|
90 |
+
nn.init.constant_(m.bias, 0)
|
91 |
+
|
92 |
+
def _make_layer(self, block, dim, stride=1):
|
93 |
+
layer1 = block(self.in_planes, dim, stride=stride)
|
94 |
+
layer2 = block(dim, dim, stride=1)
|
95 |
+
layers = (layer1, layer2)
|
96 |
+
|
97 |
+
self.in_planes = dim
|
98 |
+
return nn.Sequential(*layers)
|
99 |
+
|
100 |
+
def forward(self, x):
|
101 |
+
# ResNet Backbone
|
102 |
+
x0 = self.relu(self.bn1(self.conv1(x)))
|
103 |
+
x1 = self.layer1(x0) # 1/2
|
104 |
+
x2 = self.layer2(x1) # 1/4
|
105 |
+
x3 = self.layer3(x2) # 1/8
|
106 |
+
|
107 |
+
# FPN
|
108 |
+
x3_out = self.layer3_outconv(x3)
|
109 |
+
|
110 |
+
x3_out_2x = F.interpolate(x3_out, scale_factor=2., mode='bilinear', align_corners=True)
|
111 |
+
x2_out = self.layer2_outconv(x2)
|
112 |
+
x2_out = self.layer2_outconv2(x2_out+x3_out_2x)
|
113 |
+
|
114 |
+
x2_out_2x = F.interpolate(x2_out, scale_factor=2., mode='bilinear', align_corners=True)
|
115 |
+
x1_out = self.layer1_outconv(x1)
|
116 |
+
x1_out = self.layer1_outconv2(x1_out+x2_out_2x)
|
117 |
+
|
118 |
+
return [x3_out, x1_out]
|
119 |
+
|
120 |
+
|
121 |
+
class ResNetFPN_16_4(nn.Module):
|
122 |
+
"""
|
123 |
+
ResNet+FPN, output resolution are 1/16 and 1/4.
|
124 |
+
Each block has 2 layers.
|
125 |
+
"""
|
126 |
+
|
127 |
+
def __init__(self, config):
|
128 |
+
super().__init__()
|
129 |
+
# Config
|
130 |
+
block = BasicBlock
|
131 |
+
initial_dim = config['initial_dim']
|
132 |
+
block_dims = config['block_dims']
|
133 |
+
|
134 |
+
# Class Variable
|
135 |
+
self.in_planes = initial_dim
|
136 |
+
|
137 |
+
# Networks
|
138 |
+
self.conv1 = nn.Conv2d(1, initial_dim, kernel_size=7, stride=2, padding=3, bias=False)
|
139 |
+
self.bn1 = nn.BatchNorm2d(initial_dim)
|
140 |
+
self.relu = nn.ReLU(inplace=True)
|
141 |
+
|
142 |
+
self.layer1 = self._make_layer(block, block_dims[0], stride=1) # 1/2
|
143 |
+
self.layer2 = self._make_layer(block, block_dims[1], stride=2) # 1/4
|
144 |
+
self.layer3 = self._make_layer(block, block_dims[2], stride=2) # 1/8
|
145 |
+
self.layer4 = self._make_layer(block, block_dims[3], stride=2) # 1/16
|
146 |
+
|
147 |
+
# 3. FPN upsample
|
148 |
+
self.layer4_outconv = conv1x1(block_dims[3], block_dims[3])
|
149 |
+
self.layer3_outconv = conv1x1(block_dims[2], block_dims[3])
|
150 |
+
self.layer3_outconv2 = nn.Sequential(
|
151 |
+
conv3x3(block_dims[3], block_dims[3]),
|
152 |
+
nn.BatchNorm2d(block_dims[3]),
|
153 |
+
nn.LeakyReLU(),
|
154 |
+
conv3x3(block_dims[3], block_dims[2]),
|
155 |
+
)
|
156 |
+
|
157 |
+
self.layer2_outconv = conv1x1(block_dims[1], block_dims[2])
|
158 |
+
self.layer2_outconv2 = nn.Sequential(
|
159 |
+
conv3x3(block_dims[2], block_dims[2]),
|
160 |
+
nn.BatchNorm2d(block_dims[2]),
|
161 |
+
nn.LeakyReLU(),
|
162 |
+
conv3x3(block_dims[2], block_dims[1]),
|
163 |
+
)
|
164 |
+
|
165 |
+
for m in self.modules():
|
166 |
+
if isinstance(m, nn.Conv2d):
|
167 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
168 |
+
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
169 |
+
nn.init.constant_(m.weight, 1)
|
170 |
+
nn.init.constant_(m.bias, 0)
|
171 |
+
|
172 |
+
def _make_layer(self, block, dim, stride=1):
|
173 |
+
layer1 = block(self.in_planes, dim, stride=stride)
|
174 |
+
layer2 = block(dim, dim, stride=1)
|
175 |
+
layers = (layer1, layer2)
|
176 |
+
|
177 |
+
self.in_planes = dim
|
178 |
+
return nn.Sequential(*layers)
|
179 |
+
|
180 |
+
def forward(self, x):
|
181 |
+
# ResNet Backbone
|
182 |
+
x0 = self.relu(self.bn1(self.conv1(x)))
|
183 |
+
x1 = self.layer1(x0) # 1/2
|
184 |
+
x2 = self.layer2(x1) # 1/4
|
185 |
+
x3 = self.layer3(x2) # 1/8
|
186 |
+
x4 = self.layer4(x3) # 1/16
|
187 |
+
|
188 |
+
# FPN
|
189 |
+
x4_out = self.layer4_outconv(x4)
|
190 |
+
|
191 |
+
x4_out_2x = F.interpolate(x4_out, scale_factor=2., mode='bilinear', align_corners=True)
|
192 |
+
x3_out = self.layer3_outconv(x3)
|
193 |
+
x3_out = self.layer3_outconv2(x3_out+x4_out_2x)
|
194 |
+
|
195 |
+
x3_out_2x = F.interpolate(x3_out, scale_factor=2., mode='bilinear', align_corners=True)
|
196 |
+
x2_out = self.layer2_outconv(x2)
|
197 |
+
x2_out = self.layer2_outconv2(x2_out+x3_out_2x)
|
198 |
+
|
199 |
+
return [x4_out, x2_out]
|
One-2-3-45-master 2/elevation_estimate/loftr/loftr.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from einops.einops import rearrange
|
4 |
+
|
5 |
+
from .backbone import build_backbone
|
6 |
+
from .utils.position_encoding import PositionEncodingSine
|
7 |
+
from .loftr_module import LocalFeatureTransformer, FinePreprocess
|
8 |
+
from .utils.coarse_matching import CoarseMatching
|
9 |
+
from .utils.fine_matching import FineMatching
|
10 |
+
|
11 |
+
|
12 |
+
class LoFTR(nn.Module):
|
13 |
+
def __init__(self, config):
|
14 |
+
super().__init__()
|
15 |
+
# Misc
|
16 |
+
self.config = config
|
17 |
+
|
18 |
+
# Modules
|
19 |
+
self.backbone = build_backbone(config)
|
20 |
+
self.pos_encoding = PositionEncodingSine(
|
21 |
+
config['coarse']['d_model'],
|
22 |
+
temp_bug_fix=config['coarse']['temp_bug_fix'])
|
23 |
+
self.loftr_coarse = LocalFeatureTransformer(config['coarse'])
|
24 |
+
self.coarse_matching = CoarseMatching(config['match_coarse'])
|
25 |
+
self.fine_preprocess = FinePreprocess(config)
|
26 |
+
self.loftr_fine = LocalFeatureTransformer(config["fine"])
|
27 |
+
self.fine_matching = FineMatching()
|
28 |
+
|
29 |
+
def forward(self, data):
|
30 |
+
"""
|
31 |
+
Update:
|
32 |
+
data (dict): {
|
33 |
+
'image0': (torch.Tensor): (N, 1, H, W)
|
34 |
+
'image1': (torch.Tensor): (N, 1, H, W)
|
35 |
+
'mask0'(optional) : (torch.Tensor): (N, H, W) '0' indicates a padded position
|
36 |
+
'mask1'(optional) : (torch.Tensor): (N, H, W)
|
37 |
+
}
|
38 |
+
"""
|
39 |
+
# 1. Local Feature CNN
|
40 |
+
data.update({
|
41 |
+
'bs': data['image0'].size(0),
|
42 |
+
'hw0_i': data['image0'].shape[2:], 'hw1_i': data['image1'].shape[2:]
|
43 |
+
})
|
44 |
+
|
45 |
+
if data['hw0_i'] == data['hw1_i']: # faster & better BN convergence
|
46 |
+
feats_c, feats_f = self.backbone(torch.cat([data['image0'], data['image1']], dim=0))
|
47 |
+
(feat_c0, feat_c1), (feat_f0, feat_f1) = feats_c.split(data['bs']), feats_f.split(data['bs'])
|
48 |
+
else: # handle different input shapes
|
49 |
+
(feat_c0, feat_f0), (feat_c1, feat_f1) = self.backbone(data['image0']), self.backbone(data['image1'])
|
50 |
+
|
51 |
+
data.update({
|
52 |
+
'hw0_c': feat_c0.shape[2:], 'hw1_c': feat_c1.shape[2:],
|
53 |
+
'hw0_f': feat_f0.shape[2:], 'hw1_f': feat_f1.shape[2:]
|
54 |
+
})
|
55 |
+
|
56 |
+
# 2. coarse-level loftr module
|
57 |
+
# add featmap with positional encoding, then flatten it to sequence [N, HW, C]
|
58 |
+
feat_c0 = rearrange(self.pos_encoding(feat_c0), 'n c h w -> n (h w) c')
|
59 |
+
feat_c1 = rearrange(self.pos_encoding(feat_c1), 'n c h w -> n (h w) c')
|
60 |
+
|
61 |
+
mask_c0 = mask_c1 = None # mask is useful in training
|
62 |
+
if 'mask0' in data:
|
63 |
+
mask_c0, mask_c1 = data['mask0'].flatten(-2), data['mask1'].flatten(-2)
|
64 |
+
feat_c0, feat_c1 = self.loftr_coarse(feat_c0, feat_c1, mask_c0, mask_c1)
|
65 |
+
|
66 |
+
# 3. match coarse-level
|
67 |
+
self.coarse_matching(feat_c0, feat_c1, data, mask_c0=mask_c0, mask_c1=mask_c1)
|
68 |
+
|
69 |
+
# 4. fine-level refinement
|
70 |
+
feat_f0_unfold, feat_f1_unfold = self.fine_preprocess(feat_f0, feat_f1, feat_c0, feat_c1, data)
|
71 |
+
if feat_f0_unfold.size(0) != 0: # at least one coarse level predicted
|
72 |
+
feat_f0_unfold, feat_f1_unfold = self.loftr_fine(feat_f0_unfold, feat_f1_unfold)
|
73 |
+
|
74 |
+
# 5. match fine-level
|
75 |
+
self.fine_matching(feat_f0_unfold, feat_f1_unfold, data)
|
76 |
+
|
77 |
+
def load_state_dict(self, state_dict, *args, **kwargs):
|
78 |
+
for k in list(state_dict.keys()):
|
79 |
+
if k.startswith('matcher.'):
|
80 |
+
state_dict[k.replace('matcher.', '', 1)] = state_dict.pop(k)
|
81 |
+
return super().load_state_dict(state_dict, *args, **kwargs)
|
One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .transformer import LocalFeatureTransformer
|
2 |
+
from .fine_preprocess import FinePreprocess
|
One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/fine_preprocess.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from einops.einops import rearrange, repeat
|
5 |
+
|
6 |
+
|
7 |
+
class FinePreprocess(nn.Module):
|
8 |
+
def __init__(self, config):
|
9 |
+
super().__init__()
|
10 |
+
|
11 |
+
self.config = config
|
12 |
+
self.cat_c_feat = config['fine_concat_coarse_feat']
|
13 |
+
self.W = self.config['fine_window_size']
|
14 |
+
|
15 |
+
d_model_c = self.config['coarse']['d_model']
|
16 |
+
d_model_f = self.config['fine']['d_model']
|
17 |
+
self.d_model_f = d_model_f
|
18 |
+
if self.cat_c_feat:
|
19 |
+
self.down_proj = nn.Linear(d_model_c, d_model_f, bias=True)
|
20 |
+
self.merge_feat = nn.Linear(2*d_model_f, d_model_f, bias=True)
|
21 |
+
|
22 |
+
self._reset_parameters()
|
23 |
+
|
24 |
+
def _reset_parameters(self):
|
25 |
+
for p in self.parameters():
|
26 |
+
if p.dim() > 1:
|
27 |
+
nn.init.kaiming_normal_(p, mode="fan_out", nonlinearity="relu")
|
28 |
+
|
29 |
+
def forward(self, feat_f0, feat_f1, feat_c0, feat_c1, data):
|
30 |
+
W = self.W
|
31 |
+
stride = data['hw0_f'][0] // data['hw0_c'][0]
|
32 |
+
|
33 |
+
data.update({'W': W})
|
34 |
+
if data['b_ids'].shape[0] == 0:
|
35 |
+
feat0 = torch.empty(0, self.W**2, self.d_model_f, device=feat_f0.device)
|
36 |
+
feat1 = torch.empty(0, self.W**2, self.d_model_f, device=feat_f0.device)
|
37 |
+
return feat0, feat1
|
38 |
+
|
39 |
+
# 1. unfold(crop) all local windows
|
40 |
+
feat_f0_unfold = F.unfold(feat_f0, kernel_size=(W, W), stride=stride, padding=W//2)
|
41 |
+
feat_f0_unfold = rearrange(feat_f0_unfold, 'n (c ww) l -> n l ww c', ww=W**2)
|
42 |
+
feat_f1_unfold = F.unfold(feat_f1, kernel_size=(W, W), stride=stride, padding=W//2)
|
43 |
+
feat_f1_unfold = rearrange(feat_f1_unfold, 'n (c ww) l -> n l ww c', ww=W**2)
|
44 |
+
|
45 |
+
# 2. select only the predicted matches
|
46 |
+
feat_f0_unfold = feat_f0_unfold[data['b_ids'], data['i_ids']] # [n, ww, cf]
|
47 |
+
feat_f1_unfold = feat_f1_unfold[data['b_ids'], data['j_ids']]
|
48 |
+
|
49 |
+
# option: use coarse-level loftr feature as context: concat and linear
|
50 |
+
if self.cat_c_feat:
|
51 |
+
feat_c_win = self.down_proj(torch.cat([feat_c0[data['b_ids'], data['i_ids']],
|
52 |
+
feat_c1[data['b_ids'], data['j_ids']]], 0)) # [2n, c]
|
53 |
+
feat_cf_win = self.merge_feat(torch.cat([
|
54 |
+
torch.cat([feat_f0_unfold, feat_f1_unfold], 0), # [2n, ww, cf]
|
55 |
+
repeat(feat_c_win, 'n c -> n ww c', ww=W**2), # [2n, ww, cf]
|
56 |
+
], -1))
|
57 |
+
feat_f0_unfold, feat_f1_unfold = torch.chunk(feat_cf_win, 2, dim=0)
|
58 |
+
|
59 |
+
return feat_f0_unfold, feat_f1_unfold
|
One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/linear_attention.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Linear Transformer proposed in "Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention"
|
3 |
+
Modified from: https://github.com/idiap/fast-transformers/blob/master/fast_transformers/attention/linear_attention.py
|
4 |
+
"""
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch.nn import Module, Dropout
|
8 |
+
|
9 |
+
|
10 |
+
def elu_feature_map(x):
|
11 |
+
return torch.nn.functional.elu(x) + 1
|
12 |
+
|
13 |
+
|
14 |
+
class LinearAttention(Module):
|
15 |
+
def __init__(self, eps=1e-6):
|
16 |
+
super().__init__()
|
17 |
+
self.feature_map = elu_feature_map
|
18 |
+
self.eps = eps
|
19 |
+
|
20 |
+
def forward(self, queries, keys, values, q_mask=None, kv_mask=None):
|
21 |
+
""" Multi-Head linear attention proposed in "Transformers are RNNs"
|
22 |
+
Args:
|
23 |
+
queries: [N, L, H, D]
|
24 |
+
keys: [N, S, H, D]
|
25 |
+
values: [N, S, H, D]
|
26 |
+
q_mask: [N, L]
|
27 |
+
kv_mask: [N, S]
|
28 |
+
Returns:
|
29 |
+
queried_values: (N, L, H, D)
|
30 |
+
"""
|
31 |
+
Q = self.feature_map(queries)
|
32 |
+
K = self.feature_map(keys)
|
33 |
+
|
34 |
+
# set padded position to zero
|
35 |
+
if q_mask is not None:
|
36 |
+
Q = Q * q_mask[:, :, None, None]
|
37 |
+
if kv_mask is not None:
|
38 |
+
K = K * kv_mask[:, :, None, None]
|
39 |
+
values = values * kv_mask[:, :, None, None]
|
40 |
+
|
41 |
+
v_length = values.size(1)
|
42 |
+
values = values / v_length # prevent fp16 overflow
|
43 |
+
KV = torch.einsum("nshd,nshv->nhdv", K, values) # (S,D)' @ S,V
|
44 |
+
Z = 1 / (torch.einsum("nlhd,nhd->nlh", Q, K.sum(dim=1)) + self.eps)
|
45 |
+
queried_values = torch.einsum("nlhd,nhdv,nlh->nlhv", Q, KV, Z) * v_length
|
46 |
+
|
47 |
+
return queried_values.contiguous()
|
48 |
+
|
49 |
+
|
50 |
+
class FullAttention(Module):
|
51 |
+
def __init__(self, use_dropout=False, attention_dropout=0.1):
|
52 |
+
super().__init__()
|
53 |
+
self.use_dropout = use_dropout
|
54 |
+
self.dropout = Dropout(attention_dropout)
|
55 |
+
|
56 |
+
def forward(self, queries, keys, values, q_mask=None, kv_mask=None):
|
57 |
+
""" Multi-head scaled dot-product attention, a.k.a full attention.
|
58 |
+
Args:
|
59 |
+
queries: [N, L, H, D]
|
60 |
+
keys: [N, S, H, D]
|
61 |
+
values: [N, S, H, D]
|
62 |
+
q_mask: [N, L]
|
63 |
+
kv_mask: [N, S]
|
64 |
+
Returns:
|
65 |
+
queried_values: (N, L, H, D)
|
66 |
+
"""
|
67 |
+
|
68 |
+
# Compute the unnormalized attention and apply the masks
|
69 |
+
QK = torch.einsum("nlhd,nshd->nlsh", queries, keys)
|
70 |
+
if kv_mask is not None:
|
71 |
+
QK.masked_fill_(~(q_mask[:, :, None, None] * kv_mask[:, None, :, None]), float('-inf'))
|
72 |
+
|
73 |
+
# Compute the attention and the weighted average
|
74 |
+
softmax_temp = 1. / queries.size(3)**.5 # sqrt(D)
|
75 |
+
A = torch.softmax(softmax_temp * QK, dim=2)
|
76 |
+
if self.use_dropout:
|
77 |
+
A = self.dropout(A)
|
78 |
+
|
79 |
+
queried_values = torch.einsum("nlsh,nshd->nlhd", A, values)
|
80 |
+
|
81 |
+
return queried_values.contiguous()
|
One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/transformer.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from .linear_attention import LinearAttention, FullAttention
|
5 |
+
|
6 |
+
|
7 |
+
class LoFTREncoderLayer(nn.Module):
|
8 |
+
def __init__(self,
|
9 |
+
d_model,
|
10 |
+
nhead,
|
11 |
+
attention='linear'):
|
12 |
+
super(LoFTREncoderLayer, self).__init__()
|
13 |
+
|
14 |
+
self.dim = d_model // nhead
|
15 |
+
self.nhead = nhead
|
16 |
+
|
17 |
+
# multi-head attention
|
18 |
+
self.q_proj = nn.Linear(d_model, d_model, bias=False)
|
19 |
+
self.k_proj = nn.Linear(d_model, d_model, bias=False)
|
20 |
+
self.v_proj = nn.Linear(d_model, d_model, bias=False)
|
21 |
+
self.attention = LinearAttention() if attention == 'linear' else FullAttention()
|
22 |
+
self.merge = nn.Linear(d_model, d_model, bias=False)
|
23 |
+
|
24 |
+
# feed-forward network
|
25 |
+
self.mlp = nn.Sequential(
|
26 |
+
nn.Linear(d_model*2, d_model*2, bias=False),
|
27 |
+
nn.ReLU(True),
|
28 |
+
nn.Linear(d_model*2, d_model, bias=False),
|
29 |
+
)
|
30 |
+
|
31 |
+
# norm and dropout
|
32 |
+
self.norm1 = nn.LayerNorm(d_model)
|
33 |
+
self.norm2 = nn.LayerNorm(d_model)
|
34 |
+
|
35 |
+
def forward(self, x, source, x_mask=None, source_mask=None):
|
36 |
+
"""
|
37 |
+
Args:
|
38 |
+
x (torch.Tensor): [N, L, C]
|
39 |
+
source (torch.Tensor): [N, S, C]
|
40 |
+
x_mask (torch.Tensor): [N, L] (optional)
|
41 |
+
source_mask (torch.Tensor): [N, S] (optional)
|
42 |
+
"""
|
43 |
+
bs = x.size(0)
|
44 |
+
query, key, value = x, source, source
|
45 |
+
|
46 |
+
# multi-head attention
|
47 |
+
query = self.q_proj(query).view(bs, -1, self.nhead, self.dim) # [N, L, (H, D)]
|
48 |
+
key = self.k_proj(key).view(bs, -1, self.nhead, self.dim) # [N, S, (H, D)]
|
49 |
+
value = self.v_proj(value).view(bs, -1, self.nhead, self.dim)
|
50 |
+
message = self.attention(query, key, value, q_mask=x_mask, kv_mask=source_mask) # [N, L, (H, D)]
|
51 |
+
message = self.merge(message.view(bs, -1, self.nhead*self.dim)) # [N, L, C]
|
52 |
+
message = self.norm1(message)
|
53 |
+
|
54 |
+
# feed-forward network
|
55 |
+
message = self.mlp(torch.cat([x, message], dim=2))
|
56 |
+
message = self.norm2(message)
|
57 |
+
|
58 |
+
return x + message
|
59 |
+
|
60 |
+
|
61 |
+
class LocalFeatureTransformer(nn.Module):
|
62 |
+
"""A Local Feature Transformer (LoFTR) module."""
|
63 |
+
|
64 |
+
def __init__(self, config):
|
65 |
+
super(LocalFeatureTransformer, self).__init__()
|
66 |
+
|
67 |
+
self.config = config
|
68 |
+
self.d_model = config['d_model']
|
69 |
+
self.nhead = config['nhead']
|
70 |
+
self.layer_names = config['layer_names']
|
71 |
+
encoder_layer = LoFTREncoderLayer(config['d_model'], config['nhead'], config['attention'])
|
72 |
+
self.layers = nn.ModuleList([copy.deepcopy(encoder_layer) for _ in range(len(self.layer_names))])
|
73 |
+
self._reset_parameters()
|
74 |
+
|
75 |
+
def _reset_parameters(self):
|
76 |
+
for p in self.parameters():
|
77 |
+
if p.dim() > 1:
|
78 |
+
nn.init.xavier_uniform_(p)
|
79 |
+
|
80 |
+
def forward(self, feat0, feat1, mask0=None, mask1=None):
|
81 |
+
"""
|
82 |
+
Args:
|
83 |
+
feat0 (torch.Tensor): [N, L, C]
|
84 |
+
feat1 (torch.Tensor): [N, S, C]
|
85 |
+
mask0 (torch.Tensor): [N, L] (optional)
|
86 |
+
mask1 (torch.Tensor): [N, S] (optional)
|
87 |
+
"""
|
88 |
+
|
89 |
+
assert self.d_model == feat0.size(2), "the feature number of src and transformer must be equal"
|
90 |
+
|
91 |
+
for layer, name in zip(self.layers, self.layer_names):
|
92 |
+
if name == 'self':
|
93 |
+
feat0 = layer(feat0, feat0, mask0, mask0)
|
94 |
+
feat1 = layer(feat1, feat1, mask1, mask1)
|
95 |
+
elif name == 'cross':
|
96 |
+
feat0 = layer(feat0, feat1, mask0, mask1)
|
97 |
+
feat1 = layer(feat1, feat0, mask1, mask0)
|
98 |
+
else:
|
99 |
+
raise KeyError
|
100 |
+
|
101 |
+
return feat0, feat1
|
One-2-3-45-master 2/elevation_estimate/loftr/utils/coarse_matching.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from einops.einops import rearrange
|
5 |
+
|
6 |
+
INF = 1e9
|
7 |
+
|
8 |
+
def mask_border(m, b: int, v):
|
9 |
+
""" Mask borders with value
|
10 |
+
Args:
|
11 |
+
m (torch.Tensor): [N, H0, W0, H1, W1]
|
12 |
+
b (int)
|
13 |
+
v (m.dtype)
|
14 |
+
"""
|
15 |
+
if b <= 0:
|
16 |
+
return
|
17 |
+
|
18 |
+
m[:, :b] = v
|
19 |
+
m[:, :, :b] = v
|
20 |
+
m[:, :, :, :b] = v
|
21 |
+
m[:, :, :, :, :b] = v
|
22 |
+
m[:, -b:] = v
|
23 |
+
m[:, :, -b:] = v
|
24 |
+
m[:, :, :, -b:] = v
|
25 |
+
m[:, :, :, :, -b:] = v
|
26 |
+
|
27 |
+
|
28 |
+
def mask_border_with_padding(m, bd, v, p_m0, p_m1):
|
29 |
+
if bd <= 0:
|
30 |
+
return
|
31 |
+
|
32 |
+
m[:, :bd] = v
|
33 |
+
m[:, :, :bd] = v
|
34 |
+
m[:, :, :, :bd] = v
|
35 |
+
m[:, :, :, :, :bd] = v
|
36 |
+
|
37 |
+
h0s, w0s = p_m0.sum(1).max(-1)[0].int(), p_m0.sum(-1).max(-1)[0].int()
|
38 |
+
h1s, w1s = p_m1.sum(1).max(-1)[0].int(), p_m1.sum(-1).max(-1)[0].int()
|
39 |
+
for b_idx, (h0, w0, h1, w1) in enumerate(zip(h0s, w0s, h1s, w1s)):
|
40 |
+
m[b_idx, h0 - bd:] = v
|
41 |
+
m[b_idx, :, w0 - bd:] = v
|
42 |
+
m[b_idx, :, :, h1 - bd:] = v
|
43 |
+
m[b_idx, :, :, :, w1 - bd:] = v
|
44 |
+
|
45 |
+
|
46 |
+
def compute_max_candidates(p_m0, p_m1):
|
47 |
+
"""Compute the max candidates of all pairs within a batch
|
48 |
+
|
49 |
+
Args:
|
50 |
+
p_m0, p_m1 (torch.Tensor): padded masks
|
51 |
+
"""
|
52 |
+
h0s, w0s = p_m0.sum(1).max(-1)[0], p_m0.sum(-1).max(-1)[0]
|
53 |
+
h1s, w1s = p_m1.sum(1).max(-1)[0], p_m1.sum(-1).max(-1)[0]
|
54 |
+
max_cand = torch.sum(
|
55 |
+
torch.min(torch.stack([h0s * w0s, h1s * w1s], -1), -1)[0])
|
56 |
+
return max_cand
|
57 |
+
|
58 |
+
|
59 |
+
class CoarseMatching(nn.Module):
|
60 |
+
def __init__(self, config):
|
61 |
+
super().__init__()
|
62 |
+
self.config = config
|
63 |
+
# general config
|
64 |
+
self.thr = config['thr']
|
65 |
+
self.border_rm = config['border_rm']
|
66 |
+
# -- # for trainig fine-level LoFTR
|
67 |
+
self.train_coarse_percent = config['train_coarse_percent']
|
68 |
+
self.train_pad_num_gt_min = config['train_pad_num_gt_min']
|
69 |
+
|
70 |
+
# we provide 2 options for differentiable matching
|
71 |
+
self.match_type = config['match_type']
|
72 |
+
if self.match_type == 'dual_softmax':
|
73 |
+
self.temperature = config['dsmax_temperature']
|
74 |
+
elif self.match_type == 'sinkhorn':
|
75 |
+
try:
|
76 |
+
from .superglue import log_optimal_transport
|
77 |
+
except ImportError:
|
78 |
+
raise ImportError("download superglue.py first!")
|
79 |
+
self.log_optimal_transport = log_optimal_transport
|
80 |
+
self.bin_score = nn.Parameter(
|
81 |
+
torch.tensor(config['skh_init_bin_score'], requires_grad=True))
|
82 |
+
self.skh_iters = config['skh_iters']
|
83 |
+
self.skh_prefilter = config['skh_prefilter']
|
84 |
+
else:
|
85 |
+
raise NotImplementedError()
|
86 |
+
|
87 |
+
def forward(self, feat_c0, feat_c1, data, mask_c0=None, mask_c1=None):
|
88 |
+
"""
|
89 |
+
Args:
|
90 |
+
feat0 (torch.Tensor): [N, L, C]
|
91 |
+
feat1 (torch.Tensor): [N, S, C]
|
92 |
+
data (dict)
|
93 |
+
mask_c0 (torch.Tensor): [N, L] (optional)
|
94 |
+
mask_c1 (torch.Tensor): [N, S] (optional)
|
95 |
+
Update:
|
96 |
+
data (dict): {
|
97 |
+
'b_ids' (torch.Tensor): [M'],
|
98 |
+
'i_ids' (torch.Tensor): [M'],
|
99 |
+
'j_ids' (torch.Tensor): [M'],
|
100 |
+
'gt_mask' (torch.Tensor): [M'],
|
101 |
+
'mkpts0_c' (torch.Tensor): [M, 2],
|
102 |
+
'mkpts1_c' (torch.Tensor): [M, 2],
|
103 |
+
'mconf' (torch.Tensor): [M]}
|
104 |
+
NOTE: M' != M during training.
|
105 |
+
"""
|
106 |
+
N, L, S, C = feat_c0.size(0), feat_c0.size(1), feat_c1.size(1), feat_c0.size(2)
|
107 |
+
|
108 |
+
# normalize
|
109 |
+
feat_c0, feat_c1 = map(lambda feat: feat / feat.shape[-1]**.5,
|
110 |
+
[feat_c0, feat_c1])
|
111 |
+
|
112 |
+
if self.match_type == 'dual_softmax':
|
113 |
+
sim_matrix = torch.einsum("nlc,nsc->nls", feat_c0,
|
114 |
+
feat_c1) / self.temperature
|
115 |
+
if mask_c0 is not None:
|
116 |
+
sim_matrix.masked_fill_(
|
117 |
+
~(mask_c0[..., None] * mask_c1[:, None]).bool(),
|
118 |
+
-INF)
|
119 |
+
conf_matrix = F.softmax(sim_matrix, 1) * F.softmax(sim_matrix, 2)
|
120 |
+
|
121 |
+
elif self.match_type == 'sinkhorn':
|
122 |
+
# sinkhorn, dustbin included
|
123 |
+
sim_matrix = torch.einsum("nlc,nsc->nls", feat_c0, feat_c1)
|
124 |
+
if mask_c0 is not None:
|
125 |
+
sim_matrix[:, :L, :S].masked_fill_(
|
126 |
+
~(mask_c0[..., None] * mask_c1[:, None]).bool(),
|
127 |
+
-INF)
|
128 |
+
|
129 |
+
# build uniform prior & use sinkhorn
|
130 |
+
log_assign_matrix = self.log_optimal_transport(
|
131 |
+
sim_matrix, self.bin_score, self.skh_iters)
|
132 |
+
assign_matrix = log_assign_matrix.exp()
|
133 |
+
conf_matrix = assign_matrix[:, :-1, :-1]
|
134 |
+
|
135 |
+
# filter prediction with dustbin score (only in evaluation mode)
|
136 |
+
if not self.training and self.skh_prefilter:
|
137 |
+
filter0 = (assign_matrix.max(dim=2)[1] == S)[:, :-1] # [N, L]
|
138 |
+
filter1 = (assign_matrix.max(dim=1)[1] == L)[:, :-1] # [N, S]
|
139 |
+
conf_matrix[filter0[..., None].repeat(1, 1, S)] = 0
|
140 |
+
conf_matrix[filter1[:, None].repeat(1, L, 1)] = 0
|
141 |
+
|
142 |
+
if self.config['sparse_spvs']:
|
143 |
+
data.update({'conf_matrix_with_bin': assign_matrix.clone()})
|
144 |
+
|
145 |
+
data.update({'conf_matrix': conf_matrix})
|
146 |
+
|
147 |
+
# predict coarse matches from conf_matrix
|
148 |
+
data.update(**self.get_coarse_match(conf_matrix, data))
|
149 |
+
|
150 |
+
@torch.no_grad()
|
151 |
+
def get_coarse_match(self, conf_matrix, data):
|
152 |
+
"""
|
153 |
+
Args:
|
154 |
+
conf_matrix (torch.Tensor): [N, L, S]
|
155 |
+
data (dict): with keys ['hw0_i', 'hw1_i', 'hw0_c', 'hw1_c']
|
156 |
+
Returns:
|
157 |
+
coarse_matches (dict): {
|
158 |
+
'b_ids' (torch.Tensor): [M'],
|
159 |
+
'i_ids' (torch.Tensor): [M'],
|
160 |
+
'j_ids' (torch.Tensor): [M'],
|
161 |
+
'gt_mask' (torch.Tensor): [M'],
|
162 |
+
'm_bids' (torch.Tensor): [M],
|
163 |
+
'mkpts0_c' (torch.Tensor): [M, 2],
|
164 |
+
'mkpts1_c' (torch.Tensor): [M, 2],
|
165 |
+
'mconf' (torch.Tensor): [M]}
|
166 |
+
"""
|
167 |
+
axes_lengths = {
|
168 |
+
'h0c': data['hw0_c'][0],
|
169 |
+
'w0c': data['hw0_c'][1],
|
170 |
+
'h1c': data['hw1_c'][0],
|
171 |
+
'w1c': data['hw1_c'][1]
|
172 |
+
}
|
173 |
+
_device = conf_matrix.device
|
174 |
+
# 1. confidence thresholding
|
175 |
+
mask = conf_matrix > self.thr
|
176 |
+
mask = rearrange(mask, 'b (h0c w0c) (h1c w1c) -> b h0c w0c h1c w1c',
|
177 |
+
**axes_lengths)
|
178 |
+
if 'mask0' not in data:
|
179 |
+
mask_border(mask, self.border_rm, False)
|
180 |
+
else:
|
181 |
+
mask_border_with_padding(mask, self.border_rm, False,
|
182 |
+
data['mask0'], data['mask1'])
|
183 |
+
mask = rearrange(mask, 'b h0c w0c h1c w1c -> b (h0c w0c) (h1c w1c)',
|
184 |
+
**axes_lengths)
|
185 |
+
|
186 |
+
# 2. mutual nearest
|
187 |
+
mask = mask \
|
188 |
+
* (conf_matrix == conf_matrix.max(dim=2, keepdim=True)[0]) \
|
189 |
+
* (conf_matrix == conf_matrix.max(dim=1, keepdim=True)[0])
|
190 |
+
|
191 |
+
# 3. find all valid coarse matches
|
192 |
+
# this only works when at most one `True` in each row
|
193 |
+
mask_v, all_j_ids = mask.max(dim=2)
|
194 |
+
b_ids, i_ids = torch.where(mask_v)
|
195 |
+
j_ids = all_j_ids[b_ids, i_ids]
|
196 |
+
mconf = conf_matrix[b_ids, i_ids, j_ids]
|
197 |
+
|
198 |
+
# 4. Random sampling of training samples for fine-level LoFTR
|
199 |
+
# (optional) pad samples with gt coarse-level matches
|
200 |
+
if self.training:
|
201 |
+
# NOTE:
|
202 |
+
# The sampling is performed across all pairs in a batch without manually balancing
|
203 |
+
# #samples for fine-level increases w.r.t. batch_size
|
204 |
+
if 'mask0' not in data:
|
205 |
+
num_candidates_max = mask.size(0) * max(
|
206 |
+
mask.size(1), mask.size(2))
|
207 |
+
else:
|
208 |
+
num_candidates_max = compute_max_candidates(
|
209 |
+
data['mask0'], data['mask1'])
|
210 |
+
num_matches_train = int(num_candidates_max *
|
211 |
+
self.train_coarse_percent)
|
212 |
+
num_matches_pred = len(b_ids)
|
213 |
+
assert self.train_pad_num_gt_min < num_matches_train, "min-num-gt-pad should be less than num-train-matches"
|
214 |
+
|
215 |
+
# pred_indices is to select from prediction
|
216 |
+
if num_matches_pred <= num_matches_train - self.train_pad_num_gt_min:
|
217 |
+
pred_indices = torch.arange(num_matches_pred, device=_device)
|
218 |
+
else:
|
219 |
+
pred_indices = torch.randint(
|
220 |
+
num_matches_pred,
|
221 |
+
(num_matches_train - self.train_pad_num_gt_min, ),
|
222 |
+
device=_device)
|
223 |
+
|
224 |
+
# gt_pad_indices is to select from gt padding. e.g. max(3787-4800, 200)
|
225 |
+
gt_pad_indices = torch.randint(
|
226 |
+
len(data['spv_b_ids']),
|
227 |
+
(max(num_matches_train - num_matches_pred,
|
228 |
+
self.train_pad_num_gt_min), ),
|
229 |
+
device=_device)
|
230 |
+
mconf_gt = torch.zeros(len(data['spv_b_ids']), device=_device) # set conf of gt paddings to all zero
|
231 |
+
|
232 |
+
b_ids, i_ids, j_ids, mconf = map(
|
233 |
+
lambda x, y: torch.cat([x[pred_indices], y[gt_pad_indices]],
|
234 |
+
dim=0),
|
235 |
+
*zip([b_ids, data['spv_b_ids']], [i_ids, data['spv_i_ids']],
|
236 |
+
[j_ids, data['spv_j_ids']], [mconf, mconf_gt]))
|
237 |
+
|
238 |
+
# These matches select patches that feed into fine-level network
|
239 |
+
coarse_matches = {'b_ids': b_ids, 'i_ids': i_ids, 'j_ids': j_ids}
|
240 |
+
|
241 |
+
# 4. Update with matches in original image resolution
|
242 |
+
scale = data['hw0_i'][0] / data['hw0_c'][0]
|
243 |
+
scale0 = scale * data['scale0'][b_ids] if 'scale0' in data else scale
|
244 |
+
scale1 = scale * data['scale1'][b_ids] if 'scale1' in data else scale
|
245 |
+
mkpts0_c = torch.stack(
|
246 |
+
[i_ids % data['hw0_c'][1], i_ids // data['hw0_c'][1]],
|
247 |
+
dim=1) * scale0
|
248 |
+
mkpts1_c = torch.stack(
|
249 |
+
[j_ids % data['hw1_c'][1], j_ids // data['hw1_c'][1]],
|
250 |
+
dim=1) * scale1
|
251 |
+
|
252 |
+
# These matches is the current prediction (for visualization)
|
253 |
+
coarse_matches.update({
|
254 |
+
'gt_mask': mconf == 0,
|
255 |
+
'm_bids': b_ids[mconf != 0], # mconf == 0 => gt matches
|
256 |
+
'mkpts0_c': mkpts0_c[mconf != 0],
|
257 |
+
'mkpts1_c': mkpts1_c[mconf != 0],
|
258 |
+
'mconf': mconf[mconf != 0]
|
259 |
+
})
|
260 |
+
|
261 |
+
return coarse_matches
|
One-2-3-45-master 2/elevation_estimate/loftr/utils/cvpr_ds_config.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from yacs.config import CfgNode as CN
|
2 |
+
|
3 |
+
|
4 |
+
def lower_config(yacs_cfg):
|
5 |
+
if not isinstance(yacs_cfg, CN):
|
6 |
+
return yacs_cfg
|
7 |
+
return {k.lower(): lower_config(v) for k, v in yacs_cfg.items()}
|
8 |
+
|
9 |
+
|
10 |
+
_CN = CN()
|
11 |
+
_CN.BACKBONE_TYPE = 'ResNetFPN'
|
12 |
+
_CN.RESOLUTION = (8, 2) # options: [(8, 2), (16, 4)]
|
13 |
+
_CN.FINE_WINDOW_SIZE = 5 # window_size in fine_level, must be odd
|
14 |
+
_CN.FINE_CONCAT_COARSE_FEAT = True
|
15 |
+
|
16 |
+
# 1. LoFTR-backbone (local feature CNN) config
|
17 |
+
_CN.RESNETFPN = CN()
|
18 |
+
_CN.RESNETFPN.INITIAL_DIM = 128
|
19 |
+
_CN.RESNETFPN.BLOCK_DIMS = [128, 196, 256] # s1, s2, s3
|
20 |
+
|
21 |
+
# 2. LoFTR-coarse module config
|
22 |
+
_CN.COARSE = CN()
|
23 |
+
_CN.COARSE.D_MODEL = 256
|
24 |
+
_CN.COARSE.D_FFN = 256
|
25 |
+
_CN.COARSE.NHEAD = 8
|
26 |
+
_CN.COARSE.LAYER_NAMES = ['self', 'cross'] * 4
|
27 |
+
_CN.COARSE.ATTENTION = 'linear' # options: ['linear', 'full']
|
28 |
+
_CN.COARSE.TEMP_BUG_FIX = False
|
29 |
+
|
30 |
+
# 3. Coarse-Matching config
|
31 |
+
_CN.MATCH_COARSE = CN()
|
32 |
+
_CN.MATCH_COARSE.THR = 0.2
|
33 |
+
_CN.MATCH_COARSE.BORDER_RM = 2
|
34 |
+
_CN.MATCH_COARSE.MATCH_TYPE = 'dual_softmax' # options: ['dual_softmax, 'sinkhorn']
|
35 |
+
_CN.MATCH_COARSE.DSMAX_TEMPERATURE = 0.1
|
36 |
+
_CN.MATCH_COARSE.SKH_ITERS = 3
|
37 |
+
_CN.MATCH_COARSE.SKH_INIT_BIN_SCORE = 1.0
|
38 |
+
_CN.MATCH_COARSE.SKH_PREFILTER = True
|
39 |
+
_CN.MATCH_COARSE.TRAIN_COARSE_PERCENT = 0.4 # training tricks: save GPU memory
|
40 |
+
_CN.MATCH_COARSE.TRAIN_PAD_NUM_GT_MIN = 200 # training tricks: avoid DDP deadlock
|
41 |
+
|
42 |
+
# 4. LoFTR-fine module config
|
43 |
+
_CN.FINE = CN()
|
44 |
+
_CN.FINE.D_MODEL = 128
|
45 |
+
_CN.FINE.D_FFN = 128
|
46 |
+
_CN.FINE.NHEAD = 8
|
47 |
+
_CN.FINE.LAYER_NAMES = ['self', 'cross'] * 1
|
48 |
+
_CN.FINE.ATTENTION = 'linear'
|
49 |
+
|
50 |
+
default_cfg = lower_config(_CN)
|
One-2-3-45-master 2/elevation_estimate/loftr/utils/fine_matching.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
from kornia.geometry.subpix import dsnt
|
6 |
+
from kornia.utils.grid import create_meshgrid
|
7 |
+
|
8 |
+
|
9 |
+
class FineMatching(nn.Module):
|
10 |
+
"""FineMatching with s2d paradigm"""
|
11 |
+
|
12 |
+
def __init__(self):
|
13 |
+
super().__init__()
|
14 |
+
|
15 |
+
def forward(self, feat_f0, feat_f1, data):
|
16 |
+
"""
|
17 |
+
Args:
|
18 |
+
feat0 (torch.Tensor): [M, WW, C]
|
19 |
+
feat1 (torch.Tensor): [M, WW, C]
|
20 |
+
data (dict)
|
21 |
+
Update:
|
22 |
+
data (dict):{
|
23 |
+
'expec_f' (torch.Tensor): [M, 3],
|
24 |
+
'mkpts0_f' (torch.Tensor): [M, 2],
|
25 |
+
'mkpts1_f' (torch.Tensor): [M, 2]}
|
26 |
+
"""
|
27 |
+
M, WW, C = feat_f0.shape
|
28 |
+
W = int(math.sqrt(WW))
|
29 |
+
scale = data['hw0_i'][0] / data['hw0_f'][0]
|
30 |
+
self.M, self.W, self.WW, self.C, self.scale = M, W, WW, C, scale
|
31 |
+
|
32 |
+
# corner case: if no coarse matches found
|
33 |
+
if M == 0:
|
34 |
+
assert self.training == False, "M is always >0, when training, see coarse_matching.py"
|
35 |
+
# logger.warning('No matches found in coarse-level.')
|
36 |
+
data.update({
|
37 |
+
'expec_f': torch.empty(0, 3, device=feat_f0.device),
|
38 |
+
'mkpts0_f': data['mkpts0_c'],
|
39 |
+
'mkpts1_f': data['mkpts1_c'],
|
40 |
+
})
|
41 |
+
return
|
42 |
+
|
43 |
+
feat_f0_picked = feat_f0_picked = feat_f0[:, WW//2, :]
|
44 |
+
sim_matrix = torch.einsum('mc,mrc->mr', feat_f0_picked, feat_f1)
|
45 |
+
softmax_temp = 1. / C**.5
|
46 |
+
heatmap = torch.softmax(softmax_temp * sim_matrix, dim=1).view(-1, W, W)
|
47 |
+
|
48 |
+
# compute coordinates from heatmap
|
49 |
+
coords_normalized = dsnt.spatial_expectation2d(heatmap[None], True)[0] # [M, 2]
|
50 |
+
grid_normalized = create_meshgrid(W, W, True, heatmap.device).reshape(1, -1, 2) # [1, WW, 2]
|
51 |
+
|
52 |
+
# compute std over <x, y>
|
53 |
+
var = torch.sum(grid_normalized**2 * heatmap.view(-1, WW, 1), dim=1) - coords_normalized**2 # [M, 2]
|
54 |
+
std = torch.sum(torch.sqrt(torch.clamp(var, min=1e-10)), -1) # [M] clamp needed for numerical stability
|
55 |
+
|
56 |
+
# for fine-level supervision
|
57 |
+
data.update({'expec_f': torch.cat([coords_normalized, std.unsqueeze(1)], -1)})
|
58 |
+
|
59 |
+
# compute absolute kpt coords
|
60 |
+
self.get_fine_match(coords_normalized, data)
|
61 |
+
|
62 |
+
@torch.no_grad()
|
63 |
+
def get_fine_match(self, coords_normed, data):
|
64 |
+
W, WW, C, scale = self.W, self.WW, self.C, self.scale
|
65 |
+
|
66 |
+
# mkpts0_f and mkpts1_f
|
67 |
+
mkpts0_f = data['mkpts0_c']
|
68 |
+
scale1 = scale * data['scale1'][data['b_ids']] if 'scale0' in data else scale
|
69 |
+
mkpts1_f = data['mkpts1_c'] + (coords_normed * (W // 2) * scale1)[:len(data['mconf'])]
|
70 |
+
|
71 |
+
data.update({
|
72 |
+
"mkpts0_f": mkpts0_f,
|
73 |
+
"mkpts1_f": mkpts1_f
|
74 |
+
})
|
One-2-3-45-master 2/elevation_estimate/loftr/utils/geometry.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
@torch.no_grad()
|
5 |
+
def warp_kpts(kpts0, depth0, depth1, T_0to1, K0, K1):
|
6 |
+
""" Warp kpts0 from I0 to I1 with depth, K and Rt
|
7 |
+
Also check covisibility and depth consistency.
|
8 |
+
Depth is consistent if relative error < 0.2 (hard-coded).
|
9 |
+
|
10 |
+
Args:
|
11 |
+
kpts0 (torch.Tensor): [N, L, 2] - <x, y>,
|
12 |
+
depth0 (torch.Tensor): [N, H, W],
|
13 |
+
depth1 (torch.Tensor): [N, H, W],
|
14 |
+
T_0to1 (torch.Tensor): [N, 3, 4],
|
15 |
+
K0 (torch.Tensor): [N, 3, 3],
|
16 |
+
K1 (torch.Tensor): [N, 3, 3],
|
17 |
+
Returns:
|
18 |
+
calculable_mask (torch.Tensor): [N, L]
|
19 |
+
warped_keypoints0 (torch.Tensor): [N, L, 2] <x0_hat, y1_hat>
|
20 |
+
"""
|
21 |
+
kpts0_long = kpts0.round().long()
|
22 |
+
|
23 |
+
# Sample depth, get calculable_mask on depth != 0
|
24 |
+
kpts0_depth = torch.stack(
|
25 |
+
[depth0[i, kpts0_long[i, :, 1], kpts0_long[i, :, 0]] for i in range(kpts0.shape[0])], dim=0
|
26 |
+
) # (N, L)
|
27 |
+
nonzero_mask = kpts0_depth != 0
|
28 |
+
|
29 |
+
# Unproject
|
30 |
+
kpts0_h = torch.cat([kpts0, torch.ones_like(kpts0[:, :, [0]])], dim=-1) * kpts0_depth[..., None] # (N, L, 3)
|
31 |
+
kpts0_cam = K0.inverse() @ kpts0_h.transpose(2, 1) # (N, 3, L)
|
32 |
+
|
33 |
+
# Rigid Transform
|
34 |
+
w_kpts0_cam = T_0to1[:, :3, :3] @ kpts0_cam + T_0to1[:, :3, [3]] # (N, 3, L)
|
35 |
+
w_kpts0_depth_computed = w_kpts0_cam[:, 2, :]
|
36 |
+
|
37 |
+
# Project
|
38 |
+
w_kpts0_h = (K1 @ w_kpts0_cam).transpose(2, 1) # (N, L, 3)
|
39 |
+
w_kpts0 = w_kpts0_h[:, :, :2] / (w_kpts0_h[:, :, [2]] + 1e-4) # (N, L, 2), +1e-4 to avoid zero depth
|
40 |
+
|
41 |
+
# Covisible Check
|
42 |
+
h, w = depth1.shape[1:3]
|
43 |
+
covisible_mask = (w_kpts0[:, :, 0] > 0) * (w_kpts0[:, :, 0] < w-1) * \
|
44 |
+
(w_kpts0[:, :, 1] > 0) * (w_kpts0[:, :, 1] < h-1)
|
45 |
+
w_kpts0_long = w_kpts0.long()
|
46 |
+
w_kpts0_long[~covisible_mask, :] = 0
|
47 |
+
|
48 |
+
w_kpts0_depth = torch.stack(
|
49 |
+
[depth1[i, w_kpts0_long[i, :, 1], w_kpts0_long[i, :, 0]] for i in range(w_kpts0_long.shape[0])], dim=0
|
50 |
+
) # (N, L)
|
51 |
+
consistent_mask = ((w_kpts0_depth - w_kpts0_depth_computed) / w_kpts0_depth).abs() < 0.2
|
52 |
+
valid_mask = nonzero_mask * covisible_mask * consistent_mask
|
53 |
+
|
54 |
+
return valid_mask, w_kpts0
|
One-2-3-45-master 2/elevation_estimate/loftr/utils/position_encoding.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
|
6 |
+
class PositionEncodingSine(nn.Module):
|
7 |
+
"""
|
8 |
+
This is a sinusoidal position encoding that generalized to 2-dimensional images
|
9 |
+
"""
|
10 |
+
|
11 |
+
def __init__(self, d_model, max_shape=(256, 256), temp_bug_fix=True):
|
12 |
+
"""
|
13 |
+
Args:
|
14 |
+
max_shape (tuple): for 1/8 featmap, the max length of 256 corresponds to 2048 pixels
|
15 |
+
temp_bug_fix (bool): As noted in this [issue](https://github.com/zju3dv/LoFTR/issues/41),
|
16 |
+
the original implementation of LoFTR includes a bug in the pos-enc impl, which has little impact
|
17 |
+
on the final performance. For now, we keep both impls for backward compatability.
|
18 |
+
We will remove the buggy impl after re-training all variants of our released models.
|
19 |
+
"""
|
20 |
+
super().__init__()
|
21 |
+
|
22 |
+
pe = torch.zeros((d_model, *max_shape))
|
23 |
+
y_position = torch.ones(max_shape).cumsum(0).float().unsqueeze(0)
|
24 |
+
x_position = torch.ones(max_shape).cumsum(1).float().unsqueeze(0)
|
25 |
+
if temp_bug_fix:
|
26 |
+
div_term = torch.exp(torch.arange(0, d_model//2, 2).float() * (-math.log(10000.0) / (d_model//2)))
|
27 |
+
else: # a buggy implementation (for backward compatability only)
|
28 |
+
div_term = torch.exp(torch.arange(0, d_model//2, 2).float() * (-math.log(10000.0) / d_model//2))
|
29 |
+
div_term = div_term[:, None, None] # [C//4, 1, 1]
|
30 |
+
pe[0::4, :, :] = torch.sin(x_position * div_term)
|
31 |
+
pe[1::4, :, :] = torch.cos(x_position * div_term)
|
32 |
+
pe[2::4, :, :] = torch.sin(y_position * div_term)
|
33 |
+
pe[3::4, :, :] = torch.cos(y_position * div_term)
|
34 |
+
|
35 |
+
self.register_buffer('pe', pe.unsqueeze(0), persistent=False) # [1, C, H, W]
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
"""
|
39 |
+
Args:
|
40 |
+
x: [N, C, H, W]
|
41 |
+
"""
|
42 |
+
return x + self.pe[:, :, :x.size(2), :x.size(3)]
|
One-2-3-45-master 2/elevation_estimate/loftr/utils/supervision.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from math import log
|
2 |
+
from loguru import logger
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from einops import repeat
|
6 |
+
from kornia.utils import create_meshgrid
|
7 |
+
|
8 |
+
from .geometry import warp_kpts
|
9 |
+
|
10 |
+
############## ↓ Coarse-Level supervision ↓ ##############
|
11 |
+
|
12 |
+
|
13 |
+
@torch.no_grad()
|
14 |
+
def mask_pts_at_padded_regions(grid_pt, mask):
|
15 |
+
"""For megadepth dataset, zero-padding exists in images"""
|
16 |
+
mask = repeat(mask, 'n h w -> n (h w) c', c=2)
|
17 |
+
grid_pt[~mask.bool()] = 0
|
18 |
+
return grid_pt
|
19 |
+
|
20 |
+
|
21 |
+
@torch.no_grad()
|
22 |
+
def spvs_coarse(data, config):
|
23 |
+
"""
|
24 |
+
Update:
|
25 |
+
data (dict): {
|
26 |
+
"conf_matrix_gt": [N, hw0, hw1],
|
27 |
+
'spv_b_ids': [M]
|
28 |
+
'spv_i_ids': [M]
|
29 |
+
'spv_j_ids': [M]
|
30 |
+
'spv_w_pt0_i': [N, hw0, 2], in original image resolution
|
31 |
+
'spv_pt1_i': [N, hw1, 2], in original image resolution
|
32 |
+
}
|
33 |
+
|
34 |
+
NOTE:
|
35 |
+
- for scannet dataset, there're 3 kinds of resolution {i, c, f}
|
36 |
+
- for megadepth dataset, there're 4 kinds of resolution {i, i_resize, c, f}
|
37 |
+
"""
|
38 |
+
# 1. misc
|
39 |
+
device = data['image0'].device
|
40 |
+
N, _, H0, W0 = data['image0'].shape
|
41 |
+
_, _, H1, W1 = data['image1'].shape
|
42 |
+
scale = config['LOFTR']['RESOLUTION'][0]
|
43 |
+
scale0 = scale * data['scale0'][:, None] if 'scale0' in data else scale
|
44 |
+
scale1 = scale * data['scale1'][:, None] if 'scale0' in data else scale
|
45 |
+
h0, w0, h1, w1 = map(lambda x: x // scale, [H0, W0, H1, W1])
|
46 |
+
|
47 |
+
# 2. warp grids
|
48 |
+
# create kpts in meshgrid and resize them to image resolution
|
49 |
+
grid_pt0_c = create_meshgrid(h0, w0, False, device).reshape(1, h0*w0, 2).repeat(N, 1, 1) # [N, hw, 2]
|
50 |
+
grid_pt0_i = scale0 * grid_pt0_c
|
51 |
+
grid_pt1_c = create_meshgrid(h1, w1, False, device).reshape(1, h1*w1, 2).repeat(N, 1, 1)
|
52 |
+
grid_pt1_i = scale1 * grid_pt1_c
|
53 |
+
|
54 |
+
# mask padded region to (0, 0), so no need to manually mask conf_matrix_gt
|
55 |
+
if 'mask0' in data:
|
56 |
+
grid_pt0_i = mask_pts_at_padded_regions(grid_pt0_i, data['mask0'])
|
57 |
+
grid_pt1_i = mask_pts_at_padded_regions(grid_pt1_i, data['mask1'])
|
58 |
+
|
59 |
+
# warp kpts bi-directionally and resize them to coarse-level resolution
|
60 |
+
# (no depth consistency check, since it leads to worse results experimentally)
|
61 |
+
# (unhandled edge case: points with 0-depth will be warped to the left-up corner)
|
62 |
+
_, w_pt0_i = warp_kpts(grid_pt0_i, data['depth0'], data['depth1'], data['T_0to1'], data['K0'], data['K1'])
|
63 |
+
_, w_pt1_i = warp_kpts(grid_pt1_i, data['depth1'], data['depth0'], data['T_1to0'], data['K1'], data['K0'])
|
64 |
+
w_pt0_c = w_pt0_i / scale1
|
65 |
+
w_pt1_c = w_pt1_i / scale0
|
66 |
+
|
67 |
+
# 3. check if mutual nearest neighbor
|
68 |
+
w_pt0_c_round = w_pt0_c[:, :, :].round().long()
|
69 |
+
nearest_index1 = w_pt0_c_round[..., 0] + w_pt0_c_round[..., 1] * w1
|
70 |
+
w_pt1_c_round = w_pt1_c[:, :, :].round().long()
|
71 |
+
nearest_index0 = w_pt1_c_round[..., 0] + w_pt1_c_round[..., 1] * w0
|
72 |
+
|
73 |
+
# corner case: out of boundary
|
74 |
+
def out_bound_mask(pt, w, h):
|
75 |
+
return (pt[..., 0] < 0) + (pt[..., 0] >= w) + (pt[..., 1] < 0) + (pt[..., 1] >= h)
|
76 |
+
nearest_index1[out_bound_mask(w_pt0_c_round, w1, h1)] = 0
|
77 |
+
nearest_index0[out_bound_mask(w_pt1_c_round, w0, h0)] = 0
|
78 |
+
|
79 |
+
loop_back = torch.stack([nearest_index0[_b][_i] for _b, _i in enumerate(nearest_index1)], dim=0)
|
80 |
+
correct_0to1 = loop_back == torch.arange(h0*w0, device=device)[None].repeat(N, 1)
|
81 |
+
correct_0to1[:, 0] = False # ignore the top-left corner
|
82 |
+
|
83 |
+
# 4. construct a gt conf_matrix
|
84 |
+
conf_matrix_gt = torch.zeros(N, h0*w0, h1*w1, device=device)
|
85 |
+
b_ids, i_ids = torch.where(correct_0to1 != 0)
|
86 |
+
j_ids = nearest_index1[b_ids, i_ids]
|
87 |
+
|
88 |
+
conf_matrix_gt[b_ids, i_ids, j_ids] = 1
|
89 |
+
data.update({'conf_matrix_gt': conf_matrix_gt})
|
90 |
+
|
91 |
+
# 5. save coarse matches(gt) for training fine level
|
92 |
+
if len(b_ids) == 0:
|
93 |
+
logger.warning(f"No groundtruth coarse match found for: {data['pair_names']}")
|
94 |
+
# this won't affect fine-level loss calculation
|
95 |
+
b_ids = torch.tensor([0], device=device)
|
96 |
+
i_ids = torch.tensor([0], device=device)
|
97 |
+
j_ids = torch.tensor([0], device=device)
|
98 |
+
|
99 |
+
data.update({
|
100 |
+
'spv_b_ids': b_ids,
|
101 |
+
'spv_i_ids': i_ids,
|
102 |
+
'spv_j_ids': j_ids
|
103 |
+
})
|
104 |
+
|
105 |
+
# 6. save intermediate results (for fast fine-level computation)
|
106 |
+
data.update({
|
107 |
+
'spv_w_pt0_i': w_pt0_i,
|
108 |
+
'spv_pt1_i': grid_pt1_i
|
109 |
+
})
|
110 |
+
|
111 |
+
|
112 |
+
def compute_supervision_coarse(data, config):
|
113 |
+
assert len(set(data['dataset_name'])) == 1, "Do not support mixed datasets training!"
|
114 |
+
data_source = data['dataset_name'][0]
|
115 |
+
if data_source.lower() in ['scannet', 'megadepth']:
|
116 |
+
spvs_coarse(data, config)
|
117 |
+
else:
|
118 |
+
raise ValueError(f'Unknown data source: {data_source}')
|
119 |
+
|
120 |
+
|
121 |
+
############## ↓ Fine-Level supervision ↓ ##############
|
122 |
+
|
123 |
+
@torch.no_grad()
|
124 |
+
def spvs_fine(data, config):
|
125 |
+
"""
|
126 |
+
Update:
|
127 |
+
data (dict):{
|
128 |
+
"expec_f_gt": [M, 2]}
|
129 |
+
"""
|
130 |
+
# 1. misc
|
131 |
+
# w_pt0_i, pt1_i = data.pop('spv_w_pt0_i'), data.pop('spv_pt1_i')
|
132 |
+
w_pt0_i, pt1_i = data['spv_w_pt0_i'], data['spv_pt1_i']
|
133 |
+
scale = config['LOFTR']['RESOLUTION'][1]
|
134 |
+
radius = config['LOFTR']['FINE_WINDOW_SIZE'] // 2
|
135 |
+
|
136 |
+
# 2. get coarse prediction
|
137 |
+
b_ids, i_ids, j_ids = data['b_ids'], data['i_ids'], data['j_ids']
|
138 |
+
|
139 |
+
# 3. compute gt
|
140 |
+
scale = scale * data['scale1'][b_ids] if 'scale0' in data else scale
|
141 |
+
# `expec_f_gt` might exceed the window, i.e. abs(*) > 1, which would be filtered later
|
142 |
+
expec_f_gt = (w_pt0_i[b_ids, i_ids] - pt1_i[b_ids, j_ids]) / scale / radius # [M, 2]
|
143 |
+
data.update({"expec_f_gt": expec_f_gt})
|
144 |
+
|
145 |
+
|
146 |
+
def compute_supervision_fine(data, config):
|
147 |
+
data_source = data['dataset_name'][0]
|
148 |
+
if data_source.lower() in ['scannet', 'megadepth']:
|
149 |
+
spvs_fine(data, config)
|
150 |
+
else:
|
151 |
+
raise NotImplementedError
|
One-2-3-45-master 2/elevation_estimate/pyproject.toml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "elevation_estimate"
|
3 |
+
version = "0.1"
|
4 |
+
|
5 |
+
[tool.setuptools.packages.find]
|
6 |
+
exclude = ["configs", "tests"] # empty by default
|
7 |
+
namespaces = false # true by default
|
One-2-3-45-master 2/elevation_estimate/utils/__init__.py
ADDED
File without changes
|
One-2-3-45-master 2/elevation_estimate/utils/elev_est_api.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import os.path as osp
|
5 |
+
import imageio
|
6 |
+
from copy import deepcopy
|
7 |
+
|
8 |
+
import loguru
|
9 |
+
import torch
|
10 |
+
import matplotlib.cm as cm
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
|
13 |
+
from ..loftr import LoFTR, default_cfg
|
14 |
+
from . import plt_utils
|
15 |
+
from .plotting import make_matching_figure
|
16 |
+
from .utils3d import rect_to_img, canonical_to_camera, calc_pose
|
17 |
+
|
18 |
+
|
19 |
+
class ElevEstHelper:
|
20 |
+
_feature_matcher = None
|
21 |
+
|
22 |
+
@classmethod
|
23 |
+
def get_feature_matcher(cls):
|
24 |
+
if cls._feature_matcher is None:
|
25 |
+
loguru.logger.info("Loading feature matcher...")
|
26 |
+
_default_cfg = deepcopy(default_cfg)
|
27 |
+
_default_cfg['coarse']['temp_bug_fix'] = True # set to False when using the old ckpt
|
28 |
+
matcher = LoFTR(config=_default_cfg)
|
29 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
30 |
+
ckpt_path = os.path.join(current_dir, "weights/indoor_ds_new.ckpt")
|
31 |
+
if not osp.exists(ckpt_path):
|
32 |
+
loguru.logger.info("Downloading feature matcher...")
|
33 |
+
os.makedirs("weights", exist_ok=True)
|
34 |
+
import gdown
|
35 |
+
gdown.cached_download(url="https://drive.google.com/uc?id=19s3QvcCWQ6g-N1PrYlDCg-2mOJZ3kkgS",
|
36 |
+
path=ckpt_path)
|
37 |
+
matcher.load_state_dict(torch.load(ckpt_path)['state_dict'])
|
38 |
+
matcher = matcher.eval().cuda()
|
39 |
+
cls._feature_matcher = matcher
|
40 |
+
return cls._feature_matcher
|
41 |
+
|
42 |
+
|
43 |
+
def mask_out_bkgd(img_path, dbg=False):
|
44 |
+
img = imageio.imread_v2(img_path)
|
45 |
+
if img.shape[-1] == 4:
|
46 |
+
fg_mask = img[:, :, :3]
|
47 |
+
else:
|
48 |
+
loguru.logger.info("Image has no alpha channel, using thresholding to mask out background")
|
49 |
+
fg_mask = ~(img > 245).all(axis=-1)
|
50 |
+
if dbg:
|
51 |
+
plt.imshow(plt_utils.vis_mask(img, fg_mask.astype(np.uint8), color=[0, 255, 0]))
|
52 |
+
plt.show()
|
53 |
+
return fg_mask
|
54 |
+
|
55 |
+
|
56 |
+
def get_feature_matching(img_paths, dbg=False):
|
57 |
+
assert len(img_paths) == 4
|
58 |
+
matcher = ElevEstHelper.get_feature_matcher()
|
59 |
+
feature_matching = {}
|
60 |
+
masks = []
|
61 |
+
for i in range(4):
|
62 |
+
mask = mask_out_bkgd(img_paths[i], dbg=dbg)
|
63 |
+
masks.append(mask)
|
64 |
+
for i in range(0, 4):
|
65 |
+
for j in range(i + 1, 4):
|
66 |
+
img0_pth = img_paths[i]
|
67 |
+
img1_pth = img_paths[j]
|
68 |
+
mask0 = masks[i]
|
69 |
+
mask1 = masks[j]
|
70 |
+
img0_raw = cv2.imread(img0_pth, cv2.IMREAD_GRAYSCALE)
|
71 |
+
img1_raw = cv2.imread(img1_pth, cv2.IMREAD_GRAYSCALE)
|
72 |
+
original_shape = img0_raw.shape
|
73 |
+
img0_raw_resized = cv2.resize(img0_raw, (480, 480))
|
74 |
+
img1_raw_resized = cv2.resize(img1_raw, (480, 480))
|
75 |
+
|
76 |
+
img0 = torch.from_numpy(img0_raw_resized)[None][None].cuda() / 255.
|
77 |
+
img1 = torch.from_numpy(img1_raw_resized)[None][None].cuda() / 255.
|
78 |
+
batch = {'image0': img0, 'image1': img1}
|
79 |
+
|
80 |
+
# Inference with LoFTR and get prediction
|
81 |
+
with torch.no_grad():
|
82 |
+
matcher(batch)
|
83 |
+
mkpts0 = batch['mkpts0_f'].cpu().numpy()
|
84 |
+
mkpts1 = batch['mkpts1_f'].cpu().numpy()
|
85 |
+
mconf = batch['mconf'].cpu().numpy()
|
86 |
+
mkpts0[:, 0] = mkpts0[:, 0] * original_shape[1] / 480
|
87 |
+
mkpts0[:, 1] = mkpts0[:, 1] * original_shape[0] / 480
|
88 |
+
mkpts1[:, 0] = mkpts1[:, 0] * original_shape[1] / 480
|
89 |
+
mkpts1[:, 1] = mkpts1[:, 1] * original_shape[0] / 480
|
90 |
+
keep0 = mask0[mkpts0[:, 1].astype(int), mkpts1[:, 0].astype(int)]
|
91 |
+
keep1 = mask1[mkpts1[:, 1].astype(int), mkpts1[:, 0].astype(int)]
|
92 |
+
keep = np.logical_and(keep0, keep1)
|
93 |
+
mkpts0 = mkpts0[keep]
|
94 |
+
mkpts1 = mkpts1[keep]
|
95 |
+
mconf = mconf[keep]
|
96 |
+
if dbg:
|
97 |
+
# Draw visualization
|
98 |
+
color = cm.jet(mconf)
|
99 |
+
text = [
|
100 |
+
'LoFTR',
|
101 |
+
'Matches: {}'.format(len(mkpts0)),
|
102 |
+
]
|
103 |
+
fig = make_matching_figure(img0_raw, img1_raw, mkpts0, mkpts1, color, text=text)
|
104 |
+
fig.show()
|
105 |
+
feature_matching[f"{i}_{j}"] = np.concatenate([mkpts0, mkpts1, mconf[:, None]], axis=1)
|
106 |
+
|
107 |
+
return feature_matching
|
108 |
+
|
109 |
+
|
110 |
+
def gen_pose_hypothesis(center_elevation):
|
111 |
+
elevations = np.radians(
|
112 |
+
[center_elevation, center_elevation - 10, center_elevation + 10, center_elevation, center_elevation]) # 45~120
|
113 |
+
azimuths = np.radians([30, 30, 30, 20, 40])
|
114 |
+
input_poses = calc_pose(elevations, azimuths, len(azimuths))
|
115 |
+
input_poses = input_poses[1:]
|
116 |
+
input_poses[..., 1] *= -1
|
117 |
+
input_poses[..., 2] *= -1
|
118 |
+
return input_poses
|
119 |
+
|
120 |
+
|
121 |
+
def ba_error_general(K, matches, poses):
|
122 |
+
projmat0 = K @ poses[0].inverse()[:3, :4]
|
123 |
+
projmat1 = K @ poses[1].inverse()[:3, :4]
|
124 |
+
match_01 = matches[0]
|
125 |
+
pts0 = match_01[:, :2]
|
126 |
+
pts1 = match_01[:, 2:4]
|
127 |
+
Xref = cv2.triangulatePoints(projmat0.cpu().numpy(), projmat1.cpu().numpy(),
|
128 |
+
pts0.cpu().numpy().T, pts1.cpu().numpy().T)
|
129 |
+
Xref = Xref[:3] / Xref[3:]
|
130 |
+
Xref = Xref.T
|
131 |
+
Xref = torch.from_numpy(Xref).cuda().float()
|
132 |
+
reproj_error = 0
|
133 |
+
for match, cp in zip(matches[1:], poses[2:]):
|
134 |
+
dist = (torch.norm(match_01[:, :2][:, None, :] - match[:, :2][None, :, :], dim=-1))
|
135 |
+
if dist.numel() > 0:
|
136 |
+
# print("dist.shape", dist.shape)
|
137 |
+
m0to2_index = dist.argmin(1)
|
138 |
+
keep = dist[torch.arange(match_01.shape[0]), m0to2_index] < 1
|
139 |
+
if keep.sum() > 0:
|
140 |
+
xref_in2 = rect_to_img(K, canonical_to_camera(Xref, cp.inverse()))
|
141 |
+
reproj_error2 = torch.norm(match[m0to2_index][keep][:, 2:4] - xref_in2[keep], dim=-1)
|
142 |
+
conf02 = match[m0to2_index][keep][:, -1]
|
143 |
+
reproj_error += (reproj_error2 * conf02).sum() / (conf02.sum())
|
144 |
+
|
145 |
+
return reproj_error
|
146 |
+
|
147 |
+
|
148 |
+
def find_optim_elev(elevs, nimgs, matches, K, dbg=False):
|
149 |
+
errs = []
|
150 |
+
for elev in elevs:
|
151 |
+
err = 0
|
152 |
+
cam_poses = gen_pose_hypothesis(elev)
|
153 |
+
for start in range(nimgs - 1):
|
154 |
+
batch_matches, batch_poses = [], []
|
155 |
+
for i in range(start, nimgs + start):
|
156 |
+
ci = i % nimgs
|
157 |
+
batch_poses.append(cam_poses[ci])
|
158 |
+
for j in range(nimgs - 1):
|
159 |
+
key = f"{start}_{(start + j + 1) % nimgs}"
|
160 |
+
match = matches[key]
|
161 |
+
batch_matches.append(match)
|
162 |
+
err += ba_error_general(K, batch_matches, batch_poses)
|
163 |
+
errs.append(err)
|
164 |
+
errs = torch.tensor(errs)
|
165 |
+
if dbg:
|
166 |
+
plt.plot(elevs, errs)
|
167 |
+
plt.show()
|
168 |
+
optim_elev = elevs[torch.argmin(errs)].item()
|
169 |
+
return optim_elev
|
170 |
+
|
171 |
+
|
172 |
+
def get_elev_est(feature_matching, min_elev=30, max_elev=150, K=None, dbg=False):
|
173 |
+
flag = True
|
174 |
+
matches = {}
|
175 |
+
for i in range(4):
|
176 |
+
for j in range(i + 1, 4):
|
177 |
+
match_ij = feature_matching[f"{i}_{j}"]
|
178 |
+
if len(match_ij) == 0:
|
179 |
+
flag = False
|
180 |
+
match_ji = np.concatenate([match_ij[:, 2:4], match_ij[:, 0:2], match_ij[:, 4:5]], axis=1)
|
181 |
+
matches[f"{i}_{j}"] = torch.from_numpy(match_ij).float().cuda()
|
182 |
+
matches[f"{j}_{i}"] = torch.from_numpy(match_ji).float().cuda()
|
183 |
+
if not flag:
|
184 |
+
loguru.logger.info("0 matches, could not estimate elevation")
|
185 |
+
return None
|
186 |
+
interval = 10
|
187 |
+
elevs = np.arange(min_elev, max_elev, interval)
|
188 |
+
optim_elev1 = find_optim_elev(elevs, 4, matches, K)
|
189 |
+
|
190 |
+
elevs = np.arange(optim_elev1 - 10, optim_elev1 + 10, 1)
|
191 |
+
optim_elev2 = find_optim_elev(elevs, 4, matches, K)
|
192 |
+
|
193 |
+
return optim_elev2
|
194 |
+
|
195 |
+
|
196 |
+
def elev_est_api(img_paths, min_elev=30, max_elev=150, K=None, dbg=False):
|
197 |
+
feature_matching = get_feature_matching(img_paths, dbg=dbg)
|
198 |
+
if K is None:
|
199 |
+
loguru.logger.warning("K is not provided, using default K")
|
200 |
+
K = np.array([[280.0, 0, 128.0],
|
201 |
+
[0, 280.0, 128.0],
|
202 |
+
[0, 0, 1]])
|
203 |
+
K = torch.from_numpy(K).cuda().float()
|
204 |
+
elev = get_elev_est(feature_matching, min_elev, max_elev, K, dbg=dbg)
|
205 |
+
return elev
|
One-2-3-45-master 2/elevation_estimate/utils/plotting.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import bisect
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import matplotlib
|
5 |
+
|
6 |
+
|
7 |
+
def _compute_conf_thresh(data):
|
8 |
+
dataset_name = data['dataset_name'][0].lower()
|
9 |
+
if dataset_name == 'scannet':
|
10 |
+
thr = 5e-4
|
11 |
+
elif dataset_name == 'megadepth':
|
12 |
+
thr = 1e-4
|
13 |
+
else:
|
14 |
+
raise ValueError(f'Unknown dataset: {dataset_name}')
|
15 |
+
return thr
|
16 |
+
|
17 |
+
|
18 |
+
# --- VISUALIZATION --- #
|
19 |
+
|
20 |
+
def make_matching_figure(
|
21 |
+
img0, img1, mkpts0, mkpts1, color,
|
22 |
+
kpts0=None, kpts1=None, text=[], dpi=75, path=None):
|
23 |
+
# draw image pair
|
24 |
+
assert mkpts0.shape[0] == mkpts1.shape[0], f'mkpts0: {mkpts0.shape[0]} v.s. mkpts1: {mkpts1.shape[0]}'
|
25 |
+
fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi)
|
26 |
+
axes[0].imshow(img0, cmap='gray')
|
27 |
+
axes[1].imshow(img1, cmap='gray')
|
28 |
+
for i in range(2): # clear all frames
|
29 |
+
axes[i].get_yaxis().set_ticks([])
|
30 |
+
axes[i].get_xaxis().set_ticks([])
|
31 |
+
for spine in axes[i].spines.values():
|
32 |
+
spine.set_visible(False)
|
33 |
+
plt.tight_layout(pad=1)
|
34 |
+
|
35 |
+
if kpts0 is not None:
|
36 |
+
assert kpts1 is not None
|
37 |
+
axes[0].scatter(kpts0[:, 0], kpts0[:, 1], c='w', s=2)
|
38 |
+
axes[1].scatter(kpts1[:, 0], kpts1[:, 1], c='w', s=2)
|
39 |
+
|
40 |
+
# draw matches
|
41 |
+
if mkpts0.shape[0] != 0 and mkpts1.shape[0] != 0:
|
42 |
+
fig.canvas.draw()
|
43 |
+
transFigure = fig.transFigure.inverted()
|
44 |
+
fkpts0 = transFigure.transform(axes[0].transData.transform(mkpts0))
|
45 |
+
fkpts1 = transFigure.transform(axes[1].transData.transform(mkpts1))
|
46 |
+
fig.lines = [matplotlib.lines.Line2D((fkpts0[i, 0], fkpts1[i, 0]),
|
47 |
+
(fkpts0[i, 1], fkpts1[i, 1]),
|
48 |
+
transform=fig.transFigure, c=color[i], linewidth=1)
|
49 |
+
for i in range(len(mkpts0))]
|
50 |
+
|
51 |
+
axes[0].scatter(mkpts0[:, 0], mkpts0[:, 1], c=color, s=4)
|
52 |
+
axes[1].scatter(mkpts1[:, 0], mkpts1[:, 1], c=color, s=4)
|
53 |
+
|
54 |
+
# put txts
|
55 |
+
txt_color = 'k' if img0[:100, :200].mean() > 200 else 'w'
|
56 |
+
fig.text(
|
57 |
+
0.01, 0.99, '\n'.join(text), transform=fig.axes[0].transAxes,
|
58 |
+
fontsize=15, va='top', ha='left', color=txt_color)
|
59 |
+
|
60 |
+
# save or return figure
|
61 |
+
if path:
|
62 |
+
plt.savefig(str(path), bbox_inches='tight', pad_inches=0)
|
63 |
+
plt.close()
|
64 |
+
else:
|
65 |
+
return fig
|
66 |
+
|
67 |
+
|
68 |
+
def _make_evaluation_figure(data, b_id, alpha='dynamic'):
|
69 |
+
b_mask = data['m_bids'] == b_id
|
70 |
+
conf_thr = _compute_conf_thresh(data)
|
71 |
+
|
72 |
+
img0 = (data['image0'][b_id][0].cpu().numpy() * 255).round().astype(np.int32)
|
73 |
+
img1 = (data['image1'][b_id][0].cpu().numpy() * 255).round().astype(np.int32)
|
74 |
+
kpts0 = data['mkpts0_f'][b_mask].cpu().numpy()
|
75 |
+
kpts1 = data['mkpts1_f'][b_mask].cpu().numpy()
|
76 |
+
|
77 |
+
# for megadepth, we visualize matches on the resized image
|
78 |
+
if 'scale0' in data:
|
79 |
+
kpts0 = kpts0 / data['scale0'][b_id].cpu().numpy()[[1, 0]]
|
80 |
+
kpts1 = kpts1 / data['scale1'][b_id].cpu().numpy()[[1, 0]]
|
81 |
+
|
82 |
+
epi_errs = data['epi_errs'][b_mask].cpu().numpy()
|
83 |
+
correct_mask = epi_errs < conf_thr
|
84 |
+
precision = np.mean(correct_mask) if len(correct_mask) > 0 else 0
|
85 |
+
n_correct = np.sum(correct_mask)
|
86 |
+
n_gt_matches = int(data['conf_matrix_gt'][b_id].sum().cpu())
|
87 |
+
recall = 0 if n_gt_matches == 0 else n_correct / (n_gt_matches)
|
88 |
+
# recall might be larger than 1, since the calculation of conf_matrix_gt
|
89 |
+
# uses groundtruth depths and camera poses, but epipolar distance is used here.
|
90 |
+
|
91 |
+
# matching info
|
92 |
+
if alpha == 'dynamic':
|
93 |
+
alpha = dynamic_alpha(len(correct_mask))
|
94 |
+
color = error_colormap(epi_errs, conf_thr, alpha=alpha)
|
95 |
+
|
96 |
+
text = [
|
97 |
+
f'#Matches {len(kpts0)}',
|
98 |
+
f'Precision({conf_thr:.2e}) ({100 * precision:.1f}%): {n_correct}/{len(kpts0)}',
|
99 |
+
f'Recall({conf_thr:.2e}) ({100 * recall:.1f}%): {n_correct}/{n_gt_matches}'
|
100 |
+
]
|
101 |
+
|
102 |
+
# make the figure
|
103 |
+
figure = make_matching_figure(img0, img1, kpts0, kpts1,
|
104 |
+
color, text=text)
|
105 |
+
return figure
|
106 |
+
|
107 |
+
def _make_confidence_figure(data, b_id):
|
108 |
+
# TODO: Implement confidence figure
|
109 |
+
raise NotImplementedError()
|
110 |
+
|
111 |
+
|
112 |
+
def make_matching_figures(data, config, mode='evaluation'):
|
113 |
+
""" Make matching figures for a batch.
|
114 |
+
|
115 |
+
Args:
|
116 |
+
data (Dict): a batch updated by PL_LoFTR.
|
117 |
+
config (Dict): matcher config
|
118 |
+
Returns:
|
119 |
+
figures (Dict[str, List[plt.figure]]
|
120 |
+
"""
|
121 |
+
assert mode in ['evaluation', 'confidence'] # 'confidence'
|
122 |
+
figures = {mode: []}
|
123 |
+
for b_id in range(data['image0'].size(0)):
|
124 |
+
if mode == 'evaluation':
|
125 |
+
fig = _make_evaluation_figure(
|
126 |
+
data, b_id,
|
127 |
+
alpha=config.TRAINER.PLOT_MATCHES_ALPHA)
|
128 |
+
elif mode == 'confidence':
|
129 |
+
fig = _make_confidence_figure(data, b_id)
|
130 |
+
else:
|
131 |
+
raise ValueError(f'Unknown plot mode: {mode}')
|
132 |
+
figures[mode].append(fig)
|
133 |
+
return figures
|
134 |
+
|
135 |
+
|
136 |
+
def dynamic_alpha(n_matches,
|
137 |
+
milestones=[0, 300, 1000, 2000],
|
138 |
+
alphas=[1.0, 0.8, 0.4, 0.2]):
|
139 |
+
if n_matches == 0:
|
140 |
+
return 1.0
|
141 |
+
ranges = list(zip(alphas, alphas[1:] + [None]))
|
142 |
+
loc = bisect.bisect_right(milestones, n_matches) - 1
|
143 |
+
_range = ranges[loc]
|
144 |
+
if _range[1] is None:
|
145 |
+
return _range[0]
|
146 |
+
return _range[1] + (milestones[loc + 1] - n_matches) / (
|
147 |
+
milestones[loc + 1] - milestones[loc]) * (_range[0] - _range[1])
|
148 |
+
|
149 |
+
|
150 |
+
def error_colormap(err, thr, alpha=1.0):
|
151 |
+
assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}"
|
152 |
+
x = 1 - np.clip(err / (thr * 2), 0, 1)
|
153 |
+
return np.clip(
|
154 |
+
np.stack([2-x*2, x*2, np.zeros_like(x), np.ones_like(x)*alpha], -1), 0, 1)
|
One-2-3-45-master 2/elevation_estimate/utils/plt_utils.py
ADDED
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path as osp
|
2 |
+
import os
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import torch
|
5 |
+
import cv2
|
6 |
+
import math
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import tqdm
|
10 |
+
from cv2 import findContours
|
11 |
+
from dl_ext.primitive import safe_zip
|
12 |
+
from dl_ext.timer import EvalTime
|
13 |
+
|
14 |
+
|
15 |
+
def plot_confidence(confidence):
|
16 |
+
n = len(confidence)
|
17 |
+
plt.plot(np.arange(n), confidence)
|
18 |
+
plt.show()
|
19 |
+
|
20 |
+
|
21 |
+
def image_grid(
|
22 |
+
images,
|
23 |
+
rows=None,
|
24 |
+
cols=None,
|
25 |
+
fill: bool = True,
|
26 |
+
show_axes: bool = False,
|
27 |
+
rgb=None,
|
28 |
+
show=True,
|
29 |
+
label=None,
|
30 |
+
**kwargs
|
31 |
+
):
|
32 |
+
"""
|
33 |
+
A util function for plotting a grid of images.
|
34 |
+
Args:
|
35 |
+
images: (N, H, W, 4) array of RGBA images
|
36 |
+
rows: number of rows in the grid
|
37 |
+
cols: number of columns in the grid
|
38 |
+
fill: boolean indicating if the space between images should be filled
|
39 |
+
show_axes: boolean indicating if the axes of the plots should be visible
|
40 |
+
rgb: boolean, If True, only RGB channels are plotted.
|
41 |
+
If False, only the alpha channel is plotted.
|
42 |
+
Returns:
|
43 |
+
None
|
44 |
+
"""
|
45 |
+
evaltime = EvalTime(disable=True)
|
46 |
+
evaltime('')
|
47 |
+
if isinstance(images, torch.Tensor):
|
48 |
+
images = images.detach().cpu()
|
49 |
+
if len(images[0].shape) == 2:
|
50 |
+
rgb = False
|
51 |
+
if images[0].shape[-1] == 2:
|
52 |
+
# flow
|
53 |
+
images = [flow_to_image(im) for im in images]
|
54 |
+
if (rows is None) != (cols is None):
|
55 |
+
raise ValueError("Specify either both rows and cols or neither.")
|
56 |
+
|
57 |
+
if rows is None:
|
58 |
+
rows = int(len(images) ** 0.5)
|
59 |
+
cols = math.ceil(len(images) / rows)
|
60 |
+
|
61 |
+
gridspec_kw = {"wspace": 0.0, "hspace": 0.0} if fill else {}
|
62 |
+
if len(images) < 50:
|
63 |
+
figsize = (10, 10)
|
64 |
+
else:
|
65 |
+
figsize = (15, 15)
|
66 |
+
evaltime('0.5')
|
67 |
+
plt.figure(figsize=figsize)
|
68 |
+
# fig, axarr = plt.subplots(rows, cols, gridspec_kw=gridspec_kw, figsize=figsize)
|
69 |
+
if label:
|
70 |
+
# fig.suptitle(label, fontsize=30)
|
71 |
+
plt.suptitle(label, fontsize=30)
|
72 |
+
# bleed = 0
|
73 |
+
# fig.subplots_adjust(left=bleed, bottom=bleed, right=(1 - bleed), top=(1 - bleed))
|
74 |
+
evaltime('subplots')
|
75 |
+
|
76 |
+
# for i, (ax, im) in enumerate(tqdm.tqdm(zip(axarr.ravel(), images), leave=True, total=len(images))):
|
77 |
+
for i in range(len(images)):
|
78 |
+
# evaltime(f'{i} begin')
|
79 |
+
plt.subplot(rows, cols, i + 1)
|
80 |
+
if rgb:
|
81 |
+
# only render RGB channels
|
82 |
+
plt.imshow(images[i][..., :3], **kwargs)
|
83 |
+
# ax.imshow(im[..., :3], **kwargs)
|
84 |
+
else:
|
85 |
+
# only render Alpha channel
|
86 |
+
plt.imshow(images[i], **kwargs)
|
87 |
+
# ax.imshow(im, **kwargs)
|
88 |
+
if not show_axes:
|
89 |
+
plt.axis('off')
|
90 |
+
# ax.set_axis_off()
|
91 |
+
# ax.set_title(f'{i}')
|
92 |
+
plt.title(f'{i}')
|
93 |
+
# evaltime(f'{i} end')
|
94 |
+
evaltime('2')
|
95 |
+
if show:
|
96 |
+
plt.show()
|
97 |
+
# return fig
|
98 |
+
|
99 |
+
|
100 |
+
def depth_grid(
|
101 |
+
depths,
|
102 |
+
rows=None,
|
103 |
+
cols=None,
|
104 |
+
fill: bool = True,
|
105 |
+
show_axes: bool = False,
|
106 |
+
):
|
107 |
+
"""
|
108 |
+
A util function for plotting a grid of images.
|
109 |
+
Args:
|
110 |
+
images: (N, H, W, 4) array of RGBA images
|
111 |
+
rows: number of rows in the grid
|
112 |
+
cols: number of columns in the grid
|
113 |
+
fill: boolean indicating if the space between images should be filled
|
114 |
+
show_axes: boolean indicating if the axes of the plots should be visible
|
115 |
+
rgb: boolean, If True, only RGB channels are plotted.
|
116 |
+
If False, only the alpha channel is plotted.
|
117 |
+
Returns:
|
118 |
+
None
|
119 |
+
"""
|
120 |
+
if (rows is None) != (cols is None):
|
121 |
+
raise ValueError("Specify either both rows and cols or neither.")
|
122 |
+
|
123 |
+
if rows is None:
|
124 |
+
rows = len(depths)
|
125 |
+
cols = 1
|
126 |
+
|
127 |
+
gridspec_kw = {"wspace": 0.0, "hspace": 0.0} if fill else {}
|
128 |
+
fig, axarr = plt.subplots(rows, cols, gridspec_kw=gridspec_kw, figsize=(15, 9))
|
129 |
+
bleed = 0
|
130 |
+
fig.subplots_adjust(left=bleed, bottom=bleed, right=(1 - bleed), top=(1 - bleed))
|
131 |
+
|
132 |
+
for ax, im in zip(axarr.ravel(), depths):
|
133 |
+
ax.imshow(im)
|
134 |
+
if not show_axes:
|
135 |
+
ax.set_axis_off()
|
136 |
+
plt.show()
|
137 |
+
|
138 |
+
|
139 |
+
def hover_masks_on_imgs(images, masks):
|
140 |
+
masks = np.array(masks)
|
141 |
+
new_imgs = []
|
142 |
+
tids = list(range(1, masks.max() + 1))
|
143 |
+
colors = colormap(rgb=True, lighten=True)
|
144 |
+
for im, mask in tqdm.tqdm(safe_zip(images, masks), total=len(images)):
|
145 |
+
for tid in tids:
|
146 |
+
im = vis_mask(
|
147 |
+
im,
|
148 |
+
(mask == tid).astype(np.uint8),
|
149 |
+
color=colors[tid],
|
150 |
+
alpha=0.5,
|
151 |
+
border_alpha=0.5,
|
152 |
+
border_color=[255, 255, 255],
|
153 |
+
border_thick=3)
|
154 |
+
new_imgs.append(im)
|
155 |
+
return new_imgs
|
156 |
+
|
157 |
+
|
158 |
+
def vis_mask(img,
|
159 |
+
mask,
|
160 |
+
color=[255, 255, 255],
|
161 |
+
alpha=0.4,
|
162 |
+
show_border=True,
|
163 |
+
border_alpha=0.5,
|
164 |
+
border_thick=1,
|
165 |
+
border_color=None):
|
166 |
+
"""Visualizes a single binary mask."""
|
167 |
+
if isinstance(mask, torch.Tensor):
|
168 |
+
from anypose.utils.pn_utils import to_array
|
169 |
+
mask = to_array(mask > 0).astype(np.uint8)
|
170 |
+
img = img.astype(np.float32)
|
171 |
+
idx = np.nonzero(mask)
|
172 |
+
|
173 |
+
img[idx[0], idx[1], :] *= 1.0 - alpha
|
174 |
+
img[idx[0], idx[1], :] += [alpha * x for x in color]
|
175 |
+
|
176 |
+
if show_border:
|
177 |
+
contours, _ = findContours(
|
178 |
+
mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
179 |
+
# contours = [c for c in contours if c.shape[0] > 10]
|
180 |
+
if border_color is None:
|
181 |
+
border_color = color
|
182 |
+
if not isinstance(border_color, list):
|
183 |
+
border_color = border_color.tolist()
|
184 |
+
if border_alpha < 1:
|
185 |
+
with_border = img.copy()
|
186 |
+
cv2.drawContours(with_border, contours, -1, border_color,
|
187 |
+
border_thick, cv2.LINE_AA)
|
188 |
+
img = (1 - border_alpha) * img + border_alpha * with_border
|
189 |
+
else:
|
190 |
+
cv2.drawContours(img, contours, -1, border_color, border_thick,
|
191 |
+
cv2.LINE_AA)
|
192 |
+
|
193 |
+
return img.astype(np.uint8)
|
194 |
+
|
195 |
+
|
196 |
+
def colormap(rgb=False, lighten=True):
|
197 |
+
"""Copied from Detectron codebase."""
|
198 |
+
color_list = np.array(
|
199 |
+
[
|
200 |
+
0.000, 0.447, 0.741,
|
201 |
+
0.850, 0.325, 0.098,
|
202 |
+
0.929, 0.694, 0.125,
|
203 |
+
0.494, 0.184, 0.556,
|
204 |
+
0.466, 0.674, 0.188,
|
205 |
+
0.301, 0.745, 0.933,
|
206 |
+
0.635, 0.078, 0.184,
|
207 |
+
0.300, 0.300, 0.300,
|
208 |
+
0.600, 0.600, 0.600,
|
209 |
+
1.000, 0.000, 0.000,
|
210 |
+
1.000, 0.500, 0.000,
|
211 |
+
0.749, 0.749, 0.000,
|
212 |
+
0.000, 1.000, 0.000,
|
213 |
+
0.000, 0.000, 1.000,
|
214 |
+
0.667, 0.000, 1.000,
|
215 |
+
0.333, 0.333, 0.000,
|
216 |
+
0.333, 0.667, 0.000,
|
217 |
+
0.333, 1.000, 0.000,
|
218 |
+
0.667, 0.333, 0.000,
|
219 |
+
0.667, 0.667, 0.000,
|
220 |
+
0.667, 1.000, 0.000,
|
221 |
+
1.000, 0.333, 0.000,
|
222 |
+
1.000, 0.667, 0.000,
|
223 |
+
1.000, 1.000, 0.000,
|
224 |
+
0.000, 0.333, 0.500,
|
225 |
+
0.000, 0.667, 0.500,
|
226 |
+
0.000, 1.000, 0.500,
|
227 |
+
0.333, 0.000, 0.500,
|
228 |
+
0.333, 0.333, 0.500,
|
229 |
+
0.333, 0.667, 0.500,
|
230 |
+
0.333, 1.000, 0.500,
|
231 |
+
0.667, 0.000, 0.500,
|
232 |
+
0.667, 0.333, 0.500,
|
233 |
+
0.667, 0.667, 0.500,
|
234 |
+
0.667, 1.000, 0.500,
|
235 |
+
1.000, 0.000, 0.500,
|
236 |
+
1.000, 0.333, 0.500,
|
237 |
+
1.000, 0.667, 0.500,
|
238 |
+
1.000, 1.000, 0.500,
|
239 |
+
0.000, 0.333, 1.000,
|
240 |
+
0.000, 0.667, 1.000,
|
241 |
+
0.000, 1.000, 1.000,
|
242 |
+
0.333, 0.000, 1.000,
|
243 |
+
0.333, 0.333, 1.000,
|
244 |
+
0.333, 0.667, 1.000,
|
245 |
+
0.333, 1.000, 1.000,
|
246 |
+
0.667, 0.000, 1.000,
|
247 |
+
0.667, 0.333, 1.000,
|
248 |
+
0.667, 0.667, 1.000,
|
249 |
+
0.667, 1.000, 1.000,
|
250 |
+
1.000, 0.000, 1.000,
|
251 |
+
1.000, 0.333, 1.000,
|
252 |
+
1.000, 0.667, 1.000,
|
253 |
+
0.167, 0.000, 0.000,
|
254 |
+
0.333, 0.000, 0.000,
|
255 |
+
0.500, 0.000, 0.000,
|
256 |
+
0.667, 0.000, 0.000,
|
257 |
+
0.833, 0.000, 0.000,
|
258 |
+
1.000, 0.000, 0.000,
|
259 |
+
0.000, 0.167, 0.000,
|
260 |
+
0.000, 0.333, 0.000,
|
261 |
+
0.000, 0.500, 0.000,
|
262 |
+
0.000, 0.667, 0.000,
|
263 |
+
0.000, 0.833, 0.000,
|
264 |
+
0.000, 1.000, 0.000,
|
265 |
+
0.000, 0.000, 0.167,
|
266 |
+
0.000, 0.000, 0.333,
|
267 |
+
0.000, 0.000, 0.500,
|
268 |
+
0.000, 0.000, 0.667,
|
269 |
+
0.000, 0.000, 0.833,
|
270 |
+
0.000, 0.000, 1.000,
|
271 |
+
0.000, 0.000, 0.000,
|
272 |
+
0.143, 0.143, 0.143,
|
273 |
+
0.286, 0.286, 0.286,
|
274 |
+
0.429, 0.429, 0.429,
|
275 |
+
0.571, 0.571, 0.571,
|
276 |
+
0.714, 0.714, 0.714,
|
277 |
+
0.857, 0.857, 0.857,
|
278 |
+
1.000, 1.000, 1.000
|
279 |
+
]
|
280 |
+
).astype(np.float32)
|
281 |
+
color_list = color_list.reshape((-1, 3))
|
282 |
+
if not rgb:
|
283 |
+
color_list = color_list[:, ::-1]
|
284 |
+
|
285 |
+
if lighten:
|
286 |
+
# Make all the colors a little lighter / whiter. This is copied
|
287 |
+
# from the detectron visualization code (search for 'w_ratio').
|
288 |
+
w_ratio = 0.4
|
289 |
+
color_list = (color_list * (1 - w_ratio) + w_ratio)
|
290 |
+
return color_list * 255
|
291 |
+
|
292 |
+
|
293 |
+
def vis_layer_mask(masks, save_path=None):
|
294 |
+
masks = torch.as_tensor(masks)
|
295 |
+
tids = masks.unique().tolist()
|
296 |
+
tids.remove(0)
|
297 |
+
for tid in tqdm.tqdm(tids):
|
298 |
+
show = save_path is None
|
299 |
+
image_grid(masks == tid, label=f'{tid}', show=show)
|
300 |
+
if save_path:
|
301 |
+
os.makedirs(osp.dirname(save_path), exist_ok=True)
|
302 |
+
plt.savefig(save_path % tid)
|
303 |
+
plt.close('all')
|
304 |
+
|
305 |
+
|
306 |
+
def show(x, **kwargs):
|
307 |
+
if isinstance(x, torch.Tensor):
|
308 |
+
x = x.detach().cpu()
|
309 |
+
plt.imshow(x, **kwargs)
|
310 |
+
plt.show()
|
311 |
+
|
312 |
+
|
313 |
+
def vis_title(rgb, text, shift_y=30):
|
314 |
+
tmp = rgb.copy()
|
315 |
+
shift_x = rgb.shape[1] // 2
|
316 |
+
cv2.putText(tmp, text,
|
317 |
+
(shift_x, shift_y), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), thickness=2, lineType=cv2.LINE_AA)
|
318 |
+
return tmp
|
One-2-3-45-master 2/elevation_estimate/utils/utils3d.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
|
4 |
+
|
5 |
+
def cart_to_hom(pts):
|
6 |
+
"""
|
7 |
+
:param pts: (N, 3 or 2)
|
8 |
+
:return pts_hom: (N, 4 or 3)
|
9 |
+
"""
|
10 |
+
if isinstance(pts, np.ndarray):
|
11 |
+
pts_hom = np.concatenate((pts, np.ones([*pts.shape[:-1], 1], dtype=np.float32)), -1)
|
12 |
+
else:
|
13 |
+
ones = torch.ones([*pts.shape[:-1], 1], dtype=torch.float32, device=pts.device)
|
14 |
+
pts_hom = torch.cat((pts, ones), dim=-1)
|
15 |
+
return pts_hom
|
16 |
+
|
17 |
+
|
18 |
+
def hom_to_cart(pts):
|
19 |
+
return pts[..., :-1] / pts[..., -1:]
|
20 |
+
|
21 |
+
|
22 |
+
def canonical_to_camera(pts, pose):
|
23 |
+
pts = cart_to_hom(pts)
|
24 |
+
pts = pts @ pose.transpose(-1, -2)
|
25 |
+
pts = hom_to_cart(pts)
|
26 |
+
return pts
|
27 |
+
|
28 |
+
|
29 |
+
def rect_to_img(K, pts_rect):
|
30 |
+
from dl_ext.vision_ext.datasets.kitti.structures import Calibration
|
31 |
+
pts_2d_hom = pts_rect @ K.t()
|
32 |
+
pts_img = Calibration.hom_to_cart(pts_2d_hom)
|
33 |
+
return pts_img
|
34 |
+
|
35 |
+
|
36 |
+
def calc_pose(phis, thetas, size, radius=1.2):
|
37 |
+
import torch
|
38 |
+
def normalize(vectors):
|
39 |
+
return vectors / (torch.norm(vectors, dim=-1, keepdim=True) + 1e-10)
|
40 |
+
|
41 |
+
device = torch.device('cuda')
|
42 |
+
thetas = torch.FloatTensor(thetas).to(device)
|
43 |
+
phis = torch.FloatTensor(phis).to(device)
|
44 |
+
|
45 |
+
centers = torch.stack([
|
46 |
+
radius * torch.sin(thetas) * torch.sin(phis),
|
47 |
+
-radius * torch.cos(thetas) * torch.sin(phis),
|
48 |
+
radius * torch.cos(phis),
|
49 |
+
], dim=-1) # [B, 3]
|
50 |
+
|
51 |
+
# lookat
|
52 |
+
forward_vector = normalize(centers).squeeze(0)
|
53 |
+
up_vector = torch.FloatTensor([0, 0, 1]).to(device).unsqueeze(0).repeat(size, 1)
|
54 |
+
right_vector = normalize(torch.cross(up_vector, forward_vector, dim=-1))
|
55 |
+
if right_vector.pow(2).sum() < 0.01:
|
56 |
+
right_vector = torch.FloatTensor([0, 1, 0]).to(device).unsqueeze(0).repeat(size, 1)
|
57 |
+
up_vector = normalize(torch.cross(forward_vector, right_vector, dim=-1))
|
58 |
+
|
59 |
+
poses = torch.eye(4, dtype=torch.float, device=device).unsqueeze(0).repeat(size, 1, 1)
|
60 |
+
poses[:, :3, :3] = torch.stack((right_vector, up_vector, forward_vector), dim=-1)
|
61 |
+
poses[:, :3, 3] = centers
|
62 |
+
return poses
|
One-2-3-45-master 2/elevation_estimate/utils/weights/.gitkeep
ADDED
File without changes
|
One-2-3-45-master 2/example.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
One-2-3-45-master 2/ldm/data/__init__.py
ADDED
File without changes
|
One-2-3-45-master 2/ldm/data/base.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
from abc import abstractmethod
|
4 |
+
from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset
|
5 |
+
|
6 |
+
|
7 |
+
class Txt2ImgIterableBaseDataset(IterableDataset):
|
8 |
+
'''
|
9 |
+
Define an interface to make the IterableDatasets for text2img data chainable
|
10 |
+
'''
|
11 |
+
def __init__(self, num_records=0, valid_ids=None, size=256):
|
12 |
+
super().__init__()
|
13 |
+
self.num_records = num_records
|
14 |
+
self.valid_ids = valid_ids
|
15 |
+
self.sample_ids = valid_ids
|
16 |
+
self.size = size
|
17 |
+
|
18 |
+
print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.')
|
19 |
+
|
20 |
+
def __len__(self):
|
21 |
+
return self.num_records
|
22 |
+
|
23 |
+
@abstractmethod
|
24 |
+
def __iter__(self):
|
25 |
+
pass
|
26 |
+
|
27 |
+
|
28 |
+
class PRNGMixin(object):
|
29 |
+
"""
|
30 |
+
Adds a prng property which is a numpy RandomState which gets
|
31 |
+
reinitialized whenever the pid changes to avoid synchronized sampling
|
32 |
+
behavior when used in conjunction with multiprocessing.
|
33 |
+
"""
|
34 |
+
@property
|
35 |
+
def prng(self):
|
36 |
+
currentpid = os.getpid()
|
37 |
+
if getattr(self, "_initpid", None) != currentpid:
|
38 |
+
self._initpid = currentpid
|
39 |
+
self._prng = np.random.RandomState()
|
40 |
+
return self._prng
|
One-2-3-45-master 2/ldm/data/coco.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import albumentations
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from tqdm import tqdm
|
7 |
+
from torch.utils.data import Dataset
|
8 |
+
from abc import abstractmethod
|
9 |
+
|
10 |
+
|
11 |
+
class CocoBase(Dataset):
|
12 |
+
"""needed for (image, caption, segmentation) pairs"""
|
13 |
+
def __init__(self, size=None, dataroot="", datajson="", onehot_segmentation=False, use_stuffthing=False,
|
14 |
+
crop_size=None, force_no_crop=False, given_files=None, use_segmentation=True,crop_type=None):
|
15 |
+
self.split = self.get_split()
|
16 |
+
self.size = size
|
17 |
+
if crop_size is None:
|
18 |
+
self.crop_size = size
|
19 |
+
else:
|
20 |
+
self.crop_size = crop_size
|
21 |
+
|
22 |
+
assert crop_type in [None, 'random', 'center']
|
23 |
+
self.crop_type = crop_type
|
24 |
+
self.use_segmenation = use_segmentation
|
25 |
+
self.onehot = onehot_segmentation # return segmentation as rgb or one hot
|
26 |
+
self.stuffthing = use_stuffthing # include thing in segmentation
|
27 |
+
if self.onehot and not self.stuffthing:
|
28 |
+
raise NotImplemented("One hot mode is only supported for the "
|
29 |
+
"stuffthings version because labels are stored "
|
30 |
+
"a bit different.")
|
31 |
+
|
32 |
+
data_json = datajson
|
33 |
+
with open(data_json) as json_file:
|
34 |
+
self.json_data = json.load(json_file)
|
35 |
+
self.img_id_to_captions = dict()
|
36 |
+
self.img_id_to_filepath = dict()
|
37 |
+
self.img_id_to_segmentation_filepath = dict()
|
38 |
+
|
39 |
+
assert data_json.split("/")[-1] in [f"captions_train{self.year()}.json",
|
40 |
+
f"captions_val{self.year()}.json"]
|
41 |
+
# TODO currently hardcoded paths, would be better to follow logic in
|
42 |
+
# cocstuff pixelmaps
|
43 |
+
if self.use_segmenation:
|
44 |
+
if self.stuffthing:
|
45 |
+
self.segmentation_prefix = (
|
46 |
+
f"data/cocostuffthings/val{self.year()}" if
|
47 |
+
data_json.endswith(f"captions_val{self.year()}.json") else
|
48 |
+
f"data/cocostuffthings/train{self.year()}")
|
49 |
+
else:
|
50 |
+
self.segmentation_prefix = (
|
51 |
+
f"data/coco/annotations/stuff_val{self.year()}_pixelmaps" if
|
52 |
+
data_json.endswith(f"captions_val{self.year()}.json") else
|
53 |
+
f"data/coco/annotations/stuff_train{self.year()}_pixelmaps")
|
54 |
+
|
55 |
+
imagedirs = self.json_data["images"]
|
56 |
+
self.labels = {"image_ids": list()}
|
57 |
+
for imgdir in tqdm(imagedirs, desc="ImgToPath"):
|
58 |
+
self.img_id_to_filepath[imgdir["id"]] = os.path.join(dataroot, imgdir["file_name"])
|
59 |
+
self.img_id_to_captions[imgdir["id"]] = list()
|
60 |
+
pngfilename = imgdir["file_name"].replace("jpg", "png")
|
61 |
+
if self.use_segmenation:
|
62 |
+
self.img_id_to_segmentation_filepath[imgdir["id"]] = os.path.join(
|
63 |
+
self.segmentation_prefix, pngfilename)
|
64 |
+
if given_files is not None:
|
65 |
+
if pngfilename in given_files:
|
66 |
+
self.labels["image_ids"].append(imgdir["id"])
|
67 |
+
else:
|
68 |
+
self.labels["image_ids"].append(imgdir["id"])
|
69 |
+
|
70 |
+
capdirs = self.json_data["annotations"]
|
71 |
+
for capdir in tqdm(capdirs, desc="ImgToCaptions"):
|
72 |
+
# there are in average 5 captions per image
|
73 |
+
#self.img_id_to_captions[capdir["image_id"]].append(np.array([capdir["caption"]]))
|
74 |
+
self.img_id_to_captions[capdir["image_id"]].append(capdir["caption"])
|
75 |
+
|
76 |
+
self.rescaler = albumentations.SmallestMaxSize(max_size=self.size)
|
77 |
+
if self.split=="validation":
|
78 |
+
self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size)
|
79 |
+
else:
|
80 |
+
# default option for train is random crop
|
81 |
+
if self.crop_type in [None, 'random']:
|
82 |
+
self.cropper = albumentations.RandomCrop(height=self.crop_size, width=self.crop_size)
|
83 |
+
else:
|
84 |
+
self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size)
|
85 |
+
self.preprocessor = albumentations.Compose(
|
86 |
+
[self.rescaler, self.cropper],
|
87 |
+
additional_targets={"segmentation": "image"})
|
88 |
+
if force_no_crop:
|
89 |
+
self.rescaler = albumentations.Resize(height=self.size, width=self.size)
|
90 |
+
self.preprocessor = albumentations.Compose(
|
91 |
+
[self.rescaler],
|
92 |
+
additional_targets={"segmentation": "image"})
|
93 |
+
|
94 |
+
@abstractmethod
|
95 |
+
def year(self):
|
96 |
+
raise NotImplementedError()
|
97 |
+
|
98 |
+
def __len__(self):
|
99 |
+
return len(self.labels["image_ids"])
|
100 |
+
|
101 |
+
def preprocess_image(self, image_path, segmentation_path=None):
|
102 |
+
image = Image.open(image_path)
|
103 |
+
if not image.mode == "RGB":
|
104 |
+
image = image.convert("RGB")
|
105 |
+
image = np.array(image).astype(np.uint8)
|
106 |
+
if segmentation_path:
|
107 |
+
segmentation = Image.open(segmentation_path)
|
108 |
+
if not self.onehot and not segmentation.mode == "RGB":
|
109 |
+
segmentation = segmentation.convert("RGB")
|
110 |
+
segmentation = np.array(segmentation).astype(np.uint8)
|
111 |
+
if self.onehot:
|
112 |
+
assert self.stuffthing
|
113 |
+
# stored in caffe format: unlabeled==255. stuff and thing from
|
114 |
+
# 0-181. to be compatible with the labels in
|
115 |
+
# https://github.com/nightrome/cocostuff/blob/master/labels.txt
|
116 |
+
# we shift stuffthing one to the right and put unlabeled in zero
|
117 |
+
# as long as segmentation is uint8 shifting to right handles the
|
118 |
+
# latter too
|
119 |
+
assert segmentation.dtype == np.uint8
|
120 |
+
segmentation = segmentation + 1
|
121 |
+
|
122 |
+
processed = self.preprocessor(image=image, segmentation=segmentation)
|
123 |
+
|
124 |
+
image, segmentation = processed["image"], processed["segmentation"]
|
125 |
+
else:
|
126 |
+
image = self.preprocessor(image=image,)['image']
|
127 |
+
|
128 |
+
image = (image / 127.5 - 1.0).astype(np.float32)
|
129 |
+
if segmentation_path:
|
130 |
+
if self.onehot:
|
131 |
+
assert segmentation.dtype == np.uint8
|
132 |
+
# make it one hot
|
133 |
+
n_labels = 183
|
134 |
+
flatseg = np.ravel(segmentation)
|
135 |
+
onehot = np.zeros((flatseg.size, n_labels), dtype=np.bool)
|
136 |
+
onehot[np.arange(flatseg.size), flatseg] = True
|
137 |
+
onehot = onehot.reshape(segmentation.shape + (n_labels,)).astype(int)
|
138 |
+
segmentation = onehot
|
139 |
+
else:
|
140 |
+
segmentation = (segmentation / 127.5 - 1.0).astype(np.float32)
|
141 |
+
return image, segmentation
|
142 |
+
else:
|
143 |
+
return image
|
144 |
+
|
145 |
+
def __getitem__(self, i):
|
146 |
+
img_path = self.img_id_to_filepath[self.labels["image_ids"][i]]
|
147 |
+
if self.use_segmenation:
|
148 |
+
seg_path = self.img_id_to_segmentation_filepath[self.labels["image_ids"][i]]
|
149 |
+
image, segmentation = self.preprocess_image(img_path, seg_path)
|
150 |
+
else:
|
151 |
+
image = self.preprocess_image(img_path)
|
152 |
+
captions = self.img_id_to_captions[self.labels["image_ids"][i]]
|
153 |
+
# randomly draw one of all available captions per image
|
154 |
+
caption = captions[np.random.randint(0, len(captions))]
|
155 |
+
example = {"image": image,
|
156 |
+
#"caption": [str(caption[0])],
|
157 |
+
"caption": caption,
|
158 |
+
"img_path": img_path,
|
159 |
+
"filename_": img_path.split(os.sep)[-1]
|
160 |
+
}
|
161 |
+
if self.use_segmenation:
|
162 |
+
example.update({"seg_path": seg_path, 'segmentation': segmentation})
|
163 |
+
return example
|
164 |
+
|
165 |
+
|
166 |
+
class CocoImagesAndCaptionsTrain2017(CocoBase):
|
167 |
+
"""returns a pair of (image, caption)"""
|
168 |
+
def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,):
|
169 |
+
super().__init__(size=size,
|
170 |
+
dataroot="data/coco/train2017",
|
171 |
+
datajson="data/coco/annotations/captions_train2017.json",
|
172 |
+
onehot_segmentation=onehot_segmentation,
|
173 |
+
use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop)
|
174 |
+
|
175 |
+
def get_split(self):
|
176 |
+
return "train"
|
177 |
+
|
178 |
+
def year(self):
|
179 |
+
return '2017'
|
180 |
+
|
181 |
+
|
182 |
+
class CocoImagesAndCaptionsValidation2017(CocoBase):
|
183 |
+
"""returns a pair of (image, caption)"""
|
184 |
+
def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,
|
185 |
+
given_files=None):
|
186 |
+
super().__init__(size=size,
|
187 |
+
dataroot="data/coco/val2017",
|
188 |
+
datajson="data/coco/annotations/captions_val2017.json",
|
189 |
+
onehot_segmentation=onehot_segmentation,
|
190 |
+
use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
|
191 |
+
given_files=given_files)
|
192 |
+
|
193 |
+
def get_split(self):
|
194 |
+
return "validation"
|
195 |
+
|
196 |
+
def year(self):
|
197 |
+
return '2017'
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
+
class CocoImagesAndCaptionsTrain2014(CocoBase):
|
202 |
+
"""returns a pair of (image, caption)"""
|
203 |
+
def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,crop_type='random'):
|
204 |
+
super().__init__(size=size,
|
205 |
+
dataroot="data/coco/train2014",
|
206 |
+
datajson="data/coco/annotations2014/annotations/captions_train2014.json",
|
207 |
+
onehot_segmentation=onehot_segmentation,
|
208 |
+
use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
|
209 |
+
use_segmentation=False,
|
210 |
+
crop_type=crop_type)
|
211 |
+
|
212 |
+
def get_split(self):
|
213 |
+
return "train"
|
214 |
+
|
215 |
+
def year(self):
|
216 |
+
return '2014'
|
217 |
+
|
218 |
+
class CocoImagesAndCaptionsValidation2014(CocoBase):
|
219 |
+
"""returns a pair of (image, caption)"""
|
220 |
+
def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,
|
221 |
+
given_files=None,crop_type='center',**kwargs):
|
222 |
+
super().__init__(size=size,
|
223 |
+
dataroot="data/coco/val2014",
|
224 |
+
datajson="data/coco/annotations2014/annotations/captions_val2014.json",
|
225 |
+
onehot_segmentation=onehot_segmentation,
|
226 |
+
use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
|
227 |
+
given_files=given_files,
|
228 |
+
use_segmentation=False,
|
229 |
+
crop_type=crop_type)
|
230 |
+
|
231 |
+
def get_split(self):
|
232 |
+
return "validation"
|
233 |
+
|
234 |
+
def year(self):
|
235 |
+
return '2014'
|
236 |
+
|
237 |
+
if __name__ == '__main__':
|
238 |
+
with open("data/coco/annotations2014/annotations/captions_val2014.json", "r") as json_file:
|
239 |
+
json_data = json.load(json_file)
|
240 |
+
capdirs = json_data["annotations"]
|
241 |
+
import pudb; pudb.set_trace()
|
242 |
+
#d2 = CocoImagesAndCaptionsTrain2014(size=256)
|
243 |
+
d2 = CocoImagesAndCaptionsValidation2014(size=256)
|
244 |
+
print("constructed dataset.")
|
245 |
+
print(f"length of {d2.__class__.__name__}: {len(d2)}")
|
246 |
+
|
247 |
+
ex2 = d2[0]
|
248 |
+
# ex3 = d3[0]
|
249 |
+
# print(ex1["image"].shape)
|
250 |
+
print(ex2["image"].shape)
|
251 |
+
# print(ex3["image"].shape)
|
252 |
+
# print(ex1["segmentation"].shape)
|
253 |
+
print(ex2["caption"].__class__.__name__)
|
One-2-3-45-master 2/ldm/data/dummy.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import random
|
3 |
+
import string
|
4 |
+
from torch.utils.data import Dataset, Subset
|
5 |
+
|
6 |
+
class DummyData(Dataset):
|
7 |
+
def __init__(self, length, size):
|
8 |
+
self.length = length
|
9 |
+
self.size = size
|
10 |
+
|
11 |
+
def __len__(self):
|
12 |
+
return self.length
|
13 |
+
|
14 |
+
def __getitem__(self, i):
|
15 |
+
x = np.random.randn(*self.size)
|
16 |
+
letters = string.ascii_lowercase
|
17 |
+
y = ''.join(random.choice(string.ascii_lowercase) for i in range(10))
|
18 |
+
return {"jpg": x, "txt": y}
|
19 |
+
|
20 |
+
|
21 |
+
class DummyDataWithEmbeddings(Dataset):
|
22 |
+
def __init__(self, length, size, emb_size):
|
23 |
+
self.length = length
|
24 |
+
self.size = size
|
25 |
+
self.emb_size = emb_size
|
26 |
+
|
27 |
+
def __len__(self):
|
28 |
+
return self.length
|
29 |
+
|
30 |
+
def __getitem__(self, i):
|
31 |
+
x = np.random.randn(*self.size)
|
32 |
+
y = np.random.randn(*self.emb_size).astype(np.float32)
|
33 |
+
return {"jpg": x, "txt": y}
|
34 |
+
|
One-2-3-45-master 2/ldm/data/imagenet.py
ADDED
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, yaml, pickle, shutil, tarfile, glob
|
2 |
+
import cv2
|
3 |
+
import albumentations
|
4 |
+
import PIL
|
5 |
+
import numpy as np
|
6 |
+
import torchvision.transforms.functional as TF
|
7 |
+
from omegaconf import OmegaConf
|
8 |
+
from functools import partial
|
9 |
+
from PIL import Image
|
10 |
+
from tqdm import tqdm
|
11 |
+
from torch.utils.data import Dataset, Subset
|
12 |
+
|
13 |
+
import taming.data.utils as tdu
|
14 |
+
from taming.data.imagenet import str_to_indices, give_synsets_from_indices, download, retrieve
|
15 |
+
from taming.data.imagenet import ImagePaths
|
16 |
+
|
17 |
+
from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light
|
18 |
+
|
19 |
+
|
20 |
+
def synset2idx(path_to_yaml="data/index_synset.yaml"):
|
21 |
+
with open(path_to_yaml) as f:
|
22 |
+
di2s = yaml.load(f)
|
23 |
+
return dict((v,k) for k,v in di2s.items())
|
24 |
+
|
25 |
+
|
26 |
+
class ImageNetBase(Dataset):
|
27 |
+
def __init__(self, config=None):
|
28 |
+
self.config = config or OmegaConf.create()
|
29 |
+
if not type(self.config)==dict:
|
30 |
+
self.config = OmegaConf.to_container(self.config)
|
31 |
+
self.keep_orig_class_label = self.config.get("keep_orig_class_label", False)
|
32 |
+
self.process_images = True # if False we skip loading & processing images and self.data contains filepaths
|
33 |
+
self._prepare()
|
34 |
+
self._prepare_synset_to_human()
|
35 |
+
self._prepare_idx_to_synset()
|
36 |
+
self._prepare_human_to_integer_label()
|
37 |
+
self._load()
|
38 |
+
|
39 |
+
def __len__(self):
|
40 |
+
return len(self.data)
|
41 |
+
|
42 |
+
def __getitem__(self, i):
|
43 |
+
return self.data[i]
|
44 |
+
|
45 |
+
def _prepare(self):
|
46 |
+
raise NotImplementedError()
|
47 |
+
|
48 |
+
def _filter_relpaths(self, relpaths):
|
49 |
+
ignore = set([
|
50 |
+
"n06596364_9591.JPEG",
|
51 |
+
])
|
52 |
+
relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore]
|
53 |
+
if "sub_indices" in self.config:
|
54 |
+
indices = str_to_indices(self.config["sub_indices"])
|
55 |
+
synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) # returns a list of strings
|
56 |
+
self.synset2idx = synset2idx(path_to_yaml=self.idx2syn)
|
57 |
+
files = []
|
58 |
+
for rpath in relpaths:
|
59 |
+
syn = rpath.split("/")[0]
|
60 |
+
if syn in synsets:
|
61 |
+
files.append(rpath)
|
62 |
+
return files
|
63 |
+
else:
|
64 |
+
return relpaths
|
65 |
+
|
66 |
+
def _prepare_synset_to_human(self):
|
67 |
+
SIZE = 2655750
|
68 |
+
URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1"
|
69 |
+
self.human_dict = os.path.join(self.root, "synset_human.txt")
|
70 |
+
if (not os.path.exists(self.human_dict) or
|
71 |
+
not os.path.getsize(self.human_dict)==SIZE):
|
72 |
+
download(URL, self.human_dict)
|
73 |
+
|
74 |
+
def _prepare_idx_to_synset(self):
|
75 |
+
URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1"
|
76 |
+
self.idx2syn = os.path.join(self.root, "index_synset.yaml")
|
77 |
+
if (not os.path.exists(self.idx2syn)):
|
78 |
+
download(URL, self.idx2syn)
|
79 |
+
|
80 |
+
def _prepare_human_to_integer_label(self):
|
81 |
+
URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1"
|
82 |
+
self.human2integer = os.path.join(self.root, "imagenet1000_clsidx_to_labels.txt")
|
83 |
+
if (not os.path.exists(self.human2integer)):
|
84 |
+
download(URL, self.human2integer)
|
85 |
+
with open(self.human2integer, "r") as f:
|
86 |
+
lines = f.read().splitlines()
|
87 |
+
assert len(lines) == 1000
|
88 |
+
self.human2integer_dict = dict()
|
89 |
+
for line in lines:
|
90 |
+
value, key = line.split(":")
|
91 |
+
self.human2integer_dict[key] = int(value)
|
92 |
+
|
93 |
+
def _load(self):
|
94 |
+
with open(self.txt_filelist, "r") as f:
|
95 |
+
self.relpaths = f.read().splitlines()
|
96 |
+
l1 = len(self.relpaths)
|
97 |
+
self.relpaths = self._filter_relpaths(self.relpaths)
|
98 |
+
print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths)))
|
99 |
+
|
100 |
+
self.synsets = [p.split("/")[0] for p in self.relpaths]
|
101 |
+
self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths]
|
102 |
+
|
103 |
+
unique_synsets = np.unique(self.synsets)
|
104 |
+
class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets))
|
105 |
+
if not self.keep_orig_class_label:
|
106 |
+
self.class_labels = [class_dict[s] for s in self.synsets]
|
107 |
+
else:
|
108 |
+
self.class_labels = [self.synset2idx[s] for s in self.synsets]
|
109 |
+
|
110 |
+
with open(self.human_dict, "r") as f:
|
111 |
+
human_dict = f.read().splitlines()
|
112 |
+
human_dict = dict(line.split(maxsplit=1) for line in human_dict)
|
113 |
+
|
114 |
+
self.human_labels = [human_dict[s] for s in self.synsets]
|
115 |
+
|
116 |
+
labels = {
|
117 |
+
"relpath": np.array(self.relpaths),
|
118 |
+
"synsets": np.array(self.synsets),
|
119 |
+
"class_label": np.array(self.class_labels),
|
120 |
+
"human_label": np.array(self.human_labels),
|
121 |
+
}
|
122 |
+
|
123 |
+
if self.process_images:
|
124 |
+
self.size = retrieve(self.config, "size", default=256)
|
125 |
+
self.data = ImagePaths(self.abspaths,
|
126 |
+
labels=labels,
|
127 |
+
size=self.size,
|
128 |
+
random_crop=self.random_crop,
|
129 |
+
)
|
130 |
+
else:
|
131 |
+
self.data = self.abspaths
|
132 |
+
|
133 |
+
|
134 |
+
class ImageNetTrain(ImageNetBase):
|
135 |
+
NAME = "ILSVRC2012_train"
|
136 |
+
URL = "http://www.image-net.org/challenges/LSVRC/2012/"
|
137 |
+
AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2"
|
138 |
+
FILES = [
|
139 |
+
"ILSVRC2012_img_train.tar",
|
140 |
+
]
|
141 |
+
SIZES = [
|
142 |
+
147897477120,
|
143 |
+
]
|
144 |
+
|
145 |
+
def __init__(self, process_images=True, data_root=None, **kwargs):
|
146 |
+
self.process_images = process_images
|
147 |
+
self.data_root = data_root
|
148 |
+
super().__init__(**kwargs)
|
149 |
+
|
150 |
+
def _prepare(self):
|
151 |
+
if self.data_root:
|
152 |
+
self.root = os.path.join(self.data_root, self.NAME)
|
153 |
+
else:
|
154 |
+
cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
|
155 |
+
self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
|
156 |
+
|
157 |
+
self.datadir = os.path.join(self.root, "data")
|
158 |
+
self.txt_filelist = os.path.join(self.root, "filelist.txt")
|
159 |
+
self.expected_length = 1281167
|
160 |
+
self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop",
|
161 |
+
default=True)
|
162 |
+
if not tdu.is_prepared(self.root):
|
163 |
+
# prep
|
164 |
+
print("Preparing dataset {} in {}".format(self.NAME, self.root))
|
165 |
+
|
166 |
+
datadir = self.datadir
|
167 |
+
if not os.path.exists(datadir):
|
168 |
+
path = os.path.join(self.root, self.FILES[0])
|
169 |
+
if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
|
170 |
+
import academictorrents as at
|
171 |
+
atpath = at.get(self.AT_HASH, datastore=self.root)
|
172 |
+
assert atpath == path
|
173 |
+
|
174 |
+
print("Extracting {} to {}".format(path, datadir))
|
175 |
+
os.makedirs(datadir, exist_ok=True)
|
176 |
+
with tarfile.open(path, "r:") as tar:
|
177 |
+
tar.extractall(path=datadir)
|
178 |
+
|
179 |
+
print("Extracting sub-tars.")
|
180 |
+
subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar")))
|
181 |
+
for subpath in tqdm(subpaths):
|
182 |
+
subdir = subpath[:-len(".tar")]
|
183 |
+
os.makedirs(subdir, exist_ok=True)
|
184 |
+
with tarfile.open(subpath, "r:") as tar:
|
185 |
+
tar.extractall(path=subdir)
|
186 |
+
|
187 |
+
filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
|
188 |
+
filelist = [os.path.relpath(p, start=datadir) for p in filelist]
|
189 |
+
filelist = sorted(filelist)
|
190 |
+
filelist = "\n".join(filelist)+"\n"
|
191 |
+
with open(self.txt_filelist, "w") as f:
|
192 |
+
f.write(filelist)
|
193 |
+
|
194 |
+
tdu.mark_prepared(self.root)
|
195 |
+
|
196 |
+
|
197 |
+
class ImageNetValidation(ImageNetBase):
|
198 |
+
NAME = "ILSVRC2012_validation"
|
199 |
+
URL = "http://www.image-net.org/challenges/LSVRC/2012/"
|
200 |
+
AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5"
|
201 |
+
VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1"
|
202 |
+
FILES = [
|
203 |
+
"ILSVRC2012_img_val.tar",
|
204 |
+
"validation_synset.txt",
|
205 |
+
]
|
206 |
+
SIZES = [
|
207 |
+
6744924160,
|
208 |
+
1950000,
|
209 |
+
]
|
210 |
+
|
211 |
+
def __init__(self, process_images=True, data_root=None, **kwargs):
|
212 |
+
self.data_root = data_root
|
213 |
+
self.process_images = process_images
|
214 |
+
super().__init__(**kwargs)
|
215 |
+
|
216 |
+
def _prepare(self):
|
217 |
+
if self.data_root:
|
218 |
+
self.root = os.path.join(self.data_root, self.NAME)
|
219 |
+
else:
|
220 |
+
cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
|
221 |
+
self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
|
222 |
+
self.datadir = os.path.join(self.root, "data")
|
223 |
+
self.txt_filelist = os.path.join(self.root, "filelist.txt")
|
224 |
+
self.expected_length = 50000
|
225 |
+
self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop",
|
226 |
+
default=False)
|
227 |
+
if not tdu.is_prepared(self.root):
|
228 |
+
# prep
|
229 |
+
print("Preparing dataset {} in {}".format(self.NAME, self.root))
|
230 |
+
|
231 |
+
datadir = self.datadir
|
232 |
+
if not os.path.exists(datadir):
|
233 |
+
path = os.path.join(self.root, self.FILES[0])
|
234 |
+
if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
|
235 |
+
import academictorrents as at
|
236 |
+
atpath = at.get(self.AT_HASH, datastore=self.root)
|
237 |
+
assert atpath == path
|
238 |
+
|
239 |
+
print("Extracting {} to {}".format(path, datadir))
|
240 |
+
os.makedirs(datadir, exist_ok=True)
|
241 |
+
with tarfile.open(path, "r:") as tar:
|
242 |
+
tar.extractall(path=datadir)
|
243 |
+
|
244 |
+
vspath = os.path.join(self.root, self.FILES[1])
|
245 |
+
if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]:
|
246 |
+
download(self.VS_URL, vspath)
|
247 |
+
|
248 |
+
with open(vspath, "r") as f:
|
249 |
+
synset_dict = f.read().splitlines()
|
250 |
+
synset_dict = dict(line.split() for line in synset_dict)
|
251 |
+
|
252 |
+
print("Reorganizing into synset folders")
|
253 |
+
synsets = np.unique(list(synset_dict.values()))
|
254 |
+
for s in synsets:
|
255 |
+
os.makedirs(os.path.join(datadir, s), exist_ok=True)
|
256 |
+
for k, v in synset_dict.items():
|
257 |
+
src = os.path.join(datadir, k)
|
258 |
+
dst = os.path.join(datadir, v)
|
259 |
+
shutil.move(src, dst)
|
260 |
+
|
261 |
+
filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
|
262 |
+
filelist = [os.path.relpath(p, start=datadir) for p in filelist]
|
263 |
+
filelist = sorted(filelist)
|
264 |
+
filelist = "\n".join(filelist)+"\n"
|
265 |
+
with open(self.txt_filelist, "w") as f:
|
266 |
+
f.write(filelist)
|
267 |
+
|
268 |
+
tdu.mark_prepared(self.root)
|
269 |
+
|
270 |
+
|
271 |
+
|
272 |
+
class ImageNetSR(Dataset):
|
273 |
+
def __init__(self, size=None,
|
274 |
+
degradation=None, downscale_f=4, min_crop_f=0.5, max_crop_f=1.,
|
275 |
+
random_crop=True):
|
276 |
+
"""
|
277 |
+
Imagenet Superresolution Dataloader
|
278 |
+
Performs following ops in order:
|
279 |
+
1. crops a crop of size s from image either as random or center crop
|
280 |
+
2. resizes crop to size with cv2.area_interpolation
|
281 |
+
3. degrades resized crop with degradation_fn
|
282 |
+
|
283 |
+
:param size: resizing to size after cropping
|
284 |
+
:param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light
|
285 |
+
:param downscale_f: Low Resolution Downsample factor
|
286 |
+
:param min_crop_f: determines crop size s,
|
287 |
+
where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f)
|
288 |
+
:param max_crop_f: ""
|
289 |
+
:param data_root:
|
290 |
+
:param random_crop:
|
291 |
+
"""
|
292 |
+
self.base = self.get_base()
|
293 |
+
assert size
|
294 |
+
assert (size / downscale_f).is_integer()
|
295 |
+
self.size = size
|
296 |
+
self.LR_size = int(size / downscale_f)
|
297 |
+
self.min_crop_f = min_crop_f
|
298 |
+
self.max_crop_f = max_crop_f
|
299 |
+
assert(max_crop_f <= 1.)
|
300 |
+
self.center_crop = not random_crop
|
301 |
+
|
302 |
+
self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
|
303 |
+
|
304 |
+
self.pil_interpolation = False # gets reset later if incase interp_op is from pillow
|
305 |
+
|
306 |
+
if degradation == "bsrgan":
|
307 |
+
self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f)
|
308 |
+
|
309 |
+
elif degradation == "bsrgan_light":
|
310 |
+
self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f)
|
311 |
+
|
312 |
+
else:
|
313 |
+
interpolation_fn = {
|
314 |
+
"cv_nearest": cv2.INTER_NEAREST,
|
315 |
+
"cv_bilinear": cv2.INTER_LINEAR,
|
316 |
+
"cv_bicubic": cv2.INTER_CUBIC,
|
317 |
+
"cv_area": cv2.INTER_AREA,
|
318 |
+
"cv_lanczos": cv2.INTER_LANCZOS4,
|
319 |
+
"pil_nearest": PIL.Image.NEAREST,
|
320 |
+
"pil_bilinear": PIL.Image.BILINEAR,
|
321 |
+
"pil_bicubic": PIL.Image.BICUBIC,
|
322 |
+
"pil_box": PIL.Image.BOX,
|
323 |
+
"pil_hamming": PIL.Image.HAMMING,
|
324 |
+
"pil_lanczos": PIL.Image.LANCZOS,
|
325 |
+
}[degradation]
|
326 |
+
|
327 |
+
self.pil_interpolation = degradation.startswith("pil_")
|
328 |
+
|
329 |
+
if self.pil_interpolation:
|
330 |
+
self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn)
|
331 |
+
|
332 |
+
else:
|
333 |
+
self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size,
|
334 |
+
interpolation=interpolation_fn)
|
335 |
+
|
336 |
+
def __len__(self):
|
337 |
+
return len(self.base)
|
338 |
+
|
339 |
+
def __getitem__(self, i):
|
340 |
+
example = self.base[i]
|
341 |
+
image = Image.open(example["file_path_"])
|
342 |
+
|
343 |
+
if not image.mode == "RGB":
|
344 |
+
image = image.convert("RGB")
|
345 |
+
|
346 |
+
image = np.array(image).astype(np.uint8)
|
347 |
+
|
348 |
+
min_side_len = min(image.shape[:2])
|
349 |
+
crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
|
350 |
+
crop_side_len = int(crop_side_len)
|
351 |
+
|
352 |
+
if self.center_crop:
|
353 |
+
self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
|
354 |
+
|
355 |
+
else:
|
356 |
+
self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
|
357 |
+
|
358 |
+
image = self.cropper(image=image)["image"]
|
359 |
+
image = self.image_rescaler(image=image)["image"]
|
360 |
+
|
361 |
+
if self.pil_interpolation:
|
362 |
+
image_pil = PIL.Image.fromarray(image)
|
363 |
+
LR_image = self.degradation_process(image_pil)
|
364 |
+
LR_image = np.array(LR_image).astype(np.uint8)
|
365 |
+
|
366 |
+
else:
|
367 |
+
LR_image = self.degradation_process(image=image)["image"]
|
368 |
+
|
369 |
+
example["image"] = (image/127.5 - 1.0).astype(np.float32)
|
370 |
+
example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32)
|
371 |
+
example["caption"] = example["human_label"] # dummy caption
|
372 |
+
return example
|
373 |
+
|
374 |
+
|
375 |
+
class ImageNetSRTrain(ImageNetSR):
|
376 |
+
def __init__(self, **kwargs):
|
377 |
+
super().__init__(**kwargs)
|
378 |
+
|
379 |
+
def get_base(self):
|
380 |
+
with open("data/imagenet_train_hr_indices.p", "rb") as f:
|
381 |
+
indices = pickle.load(f)
|
382 |
+
dset = ImageNetTrain(process_images=False,)
|
383 |
+
return Subset(dset, indices)
|
384 |
+
|
385 |
+
|
386 |
+
class ImageNetSRValidation(ImageNetSR):
|
387 |
+
def __init__(self, **kwargs):
|
388 |
+
super().__init__(**kwargs)
|
389 |
+
|
390 |
+
def get_base(self):
|
391 |
+
with open("data/imagenet_val_hr_indices.p", "rb") as f:
|
392 |
+
indices = pickle.load(f)
|
393 |
+
dset = ImageNetValidation(process_images=False,)
|
394 |
+
return Subset(dset, indices)
|
One-2-3-45-master 2/ldm/data/inpainting/__init__.py
ADDED
File without changes
|
One-2-3-45-master 2/ldm/data/inpainting/synthetic_mask.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image, ImageDraw
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
settings = {
|
5 |
+
"256narrow": {
|
6 |
+
"p_irr": 1,
|
7 |
+
"min_n_irr": 4,
|
8 |
+
"max_n_irr": 50,
|
9 |
+
"max_l_irr": 40,
|
10 |
+
"max_w_irr": 10,
|
11 |
+
"min_n_box": None,
|
12 |
+
"max_n_box": None,
|
13 |
+
"min_s_box": None,
|
14 |
+
"max_s_box": None,
|
15 |
+
"marg": None,
|
16 |
+
},
|
17 |
+
"256train": {
|
18 |
+
"p_irr": 0.5,
|
19 |
+
"min_n_irr": 1,
|
20 |
+
"max_n_irr": 5,
|
21 |
+
"max_l_irr": 200,
|
22 |
+
"max_w_irr": 100,
|
23 |
+
"min_n_box": 1,
|
24 |
+
"max_n_box": 4,
|
25 |
+
"min_s_box": 30,
|
26 |
+
"max_s_box": 150,
|
27 |
+
"marg": 10,
|
28 |
+
},
|
29 |
+
"512train": { # TODO: experimental
|
30 |
+
"p_irr": 0.5,
|
31 |
+
"min_n_irr": 1,
|
32 |
+
"max_n_irr": 5,
|
33 |
+
"max_l_irr": 450,
|
34 |
+
"max_w_irr": 250,
|
35 |
+
"min_n_box": 1,
|
36 |
+
"max_n_box": 4,
|
37 |
+
"min_s_box": 30,
|
38 |
+
"max_s_box": 300,
|
39 |
+
"marg": 10,
|
40 |
+
},
|
41 |
+
"512train-large": { # TODO: experimental
|
42 |
+
"p_irr": 0.5,
|
43 |
+
"min_n_irr": 1,
|
44 |
+
"max_n_irr": 5,
|
45 |
+
"max_l_irr": 450,
|
46 |
+
"max_w_irr": 400,
|
47 |
+
"min_n_box": 1,
|
48 |
+
"max_n_box": 4,
|
49 |
+
"min_s_box": 75,
|
50 |
+
"max_s_box": 450,
|
51 |
+
"marg": 10,
|
52 |
+
},
|
53 |
+
}
|
54 |
+
|
55 |
+
|
56 |
+
def gen_segment_mask(mask, start, end, brush_width):
|
57 |
+
mask = mask > 0
|
58 |
+
mask = (255 * mask).astype(np.uint8)
|
59 |
+
mask = Image.fromarray(mask)
|
60 |
+
draw = ImageDraw.Draw(mask)
|
61 |
+
draw.line([start, end], fill=255, width=brush_width, joint="curve")
|
62 |
+
mask = np.array(mask) / 255
|
63 |
+
return mask
|
64 |
+
|
65 |
+
|
66 |
+
def gen_box_mask(mask, masked):
|
67 |
+
x_0, y_0, w, h = masked
|
68 |
+
mask[y_0:y_0 + h, x_0:x_0 + w] = 1
|
69 |
+
return mask
|
70 |
+
|
71 |
+
|
72 |
+
def gen_round_mask(mask, masked, radius):
|
73 |
+
x_0, y_0, w, h = masked
|
74 |
+
xy = [(x_0, y_0), (x_0 + w, y_0 + w)]
|
75 |
+
|
76 |
+
mask = mask > 0
|
77 |
+
mask = (255 * mask).astype(np.uint8)
|
78 |
+
mask = Image.fromarray(mask)
|
79 |
+
draw = ImageDraw.Draw(mask)
|
80 |
+
draw.rounded_rectangle(xy, radius=radius, fill=255)
|
81 |
+
mask = np.array(mask) / 255
|
82 |
+
return mask
|
83 |
+
|
84 |
+
|
85 |
+
def gen_large_mask(prng, img_h, img_w,
|
86 |
+
marg, p_irr, min_n_irr, max_n_irr, max_l_irr, max_w_irr,
|
87 |
+
min_n_box, max_n_box, min_s_box, max_s_box):
|
88 |
+
"""
|
89 |
+
img_h: int, an image height
|
90 |
+
img_w: int, an image width
|
91 |
+
marg: int, a margin for a box starting coordinate
|
92 |
+
p_irr: float, 0 <= p_irr <= 1, a probability of a polygonal chain mask
|
93 |
+
|
94 |
+
min_n_irr: int, min number of segments
|
95 |
+
max_n_irr: int, max number of segments
|
96 |
+
max_l_irr: max length of a segment in polygonal chain
|
97 |
+
max_w_irr: max width of a segment in polygonal chain
|
98 |
+
|
99 |
+
min_n_box: int, min bound for the number of box primitives
|
100 |
+
max_n_box: int, max bound for the number of box primitives
|
101 |
+
min_s_box: int, min length of a box side
|
102 |
+
max_s_box: int, max length of a box side
|
103 |
+
"""
|
104 |
+
|
105 |
+
mask = np.zeros((img_h, img_w))
|
106 |
+
uniform = prng.randint
|
107 |
+
|
108 |
+
if np.random.uniform(0, 1) < p_irr: # generate polygonal chain
|
109 |
+
n = uniform(min_n_irr, max_n_irr) # sample number of segments
|
110 |
+
|
111 |
+
for _ in range(n):
|
112 |
+
y = uniform(0, img_h) # sample a starting point
|
113 |
+
x = uniform(0, img_w)
|
114 |
+
|
115 |
+
a = uniform(0, 360) # sample angle
|
116 |
+
l = uniform(10, max_l_irr) # sample segment length
|
117 |
+
w = uniform(5, max_w_irr) # sample a segment width
|
118 |
+
|
119 |
+
# draw segment starting from (x,y) to (x_,y_) using brush of width w
|
120 |
+
x_ = x + l * np.sin(a)
|
121 |
+
y_ = y + l * np.cos(a)
|
122 |
+
|
123 |
+
mask = gen_segment_mask(mask, start=(x, y), end=(x_, y_), brush_width=w)
|
124 |
+
x, y = x_, y_
|
125 |
+
else: # generate Box masks
|
126 |
+
n = uniform(min_n_box, max_n_box) # sample number of rectangles
|
127 |
+
|
128 |
+
for _ in range(n):
|
129 |
+
h = uniform(min_s_box, max_s_box) # sample box shape
|
130 |
+
w = uniform(min_s_box, max_s_box)
|
131 |
+
|
132 |
+
x_0 = uniform(marg, img_w - marg - w) # sample upper-left coordinates of box
|
133 |
+
y_0 = uniform(marg, img_h - marg - h)
|
134 |
+
|
135 |
+
if np.random.uniform(0, 1) < 0.5:
|
136 |
+
mask = gen_box_mask(mask, masked=(x_0, y_0, w, h))
|
137 |
+
else:
|
138 |
+
r = uniform(0, 60) # sample radius
|
139 |
+
mask = gen_round_mask(mask, masked=(x_0, y_0, w, h), radius=r)
|
140 |
+
return mask
|
141 |
+
|
142 |
+
|
143 |
+
make_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["256train"])
|
144 |
+
make_narrow_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["256narrow"])
|
145 |
+
make_512_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["512train"])
|
146 |
+
make_512_lama_mask_large = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["512train-large"])
|
147 |
+
|
148 |
+
|
149 |
+
MASK_MODES = {
|
150 |
+
"256train": make_lama_mask,
|
151 |
+
"256narrow": make_narrow_lama_mask,
|
152 |
+
"512train": make_512_lama_mask,
|
153 |
+
"512train-large": make_512_lama_mask_large
|
154 |
+
}
|
155 |
+
|
156 |
+
if __name__ == "__main__":
|
157 |
+
import sys
|
158 |
+
|
159 |
+
out = sys.argv[1]
|
160 |
+
|
161 |
+
prng = np.random.RandomState(1)
|
162 |
+
kwargs = settings["256train"]
|
163 |
+
mask = gen_large_mask(prng, 256, 256, **kwargs)
|
164 |
+
mask = (255 * mask).astype(np.uint8)
|
165 |
+
mask = Image.fromarray(mask)
|
166 |
+
mask.save(out)
|
One-2-3-45-master 2/ldm/data/laion.py
ADDED
@@ -0,0 +1,537 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import webdataset as wds
|
2 |
+
import kornia
|
3 |
+
from PIL import Image
|
4 |
+
import io
|
5 |
+
import os
|
6 |
+
import torchvision
|
7 |
+
from PIL import Image
|
8 |
+
import glob
|
9 |
+
import random
|
10 |
+
import numpy as np
|
11 |
+
import pytorch_lightning as pl
|
12 |
+
from tqdm import tqdm
|
13 |
+
from omegaconf import OmegaConf
|
14 |
+
from einops import rearrange
|
15 |
+
import torch
|
16 |
+
from webdataset.handlers import warn_and_continue
|
17 |
+
|
18 |
+
|
19 |
+
from ldm.util import instantiate_from_config
|
20 |
+
from ldm.data.inpainting.synthetic_mask import gen_large_mask, MASK_MODES
|
21 |
+
from ldm.data.base import PRNGMixin
|
22 |
+
|
23 |
+
|
24 |
+
class DataWithWings(torch.utils.data.IterableDataset):
|
25 |
+
def __init__(self, min_size, transform=None, target_transform=None):
|
26 |
+
self.min_size = min_size
|
27 |
+
self.transform = transform if transform is not None else nn.Identity()
|
28 |
+
self.target_transform = target_transform if target_transform is not None else nn.Identity()
|
29 |
+
self.kv = OnDiskKV(file='/home/ubuntu/laion5B-watermark-safety-ordered', key_format='q', value_format='ee')
|
30 |
+
self.kv_aesthetic = OnDiskKV(file='/home/ubuntu/laion5B-aesthetic-tags-kv', key_format='q', value_format='e')
|
31 |
+
self.pwatermark_threshold = 0.8
|
32 |
+
self.punsafe_threshold = 0.5
|
33 |
+
self.aesthetic_threshold = 5.
|
34 |
+
self.total_samples = 0
|
35 |
+
self.samples = 0
|
36 |
+
location = 'pipe:aws s3 cp --quiet s3://s-datasets/laion5b/laion2B-data/{000000..231349}.tar -'
|
37 |
+
|
38 |
+
self.inner_dataset = wds.DataPipeline(
|
39 |
+
wds.ResampledShards(location),
|
40 |
+
wds.tarfile_to_samples(handler=wds.warn_and_continue),
|
41 |
+
wds.shuffle(1000, handler=wds.warn_and_continue),
|
42 |
+
wds.decode('pilrgb', handler=wds.warn_and_continue),
|
43 |
+
wds.map(self._add_tags, handler=wds.ignore_and_continue),
|
44 |
+
wds.select(self._filter_predicate),
|
45 |
+
wds.map_dict(jpg=self.transform, txt=self.target_transform, punsafe=self._punsafe_to_class, handler=wds.warn_and_continue),
|
46 |
+
wds.to_tuple('jpg', 'txt', 'punsafe', handler=wds.warn_and_continue),
|
47 |
+
)
|
48 |
+
|
49 |
+
@staticmethod
|
50 |
+
def _compute_hash(url, text):
|
51 |
+
if url is None:
|
52 |
+
url = ''
|
53 |
+
if text is None:
|
54 |
+
text = ''
|
55 |
+
total = (url + text).encode('utf-8')
|
56 |
+
return mmh3.hash64(total)[0]
|
57 |
+
|
58 |
+
def _add_tags(self, x):
|
59 |
+
hsh = self._compute_hash(x['json']['url'], x['txt'])
|
60 |
+
pwatermark, punsafe = self.kv[hsh]
|
61 |
+
aesthetic = self.kv_aesthetic[hsh][0]
|
62 |
+
return {**x, 'pwatermark': pwatermark, 'punsafe': punsafe, 'aesthetic': aesthetic}
|
63 |
+
|
64 |
+
def _punsafe_to_class(self, punsafe):
|
65 |
+
return torch.tensor(punsafe >= self.punsafe_threshold).long()
|
66 |
+
|
67 |
+
def _filter_predicate(self, x):
|
68 |
+
try:
|
69 |
+
return x['pwatermark'] < self.pwatermark_threshold and x['aesthetic'] >= self.aesthetic_threshold and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
|
70 |
+
except:
|
71 |
+
return False
|
72 |
+
|
73 |
+
def __iter__(self):
|
74 |
+
return iter(self.inner_dataset)
|
75 |
+
|
76 |
+
|
77 |
+
def dict_collation_fn(samples, combine_tensors=True, combine_scalars=True):
|
78 |
+
"""Take a list of samples (as dictionary) and create a batch, preserving the keys.
|
79 |
+
If `tensors` is True, `ndarray` objects are combined into
|
80 |
+
tensor batches.
|
81 |
+
:param dict samples: list of samples
|
82 |
+
:param bool tensors: whether to turn lists of ndarrays into a single ndarray
|
83 |
+
:returns: single sample consisting of a batch
|
84 |
+
:rtype: dict
|
85 |
+
"""
|
86 |
+
keys = set.intersection(*[set(sample.keys()) for sample in samples])
|
87 |
+
batched = {key: [] for key in keys}
|
88 |
+
|
89 |
+
for s in samples:
|
90 |
+
[batched[key].append(s[key]) for key in batched]
|
91 |
+
|
92 |
+
result = {}
|
93 |
+
for key in batched:
|
94 |
+
if isinstance(batched[key][0], (int, float)):
|
95 |
+
if combine_scalars:
|
96 |
+
result[key] = np.array(list(batched[key]))
|
97 |
+
elif isinstance(batched[key][0], torch.Tensor):
|
98 |
+
if combine_tensors:
|
99 |
+
result[key] = torch.stack(list(batched[key]))
|
100 |
+
elif isinstance(batched[key][0], np.ndarray):
|
101 |
+
if combine_tensors:
|
102 |
+
result[key] = np.array(list(batched[key]))
|
103 |
+
else:
|
104 |
+
result[key] = list(batched[key])
|
105 |
+
return result
|
106 |
+
|
107 |
+
|
108 |
+
class WebDataModuleFromConfig(pl.LightningDataModule):
|
109 |
+
def __init__(self, tar_base, batch_size, train=None, validation=None,
|
110 |
+
test=None, num_workers=4, multinode=True, min_size=None,
|
111 |
+
max_pwatermark=1.0,
|
112 |
+
**kwargs):
|
113 |
+
super().__init__(self)
|
114 |
+
print(f'Setting tar base to {tar_base}')
|
115 |
+
self.tar_base = tar_base
|
116 |
+
self.batch_size = batch_size
|
117 |
+
self.num_workers = num_workers
|
118 |
+
self.train = train
|
119 |
+
self.validation = validation
|
120 |
+
self.test = test
|
121 |
+
self.multinode = multinode
|
122 |
+
self.min_size = min_size # filter out very small images
|
123 |
+
self.max_pwatermark = max_pwatermark # filter out watermarked images
|
124 |
+
|
125 |
+
def make_loader(self, dataset_config, train=True):
|
126 |
+
if 'image_transforms' in dataset_config:
|
127 |
+
image_transforms = [instantiate_from_config(tt) for tt in dataset_config.image_transforms]
|
128 |
+
else:
|
129 |
+
image_transforms = []
|
130 |
+
|
131 |
+
image_transforms.extend([torchvision.transforms.ToTensor(),
|
132 |
+
torchvision.transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
|
133 |
+
image_transforms = torchvision.transforms.Compose(image_transforms)
|
134 |
+
|
135 |
+
if 'transforms' in dataset_config:
|
136 |
+
transforms_config = OmegaConf.to_container(dataset_config.transforms)
|
137 |
+
else:
|
138 |
+
transforms_config = dict()
|
139 |
+
|
140 |
+
transform_dict = {dkey: load_partial_from_config(transforms_config[dkey])
|
141 |
+
if transforms_config[dkey] != 'identity' else identity
|
142 |
+
for dkey in transforms_config}
|
143 |
+
img_key = dataset_config.get('image_key', 'jpeg')
|
144 |
+
transform_dict.update({img_key: image_transforms})
|
145 |
+
|
146 |
+
if 'postprocess' in dataset_config:
|
147 |
+
postprocess = instantiate_from_config(dataset_config['postprocess'])
|
148 |
+
else:
|
149 |
+
postprocess = None
|
150 |
+
|
151 |
+
shuffle = dataset_config.get('shuffle', 0)
|
152 |
+
shardshuffle = shuffle > 0
|
153 |
+
|
154 |
+
nodesplitter = wds.shardlists.split_by_node if self.multinode else wds.shardlists.single_node_only
|
155 |
+
|
156 |
+
if self.tar_base == "__improvedaesthetic__":
|
157 |
+
print("## Warning, loading the same improved aesthetic dataset "
|
158 |
+
"for all splits and ignoring shards parameter.")
|
159 |
+
tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
|
160 |
+
else:
|
161 |
+
tars = os.path.join(self.tar_base, dataset_config.shards)
|
162 |
+
|
163 |
+
dset = wds.WebDataset(
|
164 |
+
tars,
|
165 |
+
nodesplitter=nodesplitter,
|
166 |
+
shardshuffle=shardshuffle,
|
167 |
+
handler=wds.warn_and_continue).repeat().shuffle(shuffle)
|
168 |
+
print(f'Loading webdataset with {len(dset.pipeline[0].urls)} shards.')
|
169 |
+
|
170 |
+
dset = (dset
|
171 |
+
.select(self.filter_keys)
|
172 |
+
.decode('pil', handler=wds.warn_and_continue)
|
173 |
+
.select(self.filter_size)
|
174 |
+
.map_dict(**transform_dict, handler=wds.warn_and_continue)
|
175 |
+
)
|
176 |
+
if postprocess is not None:
|
177 |
+
dset = dset.map(postprocess)
|
178 |
+
dset = (dset
|
179 |
+
.batched(self.batch_size, partial=False,
|
180 |
+
collation_fn=dict_collation_fn)
|
181 |
+
)
|
182 |
+
|
183 |
+
loader = wds.WebLoader(dset, batch_size=None, shuffle=False,
|
184 |
+
num_workers=self.num_workers)
|
185 |
+
|
186 |
+
return loader
|
187 |
+
|
188 |
+
def filter_size(self, x):
|
189 |
+
try:
|
190 |
+
valid = True
|
191 |
+
if self.min_size is not None and self.min_size > 1:
|
192 |
+
try:
|
193 |
+
valid = valid and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
|
194 |
+
except Exception:
|
195 |
+
valid = False
|
196 |
+
if self.max_pwatermark is not None and self.max_pwatermark < 1.0:
|
197 |
+
try:
|
198 |
+
valid = valid and x['json']['pwatermark'] <= self.max_pwatermark
|
199 |
+
except Exception:
|
200 |
+
valid = False
|
201 |
+
return valid
|
202 |
+
except Exception:
|
203 |
+
return False
|
204 |
+
|
205 |
+
def filter_keys(self, x):
|
206 |
+
try:
|
207 |
+
return ("jpg" in x) and ("txt" in x)
|
208 |
+
except Exception:
|
209 |
+
return False
|
210 |
+
|
211 |
+
def train_dataloader(self):
|
212 |
+
return self.make_loader(self.train)
|
213 |
+
|
214 |
+
def val_dataloader(self):
|
215 |
+
return self.make_loader(self.validation, train=False)
|
216 |
+
|
217 |
+
def test_dataloader(self):
|
218 |
+
return self.make_loader(self.test, train=False)
|
219 |
+
|
220 |
+
|
221 |
+
from ldm.modules.image_degradation import degradation_fn_bsr_light
|
222 |
+
import cv2
|
223 |
+
|
224 |
+
class AddLR(object):
|
225 |
+
def __init__(self, factor, output_size, initial_size=None, image_key="jpg"):
|
226 |
+
self.factor = factor
|
227 |
+
self.output_size = output_size
|
228 |
+
self.image_key = image_key
|
229 |
+
self.initial_size = initial_size
|
230 |
+
|
231 |
+
def pt2np(self, x):
|
232 |
+
x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy()
|
233 |
+
return x
|
234 |
+
|
235 |
+
def np2pt(self, x):
|
236 |
+
x = torch.from_numpy(x)/127.5-1.0
|
237 |
+
return x
|
238 |
+
|
239 |
+
def __call__(self, sample):
|
240 |
+
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
241 |
+
x = self.pt2np(sample[self.image_key])
|
242 |
+
if self.initial_size is not None:
|
243 |
+
x = cv2.resize(x, (self.initial_size, self.initial_size), interpolation=2)
|
244 |
+
x = degradation_fn_bsr_light(x, sf=self.factor)['image']
|
245 |
+
x = cv2.resize(x, (self.output_size, self.output_size), interpolation=2)
|
246 |
+
x = self.np2pt(x)
|
247 |
+
sample['lr'] = x
|
248 |
+
return sample
|
249 |
+
|
250 |
+
class AddBW(object):
|
251 |
+
def __init__(self, image_key="jpg"):
|
252 |
+
self.image_key = image_key
|
253 |
+
|
254 |
+
def pt2np(self, x):
|
255 |
+
x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy()
|
256 |
+
return x
|
257 |
+
|
258 |
+
def np2pt(self, x):
|
259 |
+
x = torch.from_numpy(x)/127.5-1.0
|
260 |
+
return x
|
261 |
+
|
262 |
+
def __call__(self, sample):
|
263 |
+
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
264 |
+
x = sample[self.image_key]
|
265 |
+
w = torch.rand(3, device=x.device)
|
266 |
+
w /= w.sum()
|
267 |
+
out = torch.einsum('hwc,c->hw', x, w)
|
268 |
+
|
269 |
+
# Keep as 3ch so we can pass to encoder, also we might want to add hints
|
270 |
+
sample['lr'] = out.unsqueeze(-1).tile(1,1,3)
|
271 |
+
return sample
|
272 |
+
|
273 |
+
class AddMask(PRNGMixin):
|
274 |
+
def __init__(self, mode="512train", p_drop=0.):
|
275 |
+
super().__init__()
|
276 |
+
assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
|
277 |
+
self.make_mask = MASK_MODES[mode]
|
278 |
+
self.p_drop = p_drop
|
279 |
+
|
280 |
+
def __call__(self, sample):
|
281 |
+
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
282 |
+
x = sample['jpg']
|
283 |
+
mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
|
284 |
+
if self.prng.choice(2, p=[1 - self.p_drop, self.p_drop]):
|
285 |
+
mask = np.ones_like(mask)
|
286 |
+
mask[mask < 0.5] = 0
|
287 |
+
mask[mask > 0.5] = 1
|
288 |
+
mask = torch.from_numpy(mask[..., None])
|
289 |
+
sample['mask'] = mask
|
290 |
+
sample['masked_image'] = x * (mask < 0.5)
|
291 |
+
return sample
|
292 |
+
|
293 |
+
|
294 |
+
class AddEdge(PRNGMixin):
|
295 |
+
def __init__(self, mode="512train", mask_edges=True):
|
296 |
+
super().__init__()
|
297 |
+
assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
|
298 |
+
self.make_mask = MASK_MODES[mode]
|
299 |
+
self.n_down_choices = [0]
|
300 |
+
self.sigma_choices = [1, 2]
|
301 |
+
self.mask_edges = mask_edges
|
302 |
+
|
303 |
+
@torch.no_grad()
|
304 |
+
def __call__(self, sample):
|
305 |
+
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
306 |
+
x = sample['jpg']
|
307 |
+
|
308 |
+
mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
|
309 |
+
mask[mask < 0.5] = 0
|
310 |
+
mask[mask > 0.5] = 1
|
311 |
+
mask = torch.from_numpy(mask[..., None])
|
312 |
+
sample['mask'] = mask
|
313 |
+
|
314 |
+
n_down_idx = self.prng.choice(len(self.n_down_choices))
|
315 |
+
sigma_idx = self.prng.choice(len(self.sigma_choices))
|
316 |
+
|
317 |
+
n_choices = len(self.n_down_choices)*len(self.sigma_choices)
|
318 |
+
raveled_idx = np.ravel_multi_index((n_down_idx, sigma_idx),
|
319 |
+
(len(self.n_down_choices), len(self.sigma_choices)))
|
320 |
+
normalized_idx = raveled_idx/max(1, n_choices-1)
|
321 |
+
|
322 |
+
n_down = self.n_down_choices[n_down_idx]
|
323 |
+
sigma = self.sigma_choices[sigma_idx]
|
324 |
+
|
325 |
+
kernel_size = 4*sigma+1
|
326 |
+
kernel_size = (kernel_size, kernel_size)
|
327 |
+
sigma = (sigma, sigma)
|
328 |
+
canny = kornia.filters.Canny(
|
329 |
+
low_threshold=0.1,
|
330 |
+
high_threshold=0.2,
|
331 |
+
kernel_size=kernel_size,
|
332 |
+
sigma=sigma,
|
333 |
+
hysteresis=True,
|
334 |
+
)
|
335 |
+
y = (x+1.0)/2.0 # in 01
|
336 |
+
y = y.unsqueeze(0).permute(0, 3, 1, 2).contiguous()
|
337 |
+
|
338 |
+
# down
|
339 |
+
for i_down in range(n_down):
|
340 |
+
size = min(y.shape[-2], y.shape[-1])//2
|
341 |
+
y = kornia.geometry.transform.resize(y, size, antialias=True)
|
342 |
+
|
343 |
+
# edge
|
344 |
+
_, y = canny(y)
|
345 |
+
|
346 |
+
if n_down > 0:
|
347 |
+
size = x.shape[0], x.shape[1]
|
348 |
+
y = kornia.geometry.transform.resize(y, size, interpolation="nearest")
|
349 |
+
|
350 |
+
y = y.permute(0, 2, 3, 1)[0].expand(-1, -1, 3).contiguous()
|
351 |
+
y = y*2.0-1.0
|
352 |
+
|
353 |
+
if self.mask_edges:
|
354 |
+
sample['masked_image'] = y * (mask < 0.5)
|
355 |
+
else:
|
356 |
+
sample['masked_image'] = y
|
357 |
+
sample['mask'] = torch.zeros_like(sample['mask'])
|
358 |
+
|
359 |
+
# concat normalized idx
|
360 |
+
sample['smoothing_strength'] = torch.ones_like(sample['mask'])*normalized_idx
|
361 |
+
|
362 |
+
return sample
|
363 |
+
|
364 |
+
|
365 |
+
def example00():
|
366 |
+
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
|
367 |
+
dataset = wds.WebDataset(url)
|
368 |
+
example = next(iter(dataset))
|
369 |
+
for k in example:
|
370 |
+
print(k, type(example[k]))
|
371 |
+
|
372 |
+
print(example["__key__"])
|
373 |
+
for k in ["json", "txt"]:
|
374 |
+
print(example[k].decode())
|
375 |
+
|
376 |
+
image = Image.open(io.BytesIO(example["jpg"]))
|
377 |
+
outdir = "tmp"
|
378 |
+
os.makedirs(outdir, exist_ok=True)
|
379 |
+
image.save(os.path.join(outdir, example["__key__"] + ".png"))
|
380 |
+
|
381 |
+
|
382 |
+
def load_example(example):
|
383 |
+
return {
|
384 |
+
"key": example["__key__"],
|
385 |
+
"image": Image.open(io.BytesIO(example["jpg"])),
|
386 |
+
"text": example["txt"].decode(),
|
387 |
+
}
|
388 |
+
|
389 |
+
|
390 |
+
for i, example in tqdm(enumerate(dataset)):
|
391 |
+
ex = load_example(example)
|
392 |
+
print(ex["image"].size, ex["text"])
|
393 |
+
if i >= 100:
|
394 |
+
break
|
395 |
+
|
396 |
+
|
397 |
+
def example01():
|
398 |
+
# the first laion shards contain ~10k examples each
|
399 |
+
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/{000000..000002}.tar -"
|
400 |
+
|
401 |
+
batch_size = 3
|
402 |
+
shuffle_buffer = 10000
|
403 |
+
dset = wds.WebDataset(
|
404 |
+
url,
|
405 |
+
nodesplitter=wds.shardlists.split_by_node,
|
406 |
+
shardshuffle=True,
|
407 |
+
)
|
408 |
+
dset = (dset
|
409 |
+
.shuffle(shuffle_buffer, initial=shuffle_buffer)
|
410 |
+
.decode('pil', handler=warn_and_continue)
|
411 |
+
.batched(batch_size, partial=False,
|
412 |
+
collation_fn=dict_collation_fn)
|
413 |
+
)
|
414 |
+
|
415 |
+
num_workers = 2
|
416 |
+
loader = wds.WebLoader(dset, batch_size=None, shuffle=False, num_workers=num_workers)
|
417 |
+
|
418 |
+
batch_sizes = list()
|
419 |
+
keys_per_epoch = list()
|
420 |
+
for epoch in range(5):
|
421 |
+
keys = list()
|
422 |
+
for batch in tqdm(loader):
|
423 |
+
batch_sizes.append(len(batch["__key__"]))
|
424 |
+
keys.append(batch["__key__"])
|
425 |
+
|
426 |
+
for bs in batch_sizes:
|
427 |
+
assert bs==batch_size
|
428 |
+
print(f"{len(batch_sizes)} batches of size {batch_size}.")
|
429 |
+
batch_sizes = list()
|
430 |
+
|
431 |
+
keys_per_epoch.append(keys)
|
432 |
+
for i_batch in [0, 1, -1]:
|
433 |
+
print(f"Batch {i_batch} of epoch {epoch}:")
|
434 |
+
print(keys[i_batch])
|
435 |
+
print("next epoch.")
|
436 |
+
|
437 |
+
|
438 |
+
def example02():
|
439 |
+
from omegaconf import OmegaConf
|
440 |
+
from torch.utils.data.distributed import DistributedSampler
|
441 |
+
from torch.utils.data import IterableDataset
|
442 |
+
from torch.utils.data import DataLoader, RandomSampler, Sampler, SequentialSampler
|
443 |
+
from pytorch_lightning.trainer.supporters import CombinedLoader, CycleIterator
|
444 |
+
|
445 |
+
#config = OmegaConf.load("configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml")
|
446 |
+
#config = OmegaConf.load("configs/stable-diffusion/txt2img-upscale-clip-encoder-f16-1024.yaml")
|
447 |
+
config = OmegaConf.load("configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-256.yaml")
|
448 |
+
datamod = WebDataModuleFromConfig(**config["data"]["params"])
|
449 |
+
dataloader = datamod.train_dataloader()
|
450 |
+
|
451 |
+
for batch in dataloader:
|
452 |
+
print(batch.keys())
|
453 |
+
print(batch["jpg"].shape)
|
454 |
+
break
|
455 |
+
|
456 |
+
|
457 |
+
def example03():
|
458 |
+
# improved aesthetics
|
459 |
+
tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
|
460 |
+
dataset = wds.WebDataset(tars)
|
461 |
+
|
462 |
+
def filter_keys(x):
|
463 |
+
try:
|
464 |
+
return ("jpg" in x) and ("txt" in x)
|
465 |
+
except Exception:
|
466 |
+
return False
|
467 |
+
|
468 |
+
def filter_size(x):
|
469 |
+
try:
|
470 |
+
return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
|
471 |
+
except Exception:
|
472 |
+
return False
|
473 |
+
|
474 |
+
def filter_watermark(x):
|
475 |
+
try:
|
476 |
+
return x['json']['pwatermark'] < 0.5
|
477 |
+
except Exception:
|
478 |
+
return False
|
479 |
+
|
480 |
+
dataset = (dataset
|
481 |
+
.select(filter_keys)
|
482 |
+
.decode('pil', handler=wds.warn_and_continue))
|
483 |
+
n_save = 20
|
484 |
+
n_total = 0
|
485 |
+
n_large = 0
|
486 |
+
n_large_nowm = 0
|
487 |
+
for i, example in enumerate(dataset):
|
488 |
+
n_total += 1
|
489 |
+
if filter_size(example):
|
490 |
+
n_large += 1
|
491 |
+
if filter_watermark(example):
|
492 |
+
n_large_nowm += 1
|
493 |
+
if n_large_nowm < n_save+1:
|
494 |
+
image = example["jpg"]
|
495 |
+
image.save(os.path.join("tmp", f"{n_large_nowm-1:06}.png"))
|
496 |
+
|
497 |
+
if i%500 == 0:
|
498 |
+
print(i)
|
499 |
+
print(f"Large: {n_large}/{n_total} | {n_large/n_total*100:.2f}%")
|
500 |
+
if n_large > 0:
|
501 |
+
print(f"No Watermark: {n_large_nowm}/{n_large} | {n_large_nowm/n_large*100:.2f}%")
|
502 |
+
|
503 |
+
|
504 |
+
|
505 |
+
def example04():
|
506 |
+
# improved aesthetics
|
507 |
+
for i_shard in range(60208)[::-1]:
|
508 |
+
print(i_shard)
|
509 |
+
tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{:06}.tar -".format(i_shard)
|
510 |
+
dataset = wds.WebDataset(tars)
|
511 |
+
|
512 |
+
def filter_keys(x):
|
513 |
+
try:
|
514 |
+
return ("jpg" in x) and ("txt" in x)
|
515 |
+
except Exception:
|
516 |
+
return False
|
517 |
+
|
518 |
+
def filter_size(x):
|
519 |
+
try:
|
520 |
+
return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
|
521 |
+
except Exception:
|
522 |
+
return False
|
523 |
+
|
524 |
+
dataset = (dataset
|
525 |
+
.select(filter_keys)
|
526 |
+
.decode('pil', handler=wds.warn_and_continue))
|
527 |
+
try:
|
528 |
+
example = next(iter(dataset))
|
529 |
+
except Exception:
|
530 |
+
print(f"Error @ {i_shard}")
|
531 |
+
|
532 |
+
|
533 |
+
if __name__ == "__main__":
|
534 |
+
#example01()
|
535 |
+
#example02()
|
536 |
+
example03()
|
537 |
+
#example04()
|