JUNGU commited on
Commit
ce8b872
1 Parent(s): 82a8e55

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.49 +/- 0.49
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:614634fca8e1f19f01452ee56eb3ab1baf02f5e0c7c720c6e47cbb2bdbb4a82d
3
+ size 108016
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7efd65353dc0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7efd65355900>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1679320304799289080,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAndayPuOzXz0Qdg8/ndayPuOzXz0Qdg8/ndayPuOzXz0Qdg8/ndayPuOzXz0Qdg8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAf9k3v0Yvn79EScQ/gY3AvgfU3j8KS0c/Vnq5PGG7qT9R6ci/GjYVvzpMwD4ZTcS/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACd1rI+47NfPRB2Dz/7LBy8Y2SxO+/8wrqd1rI+47NfPRB2Dz/7LBy8Y2SxO+/8wrqd1rI+47NfPRB2Dz/7LBy8Y2SxO+/8wrqd1rI+47NfPRB2Dz/7LBy8Y2SxO+/8wrqUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.34929362 0.05461491 0.56039524]\n [0.34929362 0.05461491 0.56039524]\n [0.34929362 0.05461491 0.56039524]\n [0.34929362 0.05461491 0.56039524]]",
60
+ "desired_goal": "[[-0.7181625 -1.2436302 1.5334859 ]\n [-0.3760796 1.7408456 0.77848876]\n [ 0.02264134 1.3260309 -1.5696203 ]\n [-0.5828568 0.37558156 -1.5336028 ]]",
61
+ "observation": "[[ 0.34929362 0.05461491 0.56039524 -0.00953221 0.00541358 -0.00148764]\n [ 0.34929362 0.05461491 0.56039524 -0.00953221 0.00541358 -0.00148764]\n [ 0.34929362 0.05461491 0.56039524 -0.00953221 0.00541358 -0.00148764]\n [ 0.34929362 0.05461491 0.56039524 -0.00953221 0.00541358 -0.00148764]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAISSDPYliprxYayw+yNx7vIzoVjy6uG89MNkKvn+9hr02X5c+3YvDvVpQrj1JWN89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.06403375 -0.02031066 0.16837823]\n [-0.01537246 0.01311697 0.05852578]\n [-0.13559413 -0.06579112 0.29564828]\n [-0.09548161 0.0851142 0.10905511]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVRaFXRQ91L+UhpRSlIwBbJRLMowBdJRHQKZg0m1IAfd1fZQoaAZoCWgPQwgb2CrB4nDRv5SGlFKUaBVLMmgWR0CmYJJq7AcldX2UKGgGaAloD0MIJLTlXIqr3r+UhpRSlGgVSzJoFkdApmBSB06o2nV9lChoBmgJaA9DCMfyrnrAPNy/lIaUUpRoFUsyaBZHQKZgE3mV7hN1fZQoaAZoCWgPQwh2VDVB1H3Vv5SGlFKUaBVLMmgWR0CmYfBT4tYkdX2UKGgGaAloD0MIF2ahndMs5b+UhpRSlGgVSzJoFkdApmGwUHpr13V9lChoBmgJaA9DCBnG3SBaK+O/lIaUUpRoFUsyaBZHQKZhcBoVVPx1fZQoaAZoCWgPQwgb9ntinSrlv5SGlFKUaBVLMmgWR0CmYTHEuQIVdX2UKGgGaAloD0MIuCIxQQ3f17+UhpRSlGgVSzJoFkdApmMMovzvqnV9lChoBmgJaA9DCCXpmsk329u/lIaUUpRoFUsyaBZHQKZizURWcSZ1fZQoaAZoCWgPQwiTOCuiJvrfv5SGlFKUaBVLMmgWR0CmYo2saKk3dX2UKGgGaAloD0MIZHeBkgIL0L+UhpRSlGgVSzJoFkdApmJPYg7o0XV9lChoBmgJaA9DCDS8WYP3Vdu/lIaUUpRoFUsyaBZHQKZkK0mdAgR1fZQoaAZoCWgPQwj/zYsTX+3Sv5SGlFKUaBVLMmgWR0CmY+syad+YdX2UKGgGaAloD0MIDXIXYYpy1b+UhpRSlGgVSzJoFkdApmOq0rsjV3V9lChoBmgJaA9DCLExryMO2cq/lIaUUpRoFUsyaBZHQKZjbGNJe3R1fZQoaAZoCWgPQwg6IAn7dhLQv5SGlFKUaBVLMmgWR0CmZUscQyyldX2UKGgGaAloD0MITdu/stKk0b+UhpRSlGgVSzJoFkdApmULC1qnFnV9lChoBmgJaA9DCEzEW+ffLtS/lIaUUpRoFUsyaBZHQKZkys6JZW91fZQoaAZoCWgPQwhCBvLs8q3gv5SGlFKUaBVLMmgWR0CmZIzundftdX2UKGgGaAloD0MIBYcXRKSm0b+UhpRSlGgVSzJoFkdApmZrwrlNlHV9lChoBmgJaA9DCIR/ETRmEtS/lIaUUpRoFUsyaBZHQKZmK8PnSv11fZQoaAZoCWgPQwhuTiUDQBXSv5SGlFKUaBVLMmgWR0CmZetke6qbdX2UKGgGaAloD0MIAiocQSrF27+UhpRSlGgVSzJoFkdApmWs+zMRpXV9lChoBmgJaA9DCGjKTj+oi8y/lIaUUpRoFUsyaBZHQKZnh1mrbQF1fZQoaAZoCWgPQwi9w+3QsBjiv5SGlFKUaBVLMmgWR0CmZ0dIGyHEdX2UKGgGaAloD0MIBvLs8q0P0r+UhpRSlGgVSzJoFkdApmcG7tiQT3V9lChoBmgJaA9DCAcI5ujx++K/lIaUUpRoFUsyaBZHQKZmyIyCWeJ1fZQoaAZoCWgPQwjk3CbcK/POv5SGlFKUaBVLMmgWR0CmaKdtEXtTdX2UKGgGaAloD0MIOe6UDtZ/47+UhpRSlGgVSzJoFkdApmhnYJ3PiXV9lChoBmgJaA9DCE7TZwdc1+W/lIaUUpRoFUsyaBZHQKZoJwd8zAN1fZQoaAZoCWgPQwisHjAPmfLWv5SGlFKUaBVLMmgWR0CmZ+i9h7VsdX2UKGgGaAloD0MI0uEhjJ9G6L+UhpRSlGgVSzJoFkdApmnzY287IXV9lChoBmgJaA9DCBVSflLtU+q/lIaUUpRoFUsyaBZHQKZpszw+dLB1fZQoaAZoCWgPQwhjl6jeGtjGv5SGlFKUaBVLMmgWR0CmaXLpzLfUdX2UKGgGaAloD0MIeR7cnbXb2L+UhpRSlGgVSzJoFkdApmk0jAzpHXV9lChoBmgJaA9DCNLGEWvxKdC/lIaUUpRoFUsyaBZHQKZrC7wKBup1fZQoaAZoCWgPQwgAdJgvL8Ddv5SGlFKUaBVLMmgWR0CmasuyeI2wdX2UKGgGaAloD0MIigESTaCI17+UhpRSlGgVSzJoFkdApmqLZL7GenV9lChoBmgJaA9DCO2DLAsm/t+/lIaUUpRoFUsyaBZHQKZqTO+IuXh1fZQoaAZoCWgPQwgm/b0UHjTPv5SGlFKUaBVLMmgWR0CmbE6wt8NQdX2UKGgGaAloD0MIO6xwy0dS4b+UhpRSlGgVSzJoFkdApmwPV7Qb/HV9lChoBmgJaA9DCJWcE3toH92/lIaUUpRoFUsyaBZHQKZrz8Kohpx1fZQoaAZoCWgPQwjH8UOlETPpv5SGlFKUaBVLMmgWR0Cma5IxYaHcdX2UKGgGaAloD0MIf/rPmh9/5b+UhpRSlGgVSzJoFkdApm4drAP/aXV9lChoBmgJaA9DCDnU78LW7OG/lIaUUpRoFUsyaBZHQKZt3gdfb9J1fZQoaAZoCWgPQwjtLHqnAu7Jv5SGlFKUaBVLMmgWR0CmbZ6ol2NedX2UKGgGaAloD0MIM/lmmxvTz7+UhpRSlGgVSzJoFkdApm1hPEbYLHV9lChoBmgJaA9DCA1slWBxONO/lIaUUpRoFUsyaBZHQKZv783Mpw11fZQoaAZoCWgPQwjikA2ki03Lv5SGlFKUaBVLMmgWR0Cmb7C704BFdX2UKGgGaAloD0MI1xUzwtuD37+UhpRSlGgVSzJoFkdApm9xYkmhNHV9lChoBmgJaA9DCNqtZTIcz96/lIaUUpRoFUsyaBZHQKZvM9OARTV1fZQoaAZoCWgPQwjjbDoCuFngv5SGlFKUaBVLMmgWR0Cmcc9ORDCxdX2UKGgGaAloD0MI3QiLijid3r+UhpRSlGgVSzJoFkdApnGQO6NEPXV9lChoBmgJaA9DCJd1/1iIDtK/lIaUUpRoFUsyaBZHQKZxUNOM2m51fZQoaAZoCWgPQwj600Z1OpDev5SGlFKUaBVLMmgWR0CmcRNCiRGMdX2UKGgGaAloD0MIkbbxJyob4L+UhpRSlGgVSzJoFkdApnOtK9PDYXV9lChoBmgJaA9DCE2DonkAi9m/lIaUUpRoFUsyaBZHQKZzbiSaEzx1fZQoaAZoCWgPQwjwiuB/K9nVv5SGlFKUaBVLMmgWR0Cmcy6V+qiodX2UKGgGaAloD0MIDTM0ngji9b+UhpRSlGgVSzJoFkdApnLxAlfJFXV9lChoBmgJaA9DCPooIy4ATfO/lIaUUpRoFUsyaBZHQKZ1qtHxz7x1fZQoaAZoCWgPQwh6jV2iemv9v5SGlFKUaBVLMmgWR0CmdWuRs/IKdX2UKGgGaAloD0MIc6CH2jYM7r+UhpRSlGgVSzJoFkdApnUstVaOgnV9lChoBmgJaA9DCFyTbkvkguG/lIaUUpRoFUsyaBZHQKZ07v/io891fZQoaAZoCWgPQwikGvZ7Yp3ev5SGlFKUaBVLMmgWR0CmdwWrn1WbdX2UKGgGaAloD0MINdB8zt2u3b+UhpRSlGgVSzJoFkdApnbFq+JxenV9lChoBmgJaA9DCMIxy54ENui/lIaUUpRoFUsyaBZHQKZ2hUQTVUd1fZQoaAZoCWgPQwiIZMix9Uzzv5SGlFKUaBVLMmgWR0CmdkbSy+pPdX2UKGgGaAloD0MIroGtEiwO+7+UhpRSlGgVSzJoFkdApngi/IsAenV9lChoBmgJaA9DCHzUX6+w4Nm/lIaUUpRoFUsyaBZHQKZ34uuA7Pp1fZQoaAZoCWgPQwj2s1iK5Gvyv5SGlFKUaBVLMmgWR0Cmd6Kc/dIodX2UKGgGaAloD0MIEw8om3KF6r+UhpRSlGgVSzJoFkdApndkQ7LdN3V9lChoBmgJaA9DCINpGD4ipu6/lIaUUpRoFUsyaBZHQKZ5PCKrJbN1fZQoaAZoCWgPQwiGr691qRHhv5SGlFKUaBVLMmgWR0CmePvx6OYIdX2UKGgGaAloD0MIm/9XHTlS4L+UhpRSlGgVSzJoFkdApni7lFMIvHV9lChoBmgJaA9DCHJsPUM4pvy/lIaUUpRoFUsyaBZHQKZ4fT/ACXB1fZQoaAZoCWgPQwiaRL3g0xzzv5SGlFKUaBVLMmgWR0Cmenu4oZyddX2UKGgGaAloD0MI8WPMXUvI57+UhpRSlGgVSzJoFkdApno7we/5+HV9lChoBmgJaA9DCDNslPWbCe2/lIaUUpRoFUsyaBZHQKZ5+150KZ51fZQoaAZoCWgPQwgrobskzgrqv5SGlFKUaBVLMmgWR0Cmeb3Ytg8bdX2UKGgGaAloD0MItcU1PpM99L+UhpRSlGgVSzJoFkdApnuVMIu5BnV9lChoBmgJaA9DCKRQFr6+lvW/lIaUUpRoFUsyaBZHQKZ7VT850bN1fZQoaAZoCWgPQwghlWJH41Dyv5SGlFKUaBVLMmgWR0CmexTlDF6zdX2UKGgGaAloD0MIOwDirl7F5b+UhpRSlGgVSzJoFkdApnrWZCv5g3V9lChoBmgJaA9DCHcQO1PovOO/lIaUUpRoFUsyaBZHQKZ8tamoBJZ1fZQoaAZoCWgPQwjylxb1SW7hv5SGlFKUaBVLMmgWR0CmfHV4X40udX2UKGgGaAloD0MIUKbR5GIM9b+UhpRSlGgVSzJoFkdApnw1Da4+bHV9lChoBmgJaA9DCJ0QOugSLgHAlIaUUpRoFUsyaBZHQKZ79pcHGCJ1fZQoaAZoCWgPQwhYHw99d6vrv5SGlFKUaBVLMmgWR0Cmffhisny/dX2UKGgGaAloD0MIZHYWvVMB6r+UhpRSlGgVSzJoFkdApn24GD+R5nV9lChoBmgJaA9DCDpa1ZKOMvy/lIaUUpRoFUsyaBZHQKZ9d8KG+K11fZQoaAZoCWgPQwj191J40Cz5v5SGlFKUaBVLMmgWR0CmfTlSjxkNdX2UKGgGaAloD0MIM+AsJcvJ6L+UhpRSlGgVSzJoFkdApn8UYXO4X3V9lChoBmgJaA9DCKuuQzUlmf+/lIaUUpRoFUsyaBZHQKZ+1DNQj2V1fZQoaAZoCWgPQwjqXbwft9/8v5SGlFKUaBVLMmgWR0CmfpQaR6njdX2UKGgGaAloD0MIGAeXjjmP8L+UhpRSlGgVSzJoFkdApn5VqnFYMnV9lChoBmgJaA9DCGqJldHI5+W/lIaUUpRoFUsyaBZHQKaALbpNbkh1fZQoaAZoCWgPQwiZZOQs7Onsv5SGlFKUaBVLMmgWR0Cmf+2PLgXNdX2UKGgGaAloD0MIjnQGRl7W7L+UhpRSlGgVSzJoFkdApn+tQ9A5aXV9lChoBmgJaA9DCMtKk1LQbf2/lIaUUpRoFUsyaBZHQKZ/bs67ulZ1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5e2812a500774235d4056dfe06751061f3775cfce38530518674d8371a792dd
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37b028cbca9a3463e6446e5d9a93efd0ad9f165ee47f23957669a8fd9002bace
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7efd65353dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efd65355900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679320304799289080, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAndayPuOzXz0Qdg8/ndayPuOzXz0Qdg8/ndayPuOzXz0Qdg8/ndayPuOzXz0Qdg8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAf9k3v0Yvn79EScQ/gY3AvgfU3j8KS0c/Vnq5PGG7qT9R6ci/GjYVvzpMwD4ZTcS/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACd1rI+47NfPRB2Dz/7LBy8Y2SxO+/8wrqd1rI+47NfPRB2Dz/7LBy8Y2SxO+/8wrqd1rI+47NfPRB2Dz/7LBy8Y2SxO+/8wrqd1rI+47NfPRB2Dz/7LBy8Y2SxO+/8wrqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.34929362 0.05461491 0.56039524]\n [0.34929362 0.05461491 0.56039524]\n [0.34929362 0.05461491 0.56039524]\n [0.34929362 0.05461491 0.56039524]]", "desired_goal": "[[-0.7181625 -1.2436302 1.5334859 ]\n [-0.3760796 1.7408456 0.77848876]\n [ 0.02264134 1.3260309 -1.5696203 ]\n [-0.5828568 0.37558156 -1.5336028 ]]", "observation": "[[ 0.34929362 0.05461491 0.56039524 -0.00953221 0.00541358 -0.00148764]\n [ 0.34929362 0.05461491 0.56039524 -0.00953221 0.00541358 -0.00148764]\n [ 0.34929362 0.05461491 0.56039524 -0.00953221 0.00541358 -0.00148764]\n [ 0.34929362 0.05461491 0.56039524 -0.00953221 0.00541358 -0.00148764]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAISSDPYliprxYayw+yNx7vIzoVjy6uG89MNkKvn+9hr02X5c+3YvDvVpQrj1JWN89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.06403375 -0.02031066 0.16837823]\n [-0.01537246 0.01311697 0.05852578]\n [-0.13559413 -0.06579112 0.29564828]\n [-0.09548161 0.0851142 0.10905511]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVRaFXRQ91L+UhpRSlIwBbJRLMowBdJRHQKZg0m1IAfd1fZQoaAZoCWgPQwgb2CrB4nDRv5SGlFKUaBVLMmgWR0CmYJJq7AcldX2UKGgGaAloD0MIJLTlXIqr3r+UhpRSlGgVSzJoFkdApmBSB06o2nV9lChoBmgJaA9DCMfyrnrAPNy/lIaUUpRoFUsyaBZHQKZgE3mV7hN1fZQoaAZoCWgPQwh2VDVB1H3Vv5SGlFKUaBVLMmgWR0CmYfBT4tYkdX2UKGgGaAloD0MIF2ahndMs5b+UhpRSlGgVSzJoFkdApmGwUHpr13V9lChoBmgJaA9DCBnG3SBaK+O/lIaUUpRoFUsyaBZHQKZhcBoVVPx1fZQoaAZoCWgPQwgb9ntinSrlv5SGlFKUaBVLMmgWR0CmYTHEuQIVdX2UKGgGaAloD0MIuCIxQQ3f17+UhpRSlGgVSzJoFkdApmMMovzvqnV9lChoBmgJaA9DCCXpmsk329u/lIaUUpRoFUsyaBZHQKZizURWcSZ1fZQoaAZoCWgPQwiTOCuiJvrfv5SGlFKUaBVLMmgWR0CmYo2saKk3dX2UKGgGaAloD0MIZHeBkgIL0L+UhpRSlGgVSzJoFkdApmJPYg7o0XV9lChoBmgJaA9DCDS8WYP3Vdu/lIaUUpRoFUsyaBZHQKZkK0mdAgR1fZQoaAZoCWgPQwj/zYsTX+3Sv5SGlFKUaBVLMmgWR0CmY+syad+YdX2UKGgGaAloD0MIDXIXYYpy1b+UhpRSlGgVSzJoFkdApmOq0rsjV3V9lChoBmgJaA9DCLExryMO2cq/lIaUUpRoFUsyaBZHQKZjbGNJe3R1fZQoaAZoCWgPQwg6IAn7dhLQv5SGlFKUaBVLMmgWR0CmZUscQyyldX2UKGgGaAloD0MITdu/stKk0b+UhpRSlGgVSzJoFkdApmULC1qnFnV9lChoBmgJaA9DCEzEW+ffLtS/lIaUUpRoFUsyaBZHQKZkys6JZW91fZQoaAZoCWgPQwhCBvLs8q3gv5SGlFKUaBVLMmgWR0CmZIzundftdX2UKGgGaAloD0MIBYcXRKSm0b+UhpRSlGgVSzJoFkdApmZrwrlNlHV9lChoBmgJaA9DCIR/ETRmEtS/lIaUUpRoFUsyaBZHQKZmK8PnSv11fZQoaAZoCWgPQwhuTiUDQBXSv5SGlFKUaBVLMmgWR0CmZetke6qbdX2UKGgGaAloD0MIAiocQSrF27+UhpRSlGgVSzJoFkdApmWs+zMRpXV9lChoBmgJaA9DCGjKTj+oi8y/lIaUUpRoFUsyaBZHQKZnh1mrbQF1fZQoaAZoCWgPQwi9w+3QsBjiv5SGlFKUaBVLMmgWR0CmZ0dIGyHEdX2UKGgGaAloD0MIBvLs8q0P0r+UhpRSlGgVSzJoFkdApmcG7tiQT3V9lChoBmgJaA9DCAcI5ujx++K/lIaUUpRoFUsyaBZHQKZmyIyCWeJ1fZQoaAZoCWgPQwjk3CbcK/POv5SGlFKUaBVLMmgWR0CmaKdtEXtTdX2UKGgGaAloD0MIOe6UDtZ/47+UhpRSlGgVSzJoFkdApmhnYJ3PiXV9lChoBmgJaA9DCE7TZwdc1+W/lIaUUpRoFUsyaBZHQKZoJwd8zAN1fZQoaAZoCWgPQwisHjAPmfLWv5SGlFKUaBVLMmgWR0CmZ+i9h7VsdX2UKGgGaAloD0MI0uEhjJ9G6L+UhpRSlGgVSzJoFkdApmnzY287IXV9lChoBmgJaA9DCBVSflLtU+q/lIaUUpRoFUsyaBZHQKZpszw+dLB1fZQoaAZoCWgPQwhjl6jeGtjGv5SGlFKUaBVLMmgWR0CmaXLpzLfUdX2UKGgGaAloD0MIeR7cnbXb2L+UhpRSlGgVSzJoFkdApmk0jAzpHXV9lChoBmgJaA9DCNLGEWvxKdC/lIaUUpRoFUsyaBZHQKZrC7wKBup1fZQoaAZoCWgPQwgAdJgvL8Ddv5SGlFKUaBVLMmgWR0CmasuyeI2wdX2UKGgGaAloD0MIigESTaCI17+UhpRSlGgVSzJoFkdApmqLZL7GenV9lChoBmgJaA9DCO2DLAsm/t+/lIaUUpRoFUsyaBZHQKZqTO+IuXh1fZQoaAZoCWgPQwgm/b0UHjTPv5SGlFKUaBVLMmgWR0CmbE6wt8NQdX2UKGgGaAloD0MIO6xwy0dS4b+UhpRSlGgVSzJoFkdApmwPV7Qb/HV9lChoBmgJaA9DCJWcE3toH92/lIaUUpRoFUsyaBZHQKZrz8Kohpx1fZQoaAZoCWgPQwjH8UOlETPpv5SGlFKUaBVLMmgWR0Cma5IxYaHcdX2UKGgGaAloD0MIf/rPmh9/5b+UhpRSlGgVSzJoFkdApm4drAP/aXV9lChoBmgJaA9DCDnU78LW7OG/lIaUUpRoFUsyaBZHQKZt3gdfb9J1fZQoaAZoCWgPQwjtLHqnAu7Jv5SGlFKUaBVLMmgWR0CmbZ6ol2NedX2UKGgGaAloD0MIM/lmmxvTz7+UhpRSlGgVSzJoFkdApm1hPEbYLHV9lChoBmgJaA9DCA1slWBxONO/lIaUUpRoFUsyaBZHQKZv783Mpw11fZQoaAZoCWgPQwjikA2ki03Lv5SGlFKUaBVLMmgWR0Cmb7C704BFdX2UKGgGaAloD0MI1xUzwtuD37+UhpRSlGgVSzJoFkdApm9xYkmhNHV9lChoBmgJaA9DCNqtZTIcz96/lIaUUpRoFUsyaBZHQKZvM9OARTV1fZQoaAZoCWgPQwjjbDoCuFngv5SGlFKUaBVLMmgWR0Cmcc9ORDCxdX2UKGgGaAloD0MI3QiLijid3r+UhpRSlGgVSzJoFkdApnGQO6NEPXV9lChoBmgJaA9DCJd1/1iIDtK/lIaUUpRoFUsyaBZHQKZxUNOM2m51fZQoaAZoCWgPQwj600Z1OpDev5SGlFKUaBVLMmgWR0CmcRNCiRGMdX2UKGgGaAloD0MIkbbxJyob4L+UhpRSlGgVSzJoFkdApnOtK9PDYXV9lChoBmgJaA9DCE2DonkAi9m/lIaUUpRoFUsyaBZHQKZzbiSaEzx1fZQoaAZoCWgPQwjwiuB/K9nVv5SGlFKUaBVLMmgWR0Cmcy6V+qiodX2UKGgGaAloD0MIDTM0ngji9b+UhpRSlGgVSzJoFkdApnLxAlfJFXV9lChoBmgJaA9DCPooIy4ATfO/lIaUUpRoFUsyaBZHQKZ1qtHxz7x1fZQoaAZoCWgPQwh6jV2iemv9v5SGlFKUaBVLMmgWR0CmdWuRs/IKdX2UKGgGaAloD0MIc6CH2jYM7r+UhpRSlGgVSzJoFkdApnUstVaOgnV9lChoBmgJaA9DCFyTbkvkguG/lIaUUpRoFUsyaBZHQKZ07v/io891fZQoaAZoCWgPQwikGvZ7Yp3ev5SGlFKUaBVLMmgWR0CmdwWrn1WbdX2UKGgGaAloD0MINdB8zt2u3b+UhpRSlGgVSzJoFkdApnbFq+JxenV9lChoBmgJaA9DCMIxy54ENui/lIaUUpRoFUsyaBZHQKZ2hUQTVUd1fZQoaAZoCWgPQwiIZMix9Uzzv5SGlFKUaBVLMmgWR0CmdkbSy+pPdX2UKGgGaAloD0MIroGtEiwO+7+UhpRSlGgVSzJoFkdApngi/IsAenV9lChoBmgJaA9DCHzUX6+w4Nm/lIaUUpRoFUsyaBZHQKZ34uuA7Pp1fZQoaAZoCWgPQwj2s1iK5Gvyv5SGlFKUaBVLMmgWR0Cmd6Kc/dIodX2UKGgGaAloD0MIEw8om3KF6r+UhpRSlGgVSzJoFkdApndkQ7LdN3V9lChoBmgJaA9DCINpGD4ipu6/lIaUUpRoFUsyaBZHQKZ5PCKrJbN1fZQoaAZoCWgPQwiGr691qRHhv5SGlFKUaBVLMmgWR0CmePvx6OYIdX2UKGgGaAloD0MIm/9XHTlS4L+UhpRSlGgVSzJoFkdApni7lFMIvHV9lChoBmgJaA9DCHJsPUM4pvy/lIaUUpRoFUsyaBZHQKZ4fT/ACXB1fZQoaAZoCWgPQwiaRL3g0xzzv5SGlFKUaBVLMmgWR0Cmenu4oZyddX2UKGgGaAloD0MI8WPMXUvI57+UhpRSlGgVSzJoFkdApno7we/5+HV9lChoBmgJaA9DCDNslPWbCe2/lIaUUpRoFUsyaBZHQKZ5+150KZ51fZQoaAZoCWgPQwgrobskzgrqv5SGlFKUaBVLMmgWR0Cmeb3Ytg8bdX2UKGgGaAloD0MItcU1PpM99L+UhpRSlGgVSzJoFkdApnuVMIu5BnV9lChoBmgJaA9DCKRQFr6+lvW/lIaUUpRoFUsyaBZHQKZ7VT850bN1fZQoaAZoCWgPQwghlWJH41Dyv5SGlFKUaBVLMmgWR0CmexTlDF6zdX2UKGgGaAloD0MIOwDirl7F5b+UhpRSlGgVSzJoFkdApnrWZCv5g3V9lChoBmgJaA9DCHcQO1PovOO/lIaUUpRoFUsyaBZHQKZ8tamoBJZ1fZQoaAZoCWgPQwjylxb1SW7hv5SGlFKUaBVLMmgWR0CmfHV4X40udX2UKGgGaAloD0MIUKbR5GIM9b+UhpRSlGgVSzJoFkdApnw1Da4+bHV9lChoBmgJaA9DCJ0QOugSLgHAlIaUUpRoFUsyaBZHQKZ79pcHGCJ1fZQoaAZoCWgPQwhYHw99d6vrv5SGlFKUaBVLMmgWR0Cmffhisny/dX2UKGgGaAloD0MIZHYWvVMB6r+UhpRSlGgVSzJoFkdApn24GD+R5nV9lChoBmgJaA9DCDpa1ZKOMvy/lIaUUpRoFUsyaBZHQKZ9d8KG+K11fZQoaAZoCWgPQwj191J40Cz5v5SGlFKUaBVLMmgWR0CmfTlSjxkNdX2UKGgGaAloD0MIM+AsJcvJ6L+UhpRSlGgVSzJoFkdApn8UYXO4X3V9lChoBmgJaA9DCKuuQzUlmf+/lIaUUpRoFUsyaBZHQKZ+1DNQj2V1fZQoaAZoCWgPQwjqXbwft9/8v5SGlFKUaBVLMmgWR0CmfpQaR6njdX2UKGgGaAloD0MIGAeXjjmP8L+UhpRSlGgVSzJoFkdApn5VqnFYMnV9lChoBmgJaA9DCGqJldHI5+W/lIaUUpRoFUsyaBZHQKaALbpNbkh1fZQoaAZoCWgPQwiZZOQs7Onsv5SGlFKUaBVLMmgWR0Cmf+2PLgXNdX2UKGgGaAloD0MIjnQGRl7W7L+UhpRSlGgVSzJoFkdApn+tQ9A5aXV9lChoBmgJaA9DCMtKk1LQbf2/lIaUUpRoFUsyaBZHQKZ/bs67ulZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (283 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.4902183189988136, "std_reward": 0.4933720593460165, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-20T14:40:23.676634"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f3146883d1b3d7c5f28ea645f837e348c85688ffc10d9bb76112b7d32632a86
3
+ size 3056