JabrilJacobs commited on
Commit
110c5fe
1 Parent(s): dd2dbeb

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 252.09 +/- 19.76
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8a4f253310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8a4f2533a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8a4f253430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8a4f2534c0>", "_build": "<function ActorCriticPolicy._build at 0x7f8a4f253550>", "forward": "<function ActorCriticPolicy.forward at 0x7f8a4f2535e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8a4f253670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8a4f253700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8a4f253790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8a4f253820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8a4f2538b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8a4f24d8d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670739513049252602, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOCkL75gMrc/HIcpvwUrir7F7i6+Di+lvgAAAAAAAAAAmkt9PexRsLXorIM6KaVLNgZ+A7zpMaK5AACAPwAAgD9Npac9KZhvuluR7rVABuuw2bfAOswnGzUAAIA/AACAPzNYW724tvi5YLDJu1ouMzg7SJK5gLeCtAAAgD8AAIA/gArVvR/dy7lTrvG4Zt+cMiPyN7rihQ44AACAPwAAgD+aS1I9w+kVukIaIbye1Kk2BcZYu2sXGrYAAIA/AACAP8bLVb7fZLI8hbqdPKYThTy2MKq+PH+WPQAAgD8AAIA/gP6KPZBHqT9uSfw+TcK2vmklWT2TCHg+AAAAAAAAAACaY769FH6bumIlcrq1S+61+ugWO65RiTkAAIA/AACAP9pTv70Uqqi6G6QOPFtPZDyUBjU7lddIvQAAgD8AAIA/GgpfPQmgAT5F0Ii9kj8hvuNbwjzKeC69AAAAAAAAAACAz0A9riGGuijsjDtFc4A4VX6buebLorkAAIA/AACAPzNUlzwpOEi6ppk2OBFytDGVEoa5Q5xUtwAAgD8AAIA/5lQMPfYsSboc50e7hbePtvierbsYbmg6AACAPwAAgD9Ny1C9KZBfuoVF1zq8VV80bjpCOdaX+bkAAIA/AACAPzO7I7z20E26Kqw2ODxdKzPFy+26pRlRtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkX9mEB8Y8b+UhpRSlIwBbJRL4owBdJRHQKDsTE0iyIJ1fZQoaAZoCWgPQwguHXOesdBiQJSGlFKUaBVN6ANoFkdAoO2kjZ+QVHV9lChoBmgJaA9DCEC/79+8WmBAlIaUUpRoFU3oA2gWR0Cg7lwZwXImdX2UKGgGaAloD0MI196nqtBOcECUhpRSlGgVTVYBaBZHQKDxuEX+ERJ1fZQoaAZoCWgPQwhxx5v8lqFjQJSGlFKUaBVN6ANoFkdAoPIFE3KjjHV9lChoBmgJaA9DCMCw/Pk2O3JAlIaUUpRoFU1zAWgWR0Cg8qqvvBrOdX2UKGgGaAloD0MIyt+9o0bbY0CUhpRSlGgVTegDaBZHQKD2EDq4YrJ1fZQoaAZoCWgPQwhVTntKznNmQJSGlFKUaBVN6ANoFkdAoPg+PaL4vnV9lChoBmgJaA9DCLvurUjM4WNAlIaUUpRoFU3oA2gWR0Cg+tqagElmdX2UKGgGaAloD0MIrVEP0WjiZECUhpRSlGgVTegDaBZHQKD7uZPVNHp1fZQoaAZoCWgPQwiokCv1rI9mQJSGlFKUaBVN6ANoFkdAoPwrFId2gXV9lChoBmgJaA9DCJPGaB1VaWRAlIaUUpRoFU3oA2gWR0ChCCtuLrHEdX2UKGgGaAloD0MIbR0c7E02ZkCUhpRSlGgVTegDaBZHQKEKF9cbBGh1fZQoaAZoCWgPQwjQmh9/aQ9fQJSGlFKUaBVN6ANoFkdAoQpTADaGpXV9lChoBmgJaA9DCOG2tvA8eWZAlIaUUpRoFU3oA2gWR0ChCnjGT9sKdX2UKGgGaAloD0MIF5rrNFIccUCUhpRSlGgVTdEBaBZHQKEMeHbAUL51fZQoaAZoCWgPQwjzID1FjshmQJSGlFKUaBVN6ANoFkdAoRClnTRYzXV9lChoBmgJaA9DCB8xem6hAWhAlIaUUpRoFU3oA2gWR0ChERMabWmQdX2UKGgGaAloD0MImRBzSdW+Z0CUhpRSlGgVTegDaBZHQKESfOZ9d/t1fZQoaAZoCWgPQwj5hOy8jRZnQJSGlFKUaBVN6ANoFkdAoRM0kQf6oHV9lChoBmgJaA9DCKeufJZnbmJAlIaUUpRoFU3oA2gWR0ChFpxEv0yydX2UKGgGaAloD0MIqFMe3YgwYkCUhpRSlGgVTegDaBZHQKEW6u27Wd51fZQoaAZoCWgPQwgJGF3enEplQJSGlFKUaBVN6ANoFkdAoReN/e+EiHV9lChoBmgJaA9DCMgL6fAQmkZAlIaUUpRoFU0FAWgWR0ChF6ZEMLF5dX2UKGgGaAloD0MI/vDz34OoXkCUhpRSlGgVTegDaBZHQKEcxqB3A211fZQoaAZoCWgPQwisWPymsMZQQJSGlFKUaBVL82gWR0ChHhKu8scydX2UKGgGaAloD0MIzlFHx1V7ZECUhpRSlGgVTegDaBZHQKEfL10T1011fZQoaAZoCWgPQwi5/l2fOYVhQJSGlFKUaBVN6ANoFkdAoR/9+9allHV9lChoBmgJaA9DCID0TZqGgGJAlIaUUpRoFU3oA2gWR0ChIHNkFwDOdX2UKGgGaAloD0MI2VpfJLTkYECUhpRSlGgVTegDaBZHQKEjDwx33Yd1fZQoaAZoCWgPQwhQ5EnStUNmQJSGlFKUaBVN6ANoFkdAoS5tmHxjKHV9lChoBmgJaA9DCP8+48KBgGVAlIaUUpRoFU3oA2gWR0ChLq6y8jA0dX2UKGgGaAloD0MIjSRBuAJwZkCUhpRSlGgVTegDaBZHQKEu11FH8TB1fZQoaAZoCWgPQwgKgPEMmthkQJSGlFKUaBVN6ANoFkdAoTDm0kWyknV9lChoBmgJaA9DCKkWEcVk82BAlIaUUpRoFU3oA2gWR0ChNcRzJZGKdX2UKGgGaAloD0MI0JhJ1AuHZECUhpRSlGgVTegDaBZHQKE3T4X40uV1fZQoaAZoCWgPQwj6Cz1i9JZlQJSGlFKUaBVN6ANoFkdAoTgPgiu+y3V9lChoBmgJaA9DCKxWJvzSJnJAlIaUUpRoFU22AWgWR0ChOqtEgGKRdX2UKGgGaAloD0MIAB3my4tCYUCUhpRSlGgVTegDaBZHQKE7hvGZNPB1fZQoaAZoCWgPQwh1q+ek93dlQJSGlFKUaBVN6ANoFkdAoTvNeWv8qHV9lChoBmgJaA9DCBJNoIjF8WVAlIaUUpRoFU3oA2gWR0ChPHE1VHWjdX2UKGgGaAloD0MIMc10rxOmYkCUhpRSlGgVTegDaBZHQKFBNCjUNKB1fZQoaAZoCWgPQwh/pfPhWeViQJSGlFKUaBVN6ANoFkdAoUJpC2MKkXV9lChoBmgJaA9DCJ5i1SDMAmNAlIaUUpRoFU3oA2gWR0ChQ119fCyhdX2UKGgGaAloD0MIvr9Be3XlZUCUhpRSlGgVTegDaBZHQKFEH+8XenB1fZQoaAZoCWgPQwjaAkLrYXxhQJSGlFKUaBVN6ANoFkdAoUSGuFHrhXV9lChoBmgJaA9DCD/G3LWEJGJAlIaUUpRoFU3oA2gWR0ChRtGHxjJ/dX2UKGgGaAloD0MI3e16aQojZkCUhpRSlGgVTegDaBZHQKFSRFPSDyx1fZQoaAZoCWgPQwiBCdy6m+tkQJSGlFKUaBVN6ANoFkdAoVJq1mapgnV9lChoBmgJaA9DCHaJ6q0BZWJAlIaUUpRoFU3oA2gWR0ChVFunEVFhdX2UKGgGaAloD0MIOV/svTiOcUCUhpRSlGgVTcECaBZHQKFW1bs4T9N1fZQoaAZoCWgPQwiRZFbvcPBgQJSGlFKUaBVN6ANoFkdAoVjqXY150XV9lChoBmgJaA9DCCS1UDI5tWZAlIaUUpRoFU3oA2gWR0ChWmR5LRKIdX2UKGgGaAloD0MIdXXHYhtAYECUhpRSlGgVTegDaBZHQKFbI1mapgl1fZQoaAZoCWgPQwiallgZjYtjQJSGlFKUaBVN6ANoFkdAoV2MiQkonnV9lChoBmgJaA9DCJIgXAGF72FAlIaUUpRoFU3oA2gWR0ChXnIDHOrydX2UKGgGaAloD0MIpGyRtJvwYUCUhpRSlGgVTegDaBZHQKFfgUg0TDh1fZQoaAZoCWgPQwhDA7Fs5k5jQJSGlFKUaBVN6ANoFkdAoWUYCr92o3V9lChoBmgJaA9DCNNPOLu1VGRAlIaUUpRoFU3oA2gWR0ChZnM0pEx7dX2UKGgGaAloD0MI7x8L0SEVZUCUhpRSlGgVTegDaBZHQKFnlha1Tit1fZQoaAZoCWgPQwhBnfLoxnZnQJSGlFKUaBVN6ANoFkdAoWhnVd5Y5nV9lChoBmgJaA9DCOli00ohrGJAlIaUUpRoFU3oA2gWR0ChaN+4smOVdX2UKGgGaAloD0MIfEJ23sY2ZECUhpRSlGgVTegDaBZHQKFrXu5SWJJ1fZQoaAZoCWgPQwjheanYmMFxQJSGlFKUaBVNLQFoFkdAoXbLG3nZCnV9lChoBmgJaA9DCLPr3orEfWZAlIaUUpRoFU3oA2gWR0ChdvC4J/oadX2UKGgGaAloD0MIceMW83N5ZUCUhpRSlGgVTegDaBZHQKF3GOQQtjF1fZQoaAZoCWgPQwjlf/J379xGQJSGlFKUaBVL1GgWR0Chd8VlwtJ4dX2UKGgGaAloD0MIhel7DUHoY0CUhpRSlGgVTegDaBZHQKF4/kIX0oV1fZQoaAZoCWgPQwiEKcqlcdZiQJSGlFKUaBVN6ANoFkdAoXtaK508vHV9lChoBmgJaA9DCP2gLlKoy2BAlIaUUpRoFU3oA2gWR0ChfViuU2UCdX2UKGgGaAloD0MIBtodUowwYUCUhpRSlGgVTegDaBZHQKF+tkPtlZp1fZQoaAZoCWgPQwjECOHRxuxlQJSGlFKUaBVN6ANoFkdAoX9lwR5C4XV9lChoBmgJaA9DCH3sLlDSqHFAlIaUUpRoFU0fAWgWR0ChgFLIPsiTdX2UKGgGaAloD0MIGVjH8cOrYkCUhpRSlGgVTegDaBZHQKGBxqj8DSx1fZQoaAZoCWgPQwhA2v8A66BiQJSGlFKUaBVN6ANoFkdAoYKL6ciGFnV9lChoBmgJaA9DCM8UOq+xtWRAlIaUUpRoFU3oA2gWR0Chg3VDa4+bdX2UKGgGaAloD0MIhVypZ0GTY0CUhpRSlGgVTegDaBZHQKGJ1KlpGnZ1fZQoaAZoCWgPQwhfs1w2urVwQJSGlFKUaBVNTwNoFkdAoYqn1OCXhXV9lChoBmgJaA9DCE2CN6TRrWRAlIaUUpRoFU3oA2gWR0ChiwJAMUh3dX2UKGgGaAloD0MIQX3LnC5jZUCUhpRSlGgVTegDaBZHQKGL18qFyrB1fZQoaAZoCWgPQwixFTQtsSpcQJSGlFKUaBVN6ANoFkdAoZrPfl6qsHV9lChoBmgJaA9DCC3ovTGEgGNAlIaUUpRoFU3oA2gWR0ChmvXIMjNZdX2UKGgGaAloD0MIICbhQh4LZECUhpRSlGgVTegDaBZHQKGbHrwe/6B1fZQoaAZoCWgPQwjIYMWp1g1dQJSGlFKUaBVN6ANoFkdAoZvfqmj0tnV9lChoBmgJaA9DCDhKXp3jgWJAlIaUUpRoFU3oA2gWR0Chn3EgGKQ8dX2UKGgGaAloD0MI4/24/fLpEsCUhpRSlGgVS/loFkdAoaFHG4qgAnV9lChoBmgJaA9DCObqxyZ5J2NAlIaUUpRoFU3oA2gWR0ChoW6T4cm0dX2UKGgGaAloD0MIWfs72yN/bkCUhpRSlGgVTb8DaBZHQKGhwqp97Wx1fZQoaAZoCWgPQwgcfjfdspFnQJSGlFKUaBVN6ANoFkdAoaNVF+d9UnV9lChoBmgJaA9DCOQuwhRlCGNAlIaUUpRoFU3oA2gWR0ChpCTRIBikdX2UKGgGaAloD0MIj/zBwPNTYECUhpRSlGgVTegDaBZHQKGlYLVnVXp1fZQoaAZoCWgPQwjQRxlxASRcQJSGlFKUaBVN6ANoFkdAoaYdDOTq0XV9lChoBmgJaA9DCOLqAIg7GWdAlIaUUpRoFU3oA2gWR0ChpvWAf+0gdX2UKGgGaAloD0MImxw+6cRickCUhpRSlGgVTewBaBZHQKGrUUYbbUR1fZQoaAZoCWgPQwiL4eoAiMtoQJSGlFKUaBVN6ANoFkdAoa1dF+d9UnV9lChoBmgJaA9DCPD6zFmfNGZAlIaUUpRoFU3oA2gWR0Chrhmh24d7dX2UKGgGaAloD0MIWyIXnEF3Y0CUhpRSlGgVTegDaBZHQKGubBRAKOV1fZQoaAZoCWgPQwjnNXaJ6sZkQJSGlFKUaBVN6ANoFkdAoa8hBE8aGnV9lChoBmgJaA9DCKxwy0fSGWZAlIaUUpRoFU3oA2gWR0ChtDuJtSAIdX2UKGgGaAloD0MIyk4/qIsrZkCUhpRSlGgVTegDaBZHQKG0ia8YhuB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
lander_PPO_v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc0f5f8abaf455b61ed91d3a9782a2795a68c2a9076c89eb918bfed1b09f6975
3
+ size 147216
lander_PPO_v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
lander_PPO_v1/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8a4f253310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8a4f2533a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8a4f253430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8a4f2534c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8a4f253550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8a4f2535e0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8a4f253670>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8a4f253700>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8a4f253790>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8a4f253820>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8a4f2538b0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f8a4f24d8d0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000.0,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670739513049252602,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOCkL75gMrc/HIcpvwUrir7F7i6+Di+lvgAAAAAAAAAAmkt9PexRsLXorIM6KaVLNgZ+A7zpMaK5AACAPwAAgD9Npac9KZhvuluR7rVABuuw2bfAOswnGzUAAIA/AACAPzNYW724tvi5YLDJu1ouMzg7SJK5gLeCtAAAgD8AAIA/gArVvR/dy7lTrvG4Zt+cMiPyN7rihQ44AACAPwAAgD+aS1I9w+kVukIaIbye1Kk2BcZYu2sXGrYAAIA/AACAP8bLVb7fZLI8hbqdPKYThTy2MKq+PH+WPQAAgD8AAIA/gP6KPZBHqT9uSfw+TcK2vmklWT2TCHg+AAAAAAAAAACaY769FH6bumIlcrq1S+61+ugWO65RiTkAAIA/AACAP9pTv70Uqqi6G6QOPFtPZDyUBjU7lddIvQAAgD8AAIA/GgpfPQmgAT5F0Ii9kj8hvuNbwjzKeC69AAAAAAAAAACAz0A9riGGuijsjDtFc4A4VX6buebLorkAAIA/AACAPzNUlzwpOEi6ppk2OBFytDGVEoa5Q5xUtwAAgD8AAIA/5lQMPfYsSboc50e7hbePtvierbsYbmg6AACAPwAAgD9Ny1C9KZBfuoVF1zq8VV80bjpCOdaX+bkAAIA/AACAPzO7I7z20E26Kqw2ODxdKzPFy+26pRlRtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkX9mEB8Y8b+UhpRSlIwBbJRL4owBdJRHQKDsTE0iyIJ1fZQoaAZoCWgPQwguHXOesdBiQJSGlFKUaBVN6ANoFkdAoO2kjZ+QVHV9lChoBmgJaA9DCEC/79+8WmBAlIaUUpRoFU3oA2gWR0Cg7lwZwXImdX2UKGgGaAloD0MI196nqtBOcECUhpRSlGgVTVYBaBZHQKDxuEX+ERJ1fZQoaAZoCWgPQwhxx5v8lqFjQJSGlFKUaBVN6ANoFkdAoPIFE3KjjHV9lChoBmgJaA9DCMCw/Pk2O3JAlIaUUpRoFU1zAWgWR0Cg8qqvvBrOdX2UKGgGaAloD0MIyt+9o0bbY0CUhpRSlGgVTegDaBZHQKD2EDq4YrJ1fZQoaAZoCWgPQwhVTntKznNmQJSGlFKUaBVN6ANoFkdAoPg+PaL4vnV9lChoBmgJaA9DCLvurUjM4WNAlIaUUpRoFU3oA2gWR0Cg+tqagElmdX2UKGgGaAloD0MIrVEP0WjiZECUhpRSlGgVTegDaBZHQKD7uZPVNHp1fZQoaAZoCWgPQwiokCv1rI9mQJSGlFKUaBVN6ANoFkdAoPwrFId2gXV9lChoBmgJaA9DCJPGaB1VaWRAlIaUUpRoFU3oA2gWR0ChCCtuLrHEdX2UKGgGaAloD0MIbR0c7E02ZkCUhpRSlGgVTegDaBZHQKEKF9cbBGh1fZQoaAZoCWgPQwjQmh9/aQ9fQJSGlFKUaBVN6ANoFkdAoQpTADaGpXV9lChoBmgJaA9DCOG2tvA8eWZAlIaUUpRoFU3oA2gWR0ChCnjGT9sKdX2UKGgGaAloD0MIF5rrNFIccUCUhpRSlGgVTdEBaBZHQKEMeHbAUL51fZQoaAZoCWgPQwjzID1FjshmQJSGlFKUaBVN6ANoFkdAoRClnTRYzXV9lChoBmgJaA9DCB8xem6hAWhAlIaUUpRoFU3oA2gWR0ChERMabWmQdX2UKGgGaAloD0MImRBzSdW+Z0CUhpRSlGgVTegDaBZHQKESfOZ9d/t1fZQoaAZoCWgPQwj5hOy8jRZnQJSGlFKUaBVN6ANoFkdAoRM0kQf6oHV9lChoBmgJaA9DCKeufJZnbmJAlIaUUpRoFU3oA2gWR0ChFpxEv0yydX2UKGgGaAloD0MIqFMe3YgwYkCUhpRSlGgVTegDaBZHQKEW6u27Wd51fZQoaAZoCWgPQwgJGF3enEplQJSGlFKUaBVN6ANoFkdAoReN/e+EiHV9lChoBmgJaA9DCMgL6fAQmkZAlIaUUpRoFU0FAWgWR0ChF6ZEMLF5dX2UKGgGaAloD0MI/vDz34OoXkCUhpRSlGgVTegDaBZHQKEcxqB3A211fZQoaAZoCWgPQwisWPymsMZQQJSGlFKUaBVL82gWR0ChHhKu8scydX2UKGgGaAloD0MIzlFHx1V7ZECUhpRSlGgVTegDaBZHQKEfL10T1011fZQoaAZoCWgPQwi5/l2fOYVhQJSGlFKUaBVN6ANoFkdAoR/9+9allHV9lChoBmgJaA9DCID0TZqGgGJAlIaUUpRoFU3oA2gWR0ChIHNkFwDOdX2UKGgGaAloD0MI2VpfJLTkYECUhpRSlGgVTegDaBZHQKEjDwx33Yd1fZQoaAZoCWgPQwhQ5EnStUNmQJSGlFKUaBVN6ANoFkdAoS5tmHxjKHV9lChoBmgJaA9DCP8+48KBgGVAlIaUUpRoFU3oA2gWR0ChLq6y8jA0dX2UKGgGaAloD0MIjSRBuAJwZkCUhpRSlGgVTegDaBZHQKEu11FH8TB1fZQoaAZoCWgPQwgKgPEMmthkQJSGlFKUaBVN6ANoFkdAoTDm0kWyknV9lChoBmgJaA9DCKkWEcVk82BAlIaUUpRoFU3oA2gWR0ChNcRzJZGKdX2UKGgGaAloD0MI0JhJ1AuHZECUhpRSlGgVTegDaBZHQKE3T4X40uV1fZQoaAZoCWgPQwj6Cz1i9JZlQJSGlFKUaBVN6ANoFkdAoTgPgiu+y3V9lChoBmgJaA9DCKxWJvzSJnJAlIaUUpRoFU22AWgWR0ChOqtEgGKRdX2UKGgGaAloD0MIAB3my4tCYUCUhpRSlGgVTegDaBZHQKE7hvGZNPB1fZQoaAZoCWgPQwh1q+ek93dlQJSGlFKUaBVN6ANoFkdAoTvNeWv8qHV9lChoBmgJaA9DCBJNoIjF8WVAlIaUUpRoFU3oA2gWR0ChPHE1VHWjdX2UKGgGaAloD0MIMc10rxOmYkCUhpRSlGgVTegDaBZHQKFBNCjUNKB1fZQoaAZoCWgPQwh/pfPhWeViQJSGlFKUaBVN6ANoFkdAoUJpC2MKkXV9lChoBmgJaA9DCJ5i1SDMAmNAlIaUUpRoFU3oA2gWR0ChQ119fCyhdX2UKGgGaAloD0MIvr9Be3XlZUCUhpRSlGgVTegDaBZHQKFEH+8XenB1fZQoaAZoCWgPQwjaAkLrYXxhQJSGlFKUaBVN6ANoFkdAoUSGuFHrhXV9lChoBmgJaA9DCD/G3LWEJGJAlIaUUpRoFU3oA2gWR0ChRtGHxjJ/dX2UKGgGaAloD0MI3e16aQojZkCUhpRSlGgVTegDaBZHQKFSRFPSDyx1fZQoaAZoCWgPQwiBCdy6m+tkQJSGlFKUaBVN6ANoFkdAoVJq1mapgnV9lChoBmgJaA9DCHaJ6q0BZWJAlIaUUpRoFU3oA2gWR0ChVFunEVFhdX2UKGgGaAloD0MIOV/svTiOcUCUhpRSlGgVTcECaBZHQKFW1bs4T9N1fZQoaAZoCWgPQwiRZFbvcPBgQJSGlFKUaBVN6ANoFkdAoVjqXY150XV9lChoBmgJaA9DCCS1UDI5tWZAlIaUUpRoFU3oA2gWR0ChWmR5LRKIdX2UKGgGaAloD0MIdXXHYhtAYECUhpRSlGgVTegDaBZHQKFbI1mapgl1fZQoaAZoCWgPQwiallgZjYtjQJSGlFKUaBVN6ANoFkdAoV2MiQkonnV9lChoBmgJaA9DCJIgXAGF72FAlIaUUpRoFU3oA2gWR0ChXnIDHOrydX2UKGgGaAloD0MIpGyRtJvwYUCUhpRSlGgVTegDaBZHQKFfgUg0TDh1fZQoaAZoCWgPQwhDA7Fs5k5jQJSGlFKUaBVN6ANoFkdAoWUYCr92o3V9lChoBmgJaA9DCNNPOLu1VGRAlIaUUpRoFU3oA2gWR0ChZnM0pEx7dX2UKGgGaAloD0MI7x8L0SEVZUCUhpRSlGgVTegDaBZHQKFnlha1Tit1fZQoaAZoCWgPQwhBnfLoxnZnQJSGlFKUaBVN6ANoFkdAoWhnVd5Y5nV9lChoBmgJaA9DCOli00ohrGJAlIaUUpRoFU3oA2gWR0ChaN+4smOVdX2UKGgGaAloD0MIfEJ23sY2ZECUhpRSlGgVTegDaBZHQKFrXu5SWJJ1fZQoaAZoCWgPQwjheanYmMFxQJSGlFKUaBVNLQFoFkdAoXbLG3nZCnV9lChoBmgJaA9DCLPr3orEfWZAlIaUUpRoFU3oA2gWR0ChdvC4J/oadX2UKGgGaAloD0MIceMW83N5ZUCUhpRSlGgVTegDaBZHQKF3GOQQtjF1fZQoaAZoCWgPQwjlf/J379xGQJSGlFKUaBVL1GgWR0Chd8VlwtJ4dX2UKGgGaAloD0MIhel7DUHoY0CUhpRSlGgVTegDaBZHQKF4/kIX0oV1fZQoaAZoCWgPQwiEKcqlcdZiQJSGlFKUaBVN6ANoFkdAoXtaK508vHV9lChoBmgJaA9DCP2gLlKoy2BAlIaUUpRoFU3oA2gWR0ChfViuU2UCdX2UKGgGaAloD0MIBtodUowwYUCUhpRSlGgVTegDaBZHQKF+tkPtlZp1fZQoaAZoCWgPQwjECOHRxuxlQJSGlFKUaBVN6ANoFkdAoX9lwR5C4XV9lChoBmgJaA9DCH3sLlDSqHFAlIaUUpRoFU0fAWgWR0ChgFLIPsiTdX2UKGgGaAloD0MIGVjH8cOrYkCUhpRSlGgVTegDaBZHQKGBxqj8DSx1fZQoaAZoCWgPQwhA2v8A66BiQJSGlFKUaBVN6ANoFkdAoYKL6ciGFnV9lChoBmgJaA9DCM8UOq+xtWRAlIaUUpRoFU3oA2gWR0Chg3VDa4+bdX2UKGgGaAloD0MIhVypZ0GTY0CUhpRSlGgVTegDaBZHQKGJ1KlpGnZ1fZQoaAZoCWgPQwhfs1w2urVwQJSGlFKUaBVNTwNoFkdAoYqn1OCXhXV9lChoBmgJaA9DCE2CN6TRrWRAlIaUUpRoFU3oA2gWR0ChiwJAMUh3dX2UKGgGaAloD0MIQX3LnC5jZUCUhpRSlGgVTegDaBZHQKGL18qFyrB1fZQoaAZoCWgPQwixFTQtsSpcQJSGlFKUaBVN6ANoFkdAoZrPfl6qsHV9lChoBmgJaA9DCC3ovTGEgGNAlIaUUpRoFU3oA2gWR0ChmvXIMjNZdX2UKGgGaAloD0MIICbhQh4LZECUhpRSlGgVTegDaBZHQKGbHrwe/6B1fZQoaAZoCWgPQwjIYMWp1g1dQJSGlFKUaBVN6ANoFkdAoZvfqmj0tnV9lChoBmgJaA9DCDhKXp3jgWJAlIaUUpRoFU3oA2gWR0Chn3EgGKQ8dX2UKGgGaAloD0MI4/24/fLpEsCUhpRSlGgVS/loFkdAoaFHG4qgAnV9lChoBmgJaA9DCObqxyZ5J2NAlIaUUpRoFU3oA2gWR0ChoW6T4cm0dX2UKGgGaAloD0MIWfs72yN/bkCUhpRSlGgVTb8DaBZHQKGhwqp97Wx1fZQoaAZoCWgPQwgcfjfdspFnQJSGlFKUaBVN6ANoFkdAoaNVF+d9UnV9lChoBmgJaA9DCOQuwhRlCGNAlIaUUpRoFU3oA2gWR0ChpCTRIBikdX2UKGgGaAloD0MIj/zBwPNTYECUhpRSlGgVTegDaBZHQKGlYLVnVXp1fZQoaAZoCWgPQwjQRxlxASRcQJSGlFKUaBVN6ANoFkdAoaYdDOTq0XV9lChoBmgJaA9DCOLqAIg7GWdAlIaUUpRoFU3oA2gWR0ChpvWAf+0gdX2UKGgGaAloD0MImxw+6cRickCUhpRSlGgVTewBaBZHQKGrUUYbbUR1fZQoaAZoCWgPQwiL4eoAiMtoQJSGlFKUaBVN6ANoFkdAoa1dF+d9UnV9lChoBmgJaA9DCPD6zFmfNGZAlIaUUpRoFU3oA2gWR0Chrhmh24d7dX2UKGgGaAloD0MIWyIXnEF3Y0CUhpRSlGgVTegDaBZHQKGubBRAKOV1fZQoaAZoCWgPQwjnNXaJ6sZkQJSGlFKUaBVN6ANoFkdAoa8hBE8aGnV9lChoBmgJaA9DCKxwy0fSGWZAlIaUUpRoFU3oA2gWR0ChtDuJtSAIdX2UKGgGaAloD0MIyk4/qIsrZkCUhpRSlGgVTegDaBZHQKG0ia8YhuB1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
lander_PPO_v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbfda416b948505199f19c190b5661d26d89cfa43e6c1b12061c1859e46abf82
3
+ size 87929
lander_PPO_v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e119a3d4479b28368ef11bef67e78715ae3fbcbd449668e1fb05256a40d27190
3
+ size 43201
lander_PPO_v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lander_PPO_v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (195 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 252.0942578992442, "std_reward": 19.76413067309989, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-11T06:58:51.005565"}