JacksonFreitas commited on
Commit
2888ee6
1 Parent(s): 3acc00d

Training complete

Browse files
README.md CHANGED
@@ -26,16 +26,16 @@ model-index:
26
  metrics:
27
  - name: Precision
28
  type: precision
29
- value: 0.9331789612967251
30
  - name: Recall
31
  type: recall
32
- value: 0.9495119488387749
33
  - name: F1
34
  type: f1
35
- value: 0.9412746079412746
36
  - name: Accuracy
37
  type: accuracy
38
- value: 0.9857685288750221
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
45
 
46
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
47
  It achieves the following results on the evaluation set:
48
- - Loss: 0.0656
49
- - Precision: 0.9332
50
- - Recall: 0.9495
51
- - F1: 0.9413
52
- - Accuracy: 0.9858
53
 
54
  ## Model description
55
 
@@ -80,9 +80,9 @@ The following hyperparameters were used during training:
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
- | 0.0744 | 1.0 | 1756 | 0.0716 | 0.8906 | 0.9273 | 0.9086 | 0.9804 |
84
- | 0.0337 | 2.0 | 3512 | 0.0732 | 0.9276 | 0.9423 | 0.9349 | 0.9840 |
85
- | 0.0208 | 3.0 | 5268 | 0.0656 | 0.9332 | 0.9495 | 0.9413 | 0.9858 |
86
 
87
 
88
  ### Framework versions
 
26
  metrics:
27
  - name: Precision
28
  type: precision
29
+ value: 0.9338186631369954
30
  - name: Recall
31
  type: recall
32
+ value: 0.9498485358465163
33
  - name: F1
34
  type: f1
35
+ value: 0.9417653929584515
36
  - name: Accuracy
37
  type: accuracy
38
+ value: 0.9865338199799847
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
45
 
46
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
47
  It achieves the following results on the evaluation set:
48
+ - Loss: 0.0599
49
+ - Precision: 0.9338
50
+ - Recall: 0.9498
51
+ - F1: 0.9418
52
+ - Accuracy: 0.9865
53
 
54
  ## Model description
55
 
 
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | 0.0736 | 1.0 | 1756 | 0.0684 | 0.9025 | 0.9317 | 0.9169 | 0.9807 |
84
+ | 0.0325 | 2.0 | 3512 | 0.0642 | 0.9290 | 0.9463 | 0.9376 | 0.9853 |
85
+ | 0.0205 | 3.0 | 5268 | 0.0599 | 0.9338 | 0.9498 | 0.9418 | 0.9865 |
86
 
87
 
88
  ### Framework versions
runs/Nov13_16-34-14_989e9d525a69/events.out.tfevents.1731515669.989e9d525a69.1152.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:725aa9a644f9a14601cd8b810d46f1cb60b12e9e0c8f77154c5f52aae6ce2bee
3
- size 8448
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a5cfb94ad1d063a46ee4f5e495985802ef25dadcd97ba87f1e54be5297f49ce
3
+ size 9274