Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +13 -13
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 287.88 +/- 24.77
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc4b09c7640>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc4b09c76d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc4b09c7760>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc4b09c77f0>", "_build": "<function ActorCriticPolicy._build at 0x7fc4b09c7880>", "forward": "<function ActorCriticPolicy.forward at 0x7fc4b09c7910>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc4b09c79a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc4b09c7a30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc4b09c7ac0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc4b09c7b50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc4b09c7be0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc4b09c3840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670523399047978083, "learning_rate": 0.0005, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV2wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL3l1Y2ppbi9neW0vdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVC9ob21lL3l1Y2ppbi9neW0vdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/QGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2zS218JBckCUhpRSlIwBbJRLnowBdJRHQL3TXPO6d2B1fZQoaAZoCWgPQwiad5yiIw0zQJSGlFKUaBVLaWgWR0C902+s5n14dX2UKGgGaAloD0MISG5Nuu0pckCUhpRSlGgVS7ZoFkdAvdNzzpX6qXV9lChoBmgJaA9DCKM883KY3XFAlIaUUpRoFUuVaBZHQL3TeP2f0291fZQoaAZoCWgPQwghByXMdLVyQJSGlFKUaBVLjmgWR0C904DujRD1dX2UKGgGaAloD0MIXmiu08icdECUhpRSlGgVS85oFkdAvdOoFHJ9zHV9lChoBmgJaA9DCINNnUcFKnRAlIaUUpRoFUvJaBZHQL3fgliz9jx1fZQoaAZoCWgPQwijPV5Ih15xQJSGlFKUaBVLm2gWR0C934QHE/B4dX2UKGgGaAloD0MITYdOz7svdECUhpRSlGgVS8hoFkdAvd+d3bEgn3V9lChoBmgJaA9DCF0Y6UWtI3NAlIaUUpRoFUuUaBZHQL3fo+fywwF1fZQoaAZoCWgPQwiQn41cd2pyQJSGlFKUaBVLqWgWR0C936XQUpNLdX2UKGgGaAloD0MI/pyC/OxWc0CUhpRSlGgVS5poFkdAvd+rW6K+BnV9lChoBmgJaA9DCH0h5Lz/E0xAlIaUUpRoFUt7aBZHQL3frRceKbd1fZQoaAZoCWgPQwhH5SZq6UlzQJSGlFKUaBVLsWgWR0C939GiUPhAdX2UKGgGaAloD0MIl8YvvNKwckCUhpRSlGgVS8FoFkdAvd/ZAzHjqHV9lChoBmgJaA9DCHXMeca+DXNAlIaUUpRoFUu3aBZHQL3f2t2cJ+l1fZQoaAZoCWgPQwi5p6s7VhNxQJSGlFKUaBVLlWgWR0C9398jAzpHdX2UKGgGaAloD0MIJGJKJBFQcUCUhpRSlGgVS55oFkdAvd/j4SHuZ3V9lChoBmgJaA9DCMpUwaikW3JAlIaUUpRoFUujaBZHQL3f5bWEsat1fZQoaAZoCWgPQwjT2F4LeklyQJSGlFKUaBVLuWgWR0C93+aCpWFOdX2UKGgGaAloD0MIjkC8rl8xckCUhpRSlGgVS7VoFkdAveAFk5IYnHV9lChoBmgJaA9DCOm2RC74+3JAlIaUUpRoFUupaBZHQL3gHg+Qlrx1fZQoaAZoCWgPQwjMft3pTt9yQJSGlFKUaBVLpmgWR0C94C82NvOydX2UKGgGaAloD0MI/vDz38MQcUCUhpRSlGgVS7FoFkdAveA7AymALHV9lChoBmgJaA9DCDgT04XYpHJAlIaUUpRoFUuaaBZHQL3gQoLofSx1fZQoaAZoCWgPQwhuMxXiETBwQJSGlFKUaBVLpGgWR0C94FijHn2adX2UKGgGaAloD0MIb5upEM+3c0CUhpRSlGgVS7doFkdAveBe1x82JnV9lChoBmgJaA9DCAd96e1Pn3FAlIaUUpRoFUuwaBZHQL3gZO2iL2p1fZQoaAZoCWgPQwgZA+s4vi50QJSGlFKUaBVLqGgWR0C94IrEP1+RdX2UKGgGaAloD0MISQ9Dq5Ngb0CUhpRSlGgVS55oFkdAveCZzGPxQXV9lChoBmgJaA9DCD/iV6yhEHBAlIaUUpRoFUulaBZHQL3gmyfL9uR1fZQoaAZoCWgPQwjc14FzBmByQJSGlFKUaBVLp2gWR0C94KSVnmJWdX2UKGgGaAloD0MIAg8MIHxNckCUhpRSlGgVS7RoFkdAveCqjxkNF3V9lChoBmgJaA9DCN7mjZMCLXFAlIaUUpRoFUu9aBZHQL3gsvzvqkd1fZQoaAZoCWgPQwh2bW+3ZBJyQJSGlFKUaBVLwWgWR0C94MJj2BatdX2UKGgGaAloD0MIeqnYmBdbckCUhpRSlGgVS5RoFkdAveDRrnDBM3V9lChoBmgJaA9DCM0FLo91EnNAlIaUUpRoFUuqaBZHQL3g0aq0dBB1fZQoaAZoCWgPQwh8tg4OdohvQJSGlFKUaBVLnWgWR0C94QTSw4bTdX2UKGgGaAloD0MI4PWZs75ccUCUhpRSlGgVS7hoFkdAveESOvMbFXV9lChoBmgJaA9DCCl1yTjG33BAlIaUUpRoFUujaBZHQL3hL6InBtV1fZQoaAZoCWgPQwj44SAhillzQJSGlFKUaBVLw2gWR0C94TDYh+vydX2UKGgGaAloD0MIMbH5uDYGRkCUhpRSlGgVS1loFkdAveFN4qwyI3V9lChoBmgJaA9DCGQhOgROm3FAlIaUUpRoFUuyaBZHQL3hUfU4JeF1fZQoaAZoCWgPQwipE9BEGNdzQJSGlFKUaBVLwGgWR0C94VkBbOeKdX2UKGgGaAloD0MIKerMPaTgc0CUhpRSlGgVS6xoFkdAveF6F49ovnV9lChoBmgJaA9DCCHp0yp6L3FAlIaUUpRoFUufaBZHQL3hhvM8ox51fZQoaAZoCWgPQwjx1vm3y6tyQJSGlFKUaBVLq2gWR0C94ZPKEFnqdX2UKGgGaAloD0MILIApAwcic0CUhpRSlGgVS7VoFkdAveGV6D5CW3V9lChoBmgJaA9DCH/2I0Wk5XNAlIaUUpRoFUu0aBZHQL3hlfpljEx1fZQoaAZoCWgPQwg6IAn7diRzQJSGlFKUaBVLvmgWR0C94cFxOtW/dX2UKGgGaAloD0MIq1s9Jz1gcUCUhpRSlGgVS7JoFkdAveHGdNFjNXV9lChoBmgJaA9DCAKgihu3yEFAlIaUUpRoFUtsaBZHQL3h2xxT8511fZQoaAZoCWgPQwj52ch1EzlxQJSGlFKUaBVLu2gWR0C94ee5nUUgdX2UKGgGaAloD0MIcXZrmUyycUCUhpRSlGgVS5hoFkdAveIECKaXr3V9lChoBmgJaA9DCFrVko7yWXNAlIaUUpRoFUu3aBZHQL3iJWtlqah1fZQoaAZoCWgPQwiv0AfLWBhxQJSGlFKUaBVLj2gWR0C94j5peu3ddX2UKGgGaAloD0MI04OCUnRRc0CUhpRSlGgVS75oFkdAveJjyAhB7nV9lChoBmgJaA9DCNB8zt1uoXNAlIaUUpRoFUvIaBZHQL3ijS4e9zx1fZQoaAZoCWgPQwj4xaUqbXtAQJSGlFKUaBVLamgWR0C94pJkkKNRdX2UKGgGaAloD0MIMgVrnA3rcUCUhpRSlGgVS7NoFkdAveKWRq46O3V9lChoBmgJaA9DCC/bTlujgHFAlIaUUpRoFUukaBZHQL3imiosI3R1fZQoaAZoCWgPQwg/ARQjS/9zQJSGlFKUaBVLomgWR0C94poBeXzEdX2UKGgGaAloD0MI8zy4O6uAc0CUhpRSlGgVS9BoFkdAveKdbaAWi3V9lChoBmgJaA9DCL5muWz0QHJAlIaUUpRoFUuxaBZHQL3ioMHryDt1fZQoaAZoCWgPQwglH7sLVDh0QJSGlFKUaBVLtGgWR0C94rWMOwxGdX2UKGgGaAloD0MIb9bgfdWPckCUhpRSlGgVS59oFkdAveK+Fev6j3V9lChoBmgJaA9DCFxaDYk7eXNAlIaUUpRoFUu0aBZHQL3i4Mju8bt1fZQoaAZoCWgPQwgtJ6H0hd9wQJSGlFKUaBVLqGgWR0C94uOM2m52dX2UKGgGaAloD0MIKv7viEqUcECUhpRSlGgVS6ZoFkdAveMF2ECeVnV9lChoBmgJaA9DCCHNWDTdi3BAlIaUUpRoFUuYaBZHQL3jJ6PsAvN1fZQoaAZoCWgPQwiEm4wqgxBzQJSGlFKUaBVLrGgWR0C94zErf+CLdX2UKGgGaAloD0MIe9gLBay5cUCUhpRSlGgVS7BoFkdAveNr5HmRvHV9lChoBmgJaA9DCO2ePCwUUnJAlIaUUpRoFUudaBZHQL3jilhw2l51fZQoaAZoCWgPQwgZr3lVp31wQJSGlFKUaBVLq2gWR0C944+qJdjYdX2UKGgGaAloD0MI5/wUx8HEckCUhpRSlGgVS6VoFkdAveORqFh5PnV9lChoBmgJaA9DCEYm4NcIKnFAlIaUUpRoFUupaBZHQL3jk91U2k11fZQoaAZoCWgPQwhHVRNEXclyQJSGlFKUaBVLt2gWR0C945qtDD0ldX2UKGgGaAloD0MIkC3L12X3c0CUhpRSlGgVS7NoFkdAveOevX9R8HV9lChoBmgJaA9DCED4UKIlt3FAlIaUUpRoFUulaBZHQL3jrvTPSlZ1fZQoaAZoCWgPQwjtYprpnt1zQJSGlFKUaBVLy2gWR0C947/sVtXQdX2UKGgGaAloD0MIf9sTJDZyc0CUhpRSlGgVS8JoFkdAvePMa3qiXnV9lChoBmgJaA9DCCSX/5D+vXNAlIaUUpRoFUuqaBZHQL3j1U8FINF1fZQoaAZoCWgPQwj6YYTwaBByQJSGlFKUaBVLimgWR0C94+MBuGbkdX2UKGgGaAloD0MIXFX2XRGUckCUhpRSlGgVS8FoFkdAvePuvvBrOHV9lChoBmgJaA9DCHr+tFHdT3JAlIaUUpRoFUuZaBZHQL3j/A+6iCd1fZQoaAZoCWgPQwhGzsKedopzQJSGlFKUaBVL1GgWR0C95CcRlHz6dX2UKGgGaAloD0MI/g5FgX7ccUCUhpRSlGgVS7RoFkdAveRa/nGKh3V9lChoBmgJaA9DCO+NIQD4fXFAlIaUUpRoFUuoaBZHQL3kbyBTXJ51fZQoaAZoCWgPQwhQATCeQc9xQJSGlFKUaBVLrmgWR0C95HBFd9lVdX2UKGgGaAloD0MIFCNL5hgdckCUhpRSlGgVS6RoFkdAveRy6wt8NXV9lChoBmgJaA9DCISEKF9QrnJAlIaUUpRoFUuyaBZHQL3kf+h4+r51fZQoaAZoCWgPQwiISE272LdxQJSGlFKUaBVLsGgWR0C95Iiro4dZdX2UKGgGaAloD0MIgXwJFZzVckCUhpRSlGgVS7toFkdAveSInWrfcnV9lChoBmgJaA9DCFNBRdWvm3NAlIaUUpRoFUuwaBZHQL3km7I1cdJ1fZQoaAZoCWgPQwiis8wi1KVyQJSGlFKUaBVLnWgWR0C95J8kIHC5dX2UKGgGaAloD0MIh913DE9GcECUhpRSlGgVS49oFkdAveSlb8m8d3V9lChoBmgJaA9DCEoNbQB2iHJAlIaUUpRoFUu/aBZHQL3kv1anrIJ1fZQoaAZoCWgPQwggCft2kjByQJSGlFKUaBVLk2gWR0C95MblV94NdX2UKGgGaAloD0MIaYoApzeTc0CUhpRSlGgVS6xoFkdAveTayjYZmHV9lChoBmgJaA9DCOo/a348YnNAlIaUUpRoFUvEaBZHQL3k3v3ai9J1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2716, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV2wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL3l1Y2ppbi9neW0vdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVC9ob21lL3l1Y2ppbi9neW0vdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.74.2-microsoft-standard-WSL2-x86_64-with-glibc2.35 #1 SMP Wed Nov 2 19:50:29 UTC 2022", "Python": "3.10.6", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd6f73c3640>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd6f73c36d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd6f73c3760>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd6f73c37f0>", "_build": "<function ActorCriticPolicy._build at 0x7fd6f73c3880>", "forward": "<function ActorCriticPolicy.forward at 0x7fd6f73c3910>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd6f73c39a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd6f73c3a30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd6f73c3ac0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd6f73c3b50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd6f73c3be0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd6f73bf6c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670523399047978083, "learning_rate": 0.0005, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV2wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL3l1Y2ppbi9neW0vdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVC9ob21lL3l1Y2ppbi9neW0vdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/QGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2zS218JBckCUhpRSlIwBbJRLnowBdJRHQL3TXPO6d2B1fZQoaAZoCWgPQwiad5yiIw0zQJSGlFKUaBVLaWgWR0C902+s5n14dX2UKGgGaAloD0MISG5Nuu0pckCUhpRSlGgVS7ZoFkdAvdNzzpX6qXV9lChoBmgJaA9DCKM883KY3XFAlIaUUpRoFUuVaBZHQL3TeP2f0291fZQoaAZoCWgPQwghByXMdLVyQJSGlFKUaBVLjmgWR0C904DujRD1dX2UKGgGaAloD0MIXmiu08icdECUhpRSlGgVS85oFkdAvdOoFHJ9zHV9lChoBmgJaA9DCINNnUcFKnRAlIaUUpRoFUvJaBZHQL3fgliz9jx1fZQoaAZoCWgPQwijPV5Ih15xQJSGlFKUaBVLm2gWR0C934QHE/B4dX2UKGgGaAloD0MITYdOz7svdECUhpRSlGgVS8hoFkdAvd+d3bEgn3V9lChoBmgJaA9DCF0Y6UWtI3NAlIaUUpRoFUuUaBZHQL3fo+fywwF1fZQoaAZoCWgPQwiQn41cd2pyQJSGlFKUaBVLqWgWR0C936XQUpNLdX2UKGgGaAloD0MI/pyC/OxWc0CUhpRSlGgVS5poFkdAvd+rW6K+BnV9lChoBmgJaA9DCH0h5Lz/E0xAlIaUUpRoFUt7aBZHQL3frRceKbd1fZQoaAZoCWgPQwhH5SZq6UlzQJSGlFKUaBVLsWgWR0C939GiUPhAdX2UKGgGaAloD0MIl8YvvNKwckCUhpRSlGgVS8FoFkdAvd/ZAzHjqHV9lChoBmgJaA9DCHXMeca+DXNAlIaUUpRoFUu3aBZHQL3f2t2cJ+l1fZQoaAZoCWgPQwi5p6s7VhNxQJSGlFKUaBVLlWgWR0C9398jAzpHdX2UKGgGaAloD0MIJGJKJBFQcUCUhpRSlGgVS55oFkdAvd/j4SHuZ3V9lChoBmgJaA9DCMpUwaikW3JAlIaUUpRoFUujaBZHQL3f5bWEsat1fZQoaAZoCWgPQwjT2F4LeklyQJSGlFKUaBVLuWgWR0C93+aCpWFOdX2UKGgGaAloD0MIjkC8rl8xckCUhpRSlGgVS7VoFkdAveAFk5IYnHV9lChoBmgJaA9DCOm2RC74+3JAlIaUUpRoFUupaBZHQL3gHg+Qlrx1fZQoaAZoCWgPQwjMft3pTt9yQJSGlFKUaBVLpmgWR0C94C82NvOydX2UKGgGaAloD0MI/vDz38MQcUCUhpRSlGgVS7FoFkdAveA7AymALHV9lChoBmgJaA9DCDgT04XYpHJAlIaUUpRoFUuaaBZHQL3gQoLofSx1fZQoaAZoCWgPQwhuMxXiETBwQJSGlFKUaBVLpGgWR0C94FijHn2adX2UKGgGaAloD0MIb5upEM+3c0CUhpRSlGgVS7doFkdAveBe1x82JnV9lChoBmgJaA9DCAd96e1Pn3FAlIaUUpRoFUuwaBZHQL3gZO2iL2p1fZQoaAZoCWgPQwgZA+s4vi50QJSGlFKUaBVLqGgWR0C94IrEP1+RdX2UKGgGaAloD0MISQ9Dq5Ngb0CUhpRSlGgVS55oFkdAveCZzGPxQXV9lChoBmgJaA9DCD/iV6yhEHBAlIaUUpRoFUulaBZHQL3gmyfL9uR1fZQoaAZoCWgPQwjc14FzBmByQJSGlFKUaBVLp2gWR0C94KSVnmJWdX2UKGgGaAloD0MIAg8MIHxNckCUhpRSlGgVS7RoFkdAveCqjxkNF3V9lChoBmgJaA9DCN7mjZMCLXFAlIaUUpRoFUu9aBZHQL3gsvzvqkd1fZQoaAZoCWgPQwh2bW+3ZBJyQJSGlFKUaBVLwWgWR0C94MJj2BatdX2UKGgGaAloD0MIeqnYmBdbckCUhpRSlGgVS5RoFkdAveDRrnDBM3V9lChoBmgJaA9DCM0FLo91EnNAlIaUUpRoFUuqaBZHQL3g0aq0dBB1fZQoaAZoCWgPQwh8tg4OdohvQJSGlFKUaBVLnWgWR0C94QTSw4bTdX2UKGgGaAloD0MI4PWZs75ccUCUhpRSlGgVS7hoFkdAveESOvMbFXV9lChoBmgJaA9DCCl1yTjG33BAlIaUUpRoFUujaBZHQL3hL6InBtV1fZQoaAZoCWgPQwj44SAhillzQJSGlFKUaBVLw2gWR0C94TDYh+vydX2UKGgGaAloD0MIMbH5uDYGRkCUhpRSlGgVS1loFkdAveFN4qwyI3V9lChoBmgJaA9DCGQhOgROm3FAlIaUUpRoFUuyaBZHQL3hUfU4JeF1fZQoaAZoCWgPQwipE9BEGNdzQJSGlFKUaBVLwGgWR0C94VkBbOeKdX2UKGgGaAloD0MIKerMPaTgc0CUhpRSlGgVS6xoFkdAveF6F49ovnV9lChoBmgJaA9DCCHp0yp6L3FAlIaUUpRoFUufaBZHQL3hhvM8ox51fZQoaAZoCWgPQwjx1vm3y6tyQJSGlFKUaBVLq2gWR0C94ZPKEFnqdX2UKGgGaAloD0MILIApAwcic0CUhpRSlGgVS7VoFkdAveGV6D5CW3V9lChoBmgJaA9DCH/2I0Wk5XNAlIaUUpRoFUu0aBZHQL3hlfpljEx1fZQoaAZoCWgPQwg6IAn7diRzQJSGlFKUaBVLvmgWR0C94cFxOtW/dX2UKGgGaAloD0MIq1s9Jz1gcUCUhpRSlGgVS7JoFkdAveHGdNFjNXV9lChoBmgJaA9DCAKgihu3yEFAlIaUUpRoFUtsaBZHQL3h2xxT8511fZQoaAZoCWgPQwj52ch1EzlxQJSGlFKUaBVLu2gWR0C94ee5nUUgdX2UKGgGaAloD0MIcXZrmUyycUCUhpRSlGgVS5hoFkdAveIECKaXr3V9lChoBmgJaA9DCFrVko7yWXNAlIaUUpRoFUu3aBZHQL3iJWtlqah1fZQoaAZoCWgPQwiv0AfLWBhxQJSGlFKUaBVLj2gWR0C94j5peu3ddX2UKGgGaAloD0MI04OCUnRRc0CUhpRSlGgVS75oFkdAveJjyAhB7nV9lChoBmgJaA9DCNB8zt1uoXNAlIaUUpRoFUvIaBZHQL3ijS4e9zx1fZQoaAZoCWgPQwj4xaUqbXtAQJSGlFKUaBVLamgWR0C94pJkkKNRdX2UKGgGaAloD0MIMgVrnA3rcUCUhpRSlGgVS7NoFkdAveKWRq46O3V9lChoBmgJaA9DCC/bTlujgHFAlIaUUpRoFUukaBZHQL3imiosI3R1fZQoaAZoCWgPQwg/ARQjS/9zQJSGlFKUaBVLomgWR0C94poBeXzEdX2UKGgGaAloD0MI8zy4O6uAc0CUhpRSlGgVS9BoFkdAveKdbaAWi3V9lChoBmgJaA9DCL5muWz0QHJAlIaUUpRoFUuxaBZHQL3ioMHryDt1fZQoaAZoCWgPQwglH7sLVDh0QJSGlFKUaBVLtGgWR0C94rWMOwxGdX2UKGgGaAloD0MIb9bgfdWPckCUhpRSlGgVS59oFkdAveK+Fev6j3V9lChoBmgJaA9DCFxaDYk7eXNAlIaUUpRoFUu0aBZHQL3i4Mju8bt1fZQoaAZoCWgPQwgtJ6H0hd9wQJSGlFKUaBVLqGgWR0C94uOM2m52dX2UKGgGaAloD0MIKv7viEqUcECUhpRSlGgVS6ZoFkdAveMF2ECeVnV9lChoBmgJaA9DCCHNWDTdi3BAlIaUUpRoFUuYaBZHQL3jJ6PsAvN1fZQoaAZoCWgPQwiEm4wqgxBzQJSGlFKUaBVLrGgWR0C94zErf+CLdX2UKGgGaAloD0MIe9gLBay5cUCUhpRSlGgVS7BoFkdAveNr5HmRvHV9lChoBmgJaA9DCO2ePCwUUnJAlIaUUpRoFUudaBZHQL3jilhw2l51fZQoaAZoCWgPQwgZr3lVp31wQJSGlFKUaBVLq2gWR0C944+qJdjYdX2UKGgGaAloD0MI5/wUx8HEckCUhpRSlGgVS6VoFkdAveORqFh5PnV9lChoBmgJaA9DCEYm4NcIKnFAlIaUUpRoFUupaBZHQL3jk91U2k11fZQoaAZoCWgPQwhHVRNEXclyQJSGlFKUaBVLt2gWR0C945qtDD0ldX2UKGgGaAloD0MIkC3L12X3c0CUhpRSlGgVS7NoFkdAveOevX9R8HV9lChoBmgJaA9DCED4UKIlt3FAlIaUUpRoFUulaBZHQL3jrvTPSlZ1fZQoaAZoCWgPQwjtYprpnt1zQJSGlFKUaBVLy2gWR0C947/sVtXQdX2UKGgGaAloD0MIf9sTJDZyc0CUhpRSlGgVS8JoFkdAvePMa3qiXnV9lChoBmgJaA9DCCSX/5D+vXNAlIaUUpRoFUuqaBZHQL3j1U8FINF1fZQoaAZoCWgPQwj6YYTwaBByQJSGlFKUaBVLimgWR0C94+MBuGbkdX2UKGgGaAloD0MIXFX2XRGUckCUhpRSlGgVS8FoFkdAvePuvvBrOHV9lChoBmgJaA9DCHr+tFHdT3JAlIaUUpRoFUuZaBZHQL3j/A+6iCd1fZQoaAZoCWgPQwhGzsKedopzQJSGlFKUaBVL1GgWR0C95CcRlHz6dX2UKGgGaAloD0MI/g5FgX7ccUCUhpRSlGgVS7RoFkdAveRa/nGKh3V9lChoBmgJaA9DCO+NIQD4fXFAlIaUUpRoFUuoaBZHQL3kbyBTXJ51fZQoaAZoCWgPQwhQATCeQc9xQJSGlFKUaBVLrmgWR0C95HBFd9lVdX2UKGgGaAloD0MIFCNL5hgdckCUhpRSlGgVS6RoFkdAveRy6wt8NXV9lChoBmgJaA9DCISEKF9QrnJAlIaUUpRoFUuyaBZHQL3kf+h4+r51fZQoaAZoCWgPQwiISE272LdxQJSGlFKUaBVLsGgWR0C95Iiro4dZdX2UKGgGaAloD0MIgXwJFZzVckCUhpRSlGgVS7toFkdAveSInWrfcnV9lChoBmgJaA9DCFNBRdWvm3NAlIaUUpRoFUuwaBZHQL3km7I1cdJ1fZQoaAZoCWgPQwiis8wi1KVyQJSGlFKUaBVLnWgWR0C95J8kIHC5dX2UKGgGaAloD0MIh913DE9GcECUhpRSlGgVS49oFkdAveSlb8m8d3V9lChoBmgJaA9DCEoNbQB2iHJAlIaUUpRoFUu/aBZHQL3kv1anrIJ1fZQoaAZoCWgPQwggCft2kjByQJSGlFKUaBVLk2gWR0C95MblV94NdX2UKGgGaAloD0MIaYoApzeTc0CUhpRSlGgVS6xoFkdAveTayjYZmHV9lChoBmgJaA9DCOo/a348YnNAlIaUUpRoFUvEaBZHQL3k3v3ai9J1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2716, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV2wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL3l1Y2ppbi9neW0vdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVC9ob21lL3l1Y2ppbi9neW0vdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.74.2-microsoft-standard-WSL2-x86_64-with-glibc2.35 #1 SMP Wed Nov 2 19:50:29 UTC 2022", "Python": "3.10.6", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bccb02ab2b17437da2b7880cf8e149fce05f0e5b0e0af065cf890d78937cdfa5
|
3 |
+
size 146388
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc._abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -41,7 +41,7 @@
|
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
-
"n_envs":
|
45 |
"num_timesteps": 114688,
|
46 |
"_total_timesteps": 100000,
|
47 |
"_num_timesteps_at_start": 0,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd6f73c3640>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd6f73c36d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd6f73c3760>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd6f73c37f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd6f73c3880>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd6f73c3910>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd6f73c39a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd6f73c3a30>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd6f73c3ac0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd6f73c3b50>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd6f73c3be0>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fd6f73bf6c0>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
+
"n_envs": 16,
|
45 |
"num_timesteps": 114688,
|
46 |
"_total_timesteps": 100000,
|
47 |
"_num_timesteps_at_start": 0,
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8f3feee33471e30aa3834f48ce8b29bd9c1773545d189999c163ad3987bc518
|
3 |
+
size 173873
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 287.87564419999995, "std_reward": 24.771612461848115, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-09T10:29:24.978209"}
|