|
import re |
|
from typing import Dict, Tuple, Optional |
|
|
|
def extract_solution(solution_str): |
|
|
|
if "Assistant:" in solution_str: |
|
processed_str = solution_str.split("Assistant:", 1)[1] |
|
elif "<|im_start|>assistant" in solution_str: |
|
processed_str = solution_str.split("<|im_start|>assistant", 1)[1] |
|
elif "[/INST]" in solution_str: |
|
processed_str = solution_str.split("[/INST]", 1)[1] |
|
else: |
|
print("[Error] Failed to locate model response header") |
|
return None, solution_str |
|
|
|
|
|
answer_pattern = r'<answer>(.*?)</answer>' |
|
matches = list(re.finditer(answer_pattern, processed_str, re.DOTALL)) |
|
|
|
if not matches: |
|
print("[Error] No valid answer tags found") |
|
return None, processed_str |
|
|
|
final_answer = matches[-1].group(1).strip() |
|
|
|
|
|
format1_match = re.findall(r'(?:^|\s)([A-Za-z])(?=[:.])', final_answer, re.MULTILINE) |
|
format2_match = re.findall(r'(yes|no)', final_answer.lower()) |
|
format3_match = re.findall(r'[A-Z]', final_answer.upper()) |
|
if format1_match: |
|
|
|
return ','.join(format1_match), processed_str |
|
elif format2_match: |
|
return format2_match[-1].strip(), processed_str |
|
elif format3_match: |
|
return ",".join(format3_match), processed_str |
|
return final_answer.replace(", ", ","), processed_str |
|
|
|
|
|
def validate_response_structure(processed_str: str) -> bool: |
|
"""Performs comprehensive validation of response structure. |
|
|
|
Args: |
|
processed_str: Processed response string from the model |
|
|
|
Returns: |
|
Boolean indicating whether all formatting requirements are met |
|
""" |
|
print("\n[Structure Validation]") |
|
validation_passed = True |
|
|
|
|
|
tags = { |
|
'think_start': ('<think>', 1), |
|
'think_end': ('</think>', 1), |
|
'answer_start': ('<answer>', 1), |
|
'answer_end': ('</answer>', 1) |
|
} |
|
|
|
positions = {} |
|
for tag_name, (tag_str, expected_count) in tags.items(): |
|
count = processed_str.count(tag_str) |
|
positions[tag_name] = pos = processed_str.find(tag_str) |
|
|
|
print(f" {tag_str}: count={count}, position={pos}") |
|
|
|
if count != expected_count: |
|
print(f" [Error] {tag_str} appears {count} times (expected {expected_count})") |
|
validation_passed = False |
|
|
|
|
|
if (positions['think_start'] > positions['think_end'] or |
|
positions['think_end'] > positions['answer_start'] or |
|
positions['answer_start'] > positions['answer_end']): |
|
print(" [Error] Incorrect tag order: Expected <think>...</think><answer>...</answer>") |
|
validation_passed = False |
|
else: |
|
print(" Tag sequence validation passed") |
|
|
|
return validation_passed |
|
|
|
def parse_ground_truth_text_format(ground_truth): |
|
answer_pattern = r'<answer>(.*?)</answer>' |
|
matches = list(re.finditer(answer_pattern, ground_truth, re.DOTALL)) |
|
if ":" in ground_truth and "[{" in ground_truth: |
|
return ground_truth |
|
elif ":" in ground_truth: |
|
format1_match = re.search(r"([a-zA-Z]):", ground_truth) |
|
if format1_match: |
|
return format1_match.group(1).strip() |
|
else: |
|
return ground_truth |
|
elif matches: |
|
return matches[-1].group(1).strip() |
|
else: |
|
return ground_truth |
|
|
|
def compute_score(solution_str: str, ground_truth: str, method='strict', format_reward: int = 1, answer_reward: float = 1.0): |
|
"""Computes comprehensive score for model response. |
|
|
|
Args: |
|
solution_str: Raw model response string |
|
ground_truth: Dictionary containing ground truth data |
|
method: the method to extract the solution, choices are 'strict' and 'flexible' |
|
format_reward: Points awarded/deducted for format correctness |
|
answer_reward: Points awarded/deducted for answer correctness |
|
|
|
Returns: |
|
Total score (sum of format and answer rewards) |
|
""" |
|
print("\n" + "="*80) |
|
print(" Processing New Sample ".center(80, '=')) |
|
print(f"[Ground Truth]: {ground_truth}") |
|
ground_truth = parse_ground_truth_text_format(ground_truth) |
|
|
|
|
|
answer_text, processed_str=extract_solution(solution_str=solution_str) |
|
print(f"\n[Model Response]\n{processed_str}") |
|
print(f"\n[Processed Model Response]\n{answer_text}") |
|
|
|
|
|
format_correct = validate_response_structure(processed_str) |
|
format_score = format_reward if format_correct else -abs(format_reward) |
|
print(f"\n Format validation: {'PASS' if format_correct else 'FAIL'}") |
|
print(f" Format score: {format_score}") |
|
|
|
|
|
answer_score = 0 |
|
if format_correct and answer_text: |
|
print(f"\n[Content Validation]") |
|
print(f" Expected: {ground_truth}") |
|
print(f" Predicted: {answer_text}") |
|
if answer_text.casefold() == ground_truth.casefold(): |
|
answer_score = 2 |
|
print(" Content validation: FULL MATCH") |
|
else: |
|
answer_score = -1.5 |
|
print(" Content validation: MISMATCH") |
|
else: |
|
answer_score = -2 |
|
print("\n[Content Validation] Skipped due to format errors or missing answer") |
|
|
|
total_score = format_score + answer_score |
|
print("\n" + "-"*80) |
|
print(f" Final Score ".center(80, '-')) |
|
print(f" Format: {format_score}") |
|
print(f" Answer: {answer_score}") |
|
print(f" Total: {total_score}") |
|
print("="*80 + "\n") |
|
|
|
return total_score |
|
|