JD45 commited on
Commit
5ecd6b7
1 Parent(s): f914821

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -560.60 +/- 312.71
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b6ec1c4dab0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b6ec1c4db40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b6ec1c4dbd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b6ec1c4dc60>", "_build": "<function ActorCriticPolicy._build at 0x7b6ec1c4dcf0>", "forward": "<function ActorCriticPolicy.forward at 0x7b6ec1c4dd80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b6ec1c4de10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b6ec1c4dea0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b6ec1c4df30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b6ec1c4dfc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b6ec1c4e050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b6ec1c4e0e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b6ec2584100>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 131072, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717024218557595629, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAH58yb5HRP4+xOaovmJjY7/ojhO/gJHwvgAAAAAAAAAAzkKWvim4Mz26Qre+yx2iv5LDtL7lpdu+AAAAAAAAAAAAQws++NjFP8qUvD4xn7E85MjDPT5oED4AAAAAAAAAAJplD71nBa0/jjoCvgk8176gkK4+NdVZPgAAAAAAAAAA1reIPuzmKT6kYwG/6cppv3HjuD4A2IO+AAAAAAAAAADAYt6+qIPUPfJfEb8cCZ6//YEevraIYL4AAAAAAAAAACbbcT7Yg3c/GKEfPwL0Rr984jI8lturPgAAAAAAAAAALf4ovlryez/mCr6+nV4xv1U+DLxRqKq9AAAAAAAAAACTv7c+vNCMP8vrPj/KdP6+n04+vvWpBT4AAAAAAAAAALp3AT4z95Y/HZAcPvp5CL9cCoE+zjQkvQAAAAAAAAAAGjJhvQtvAT/+2OS91lczv1h5Bjxh7gE9AAAAAAAAAAAgPwe+qM2XP/l1p74mT/q+FDcZvJZ+270AAAAAAAAAALNRcL1Vy2M/UQ7AvH7rLL/vgCa9auMPvgAAAAAAAAAAkwWbPl0LgD/lkvo+i0oov5j+mD5uPmU+AAAAAAAAAABN2CK9a22wPzjE3b5UzV++5+Y7PSO0lj0AAAAAAAAAAM2dTL4W5QM9miRJPuvQvb3JSki/F9onPwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEPK55qubI+MAWyUS4OMAXSUR0Bh7tP+GXXzdX2UKGgGR8BMfoIWxhUjaAdLZ2gIR0Bh7y+lCTlldX2UKGgGR8BnrXmV7hNuaAdLj2gIR0Bh8EaQ3gk1dX2UKGgGR8BTsXY6GQCCaAdLhGgIR0Bh8EliSaE0dX2UKGgGR0AwIyLyc0+DaAdLdGgIR0Bh8f6oESuhdX2UKGgGR8BCUDcM3IdVaAdLU2gIR0Bh8h+OOsDGdX2UKGgGR8BUxfwZwXImaAdLhWgIR0Bh8qOq//NrdX2UKGgGR8BQmoHoouwpaAdLbmgIR0Bh9GmixmkFdX2UKGgGR8A89RFqi48VaAdLcWgIR0Bh9Sb2Dg62dX2UKGgGR8BRO/ZyuIRAaAdLpmgIR0Bh97QXyiEhdX2UKGgGR8BGSd9tuUD/aAdLSmgIR0Bh+TKYAsCldX2UKGgGR8BXex7mdRR/aAdLSWgIR0Bh+y9AX2ugdX2UKGgGR8BZo67Ackt3aAdLrGgIR0Bh+8wevIOpdX2UKGgGR8BMwIs7MgU2aAdLTWgIR0Bh/OITGo73dX2UKGgGR8BM3Msg+yJLaAdLfmgIR0Bh/ccCHRCydX2UKGgGR8BTN8lHBk7PaAdLe2gIR0Bh/q7K7qY7dX2UKGgGR8BK83HJcPe6aAdLU2gIR0Bh/7pqynk1dX2UKGgGR8BXBlF+d9UkaAdLbGgIR0BiAP7DVH4HdX2UKGgGR8BWqkeyRjjJaAdLc2gIR0BiAgTmGM4tdX2UKGgGR8BXa7XDm8ujaAdLX2gIR0BiApf4REncdX2UKGgGR7/2v0AcT8HfaAdLmmgIR0BiBNdcB2fTdX2UKGgGR8BGWgi/wiJPaAdLemgIR0BiBNjNIK+jdX2UKGgGR8BYlhSpBHCoaAdLbmgIR0BiCAA4n4O+dX2UKGgGR8BQVKwyIpH7aAdLYGgIR0BiCIGIKtxNdX2UKGgGR8Bkbej0th/iaAdLZWgIR0BiCqJuVHFxdX2UKGgGR8BMpx5LRKHxaAdLkmgIR0BiCoTXarWAdX2UKGgGR8BBgtBOYYzjaAdLVmgIR0BiC2N1hb4bdX2UKGgGR8BKhYwqRU3oaAdLkGgIR0BiDMa86FM7dX2UKGgGR8BK6Tq0MPSVaAdLX2gIR0BiD7aTOgQIdX2UKGgGR8BRDf6oESuhaAdLe2gIR0BiEABRyfcvdX2UKGgGR8BWzakqMFUyaAdLemgIR0BiEFmlImPYdX2UKGgGR8BJAgRsdkrgaAdLXmgIR0BiEX+wTufFdX2UKGgGR8BU7j7EYO2BaAdLgmgIR0BiE1Jrcj7idX2UKGgGR8BLXowmE5AAaAdLfGgIR0BiFrjcVQANdX2UKGgGR8A3lF36hxo7aAdLX2gIR0BiF+KoAGSqdX2UKGgGR8BNuM7U5MlDaAdLkmgIR0BiGQ9mpVCHdX2UKGgGR8BXG9adMCcPaAdLc2gIR0BiGvSYw7DEdX2UKGgGR8BVtj6SDAaeaAdLWWgIR0BiG6i22G7BdX2UKGgGR8Bdb/dM0xdqaAdLkmgIR0BiHP6GgzxgdX2UKGgGR8BqCPq5byH3aAdLwWgIR0BiH1itq59WdX2UKGgGR8BAWjopx3mnaAdLoWgIR0BiH76rNnoQdX2UKGgGR8BUCNGViWmhaAdLf2gIR0BiICUA1ejVdX2UKGgGR8A2nO4oZydXaAdLgGgIR0BiIS1/lQuVdX2UKGgGR8BaWNLcsUZfaAdLmWgIR0BiJG3lS0jUdX2UKGgGR8BGwUhmoR7JaAdLTmgIR0BiJy2rn1WbdX2UKGgGR8A4VV5KODJ2aAdLhWgIR0BiJ2Ur08NhdX2UKGgGR8BMGDeTFERbaAdLg2gIR0BiKEzTF2mpdX2UKGgGR8BXybsjVx0daAdLfWgIR0BiKU6tDD0ldX2UKGgGR8BgsuBz3h4uaAdLn2gIR0BiKxjhDPWydX2UKGgGR8BIvv1L8JlbaAdLcmgIR0BiLDFId2gWdX2UKGgGR8BMdlbNbC79aAdLXmgIR0BiLY1DSgGsdX2UKGgGR8Bc0WPkq+ajaAdLbmgIR0BiLm4RVZLadX2UKGgGR8BIgYZl4C6paAdLUmgIR0BiLhylvZRLdX2UKGgGR8BYhgFC9h7WaAdLs2gIR0BiLt70Fr2ydX2UKGgGR8BVAuRcNYr8aAdLXmgIR0BiL6xcE/0NdX2UKGgGR8BcUGCNCJGfaAdLdWgIR0BiMBntfG+9dX2UKGgGR8A0voUBXCCSaAdLm2gIR0BiMdOdoWYXdX2UKGgGR8BLRktVaOghaAdLRGgIR0BiMmixmkFfdX2UKGgGR8Bobt4LThHcaAdLbGgIR0BiM2cFyJbddX2UKGgGR8A+xiwB5ooNaAdLTWgIR0BiNMPz4DcNdX2UKGgGR8BT5XRG+bmVaAdLTGgIR0BiNYu7HyVfdX2UKGgGR8BTsAI2OyVwaAdLhGgIR0BiNfyZrpJPdX2UKGgGR8BSZZDu0CzUaAdLSGgIR0BiN2cQRPGidX2UKGgGR8BXGB1oxpL3aAdLf2gIR0BiOTZQHiWFdX2UKGgGR8Baa3juKGcnaAdLcWgIR0BiOTYXfqHHdX2UKGgGR8BVVlENOM2naAdLTGgIR0BiOeMbWEsbdX2UKGgGR8A9Pjvuw5eaaAdLWGgIR0BiOtkQPI4mdX2UKGgGR8BRY2PtD2J0aAdLXmgIR0BiPOycCo0idX2UKGgGR8BQktKh+OOsaAdLVWgIR0BiPpOSGJvYdX2UKGgGR8BMIpJf6XSjaAdLVGgIR0BiPxV0cOsldX2UKGgGR8A7DlXA/LTyaAdLj2gIR0BiQXKOktVadX2UKGgGR8BRf8zyjHn2aAdLe2gIR0BiQodCE6DHdX2UKGgGR8BLoU2tMfzSaAdLSGgIR0BiQpqmCROldX2UKGgGR8Bbyk2pAD7qaAdLZmgIR0BiQwyM1jy4dX2UKGgGR8Az4ro4dZJTaAdLVWgIR0BiQyYRdyDJdX2UKGgGR8BRRdGd7OVxaAdLcGgIR0BiRmSfUWl/dX2UKGgGR8BW2iQ9zOopaAdLnmgIR0BiRtFQVKwqdX2UKGgGR8BBzAyEcsDoaAdLmWgIR0BiSA7ihnJ1dX2UKGgGR8BWmt4mkWRBaAdLXWgIR0BiSEkyDZlGdX2UKGgGR8BHTgUUO/cnaAdLXGgIR0BiSNZTyauwdX2UKGgGR8BPYLzf779AaAdLgGgIR0BiSbSPU8V6dX2UKGgGR8BTEflyR0U5aAdLTmgIR0BiSyOFQEZBdX2UKGgGR8BLHV4HHFP0aAdLQ2gIR0BiTfGwRoRJdX2UKGgGR8BlcbwH7gsLaAdLiGgIR0BiTxAQg9vCdX2UKGgGR8BKxkKu0TlDaAdLe2gIR0BiUl8w5/9YdX2UKGgGR8BgxwcLjPv8aAdLimgIR0BiUrbg0j1PdX2UKGgGR8BMr5rHlwLmaAdLdWgIR0BiVDl1bJOndX2UKGgGR8BAWrj5sTFmaAdLdWgIR0BiWlUEPlMidX2UKGgGR8BdpVGoaUA1aAdLemgIR0BiWrPjXFtLdX2UKGgGR8BOe4XO4XoDaAdLWmgIR0BiW9dRiw0PdX2UKGgGR8BR9MCxNZeSaAdLi2gIR0BiXs/IKc/ddX2UKGgGR8BVi0cCHRCyaAdLeWgIR0BiX9q8DjiodX2UKGgGR8BTNmepXIU8aAdLdmgIR0BiX9yLhrFgdX2UKGgGR8BWmOy3Td+HaAdLZmgIR0BiYFfVqesgdX2UKGgGR0BB/jCxeLNwaAdLdGgIR0BiYcrZrYXgdX2UKGgGR8BQzPixVyWBaAdLomgIR0BiYv4TK1XvdX2UKGgGR8BJimBvrGBGaAdLfGgIR0BiY1ARkEs8dX2UKGgGR8BQsoi9qUNbaAdLR2gIR0BiZA35vcagdX2UKGgGR8BURmHk92X+aAdLVmgIR0BiZKsCDEm6dX2UKGgGR8A0zTWXkYGdaAdLc2gIR0BialhE0BOpdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 40, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7410df1dce3fdce11821b1c3e952b60146eed1da0e2484cd613287c0aa48d4e7
3
+ size 147435
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b6ec1c4dab0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b6ec1c4db40>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b6ec1c4dbd0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b6ec1c4dc60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b6ec1c4dcf0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b6ec1c4dd80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b6ec1c4de10>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b6ec1c4dea0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b6ec1c4df30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b6ec1c4dfc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b6ec1c4e050>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b6ec1c4e0e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b6ec2584100>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 131072,
25
+ "_total_timesteps": 100000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1717024218557595629,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAH58yb5HRP4+xOaovmJjY7/ojhO/gJHwvgAAAAAAAAAAzkKWvim4Mz26Qre+yx2iv5LDtL7lpdu+AAAAAAAAAAAAQws++NjFP8qUvD4xn7E85MjDPT5oED4AAAAAAAAAAJplD71nBa0/jjoCvgk8176gkK4+NdVZPgAAAAAAAAAA1reIPuzmKT6kYwG/6cppv3HjuD4A2IO+AAAAAAAAAADAYt6+qIPUPfJfEb8cCZ6//YEevraIYL4AAAAAAAAAACbbcT7Yg3c/GKEfPwL0Rr984jI8lturPgAAAAAAAAAALf4ovlryez/mCr6+nV4xv1U+DLxRqKq9AAAAAAAAAACTv7c+vNCMP8vrPj/KdP6+n04+vvWpBT4AAAAAAAAAALp3AT4z95Y/HZAcPvp5CL9cCoE+zjQkvQAAAAAAAAAAGjJhvQtvAT/+2OS91lczv1h5Bjxh7gE9AAAAAAAAAAAgPwe+qM2XP/l1p74mT/q+FDcZvJZ+270AAAAAAAAAALNRcL1Vy2M/UQ7AvH7rLL/vgCa9auMPvgAAAAAAAAAAkwWbPl0LgD/lkvo+i0oov5j+mD5uPmU+AAAAAAAAAABN2CK9a22wPzjE3b5UzV++5+Y7PSO0lj0AAAAAAAAAAM2dTL4W5QM9miRJPuvQvb3JSki/F9onPwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.3107200000000001,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEPK55qubI+MAWyUS4OMAXSUR0Bh7tP+GXXzdX2UKGgGR8BMfoIWxhUjaAdLZ2gIR0Bh7y+lCTlldX2UKGgGR8BnrXmV7hNuaAdLj2gIR0Bh8EaQ3gk1dX2UKGgGR8BTsXY6GQCCaAdLhGgIR0Bh8EliSaE0dX2UKGgGR0AwIyLyc0+DaAdLdGgIR0Bh8f6oESuhdX2UKGgGR8BCUDcM3IdVaAdLU2gIR0Bh8h+OOsDGdX2UKGgGR8BUxfwZwXImaAdLhWgIR0Bh8qOq//NrdX2UKGgGR8BQmoHoouwpaAdLbmgIR0Bh9GmixmkFdX2UKGgGR8A89RFqi48VaAdLcWgIR0Bh9Sb2Dg62dX2UKGgGR8BRO/ZyuIRAaAdLpmgIR0Bh97QXyiEhdX2UKGgGR8BGSd9tuUD/aAdLSmgIR0Bh+TKYAsCldX2UKGgGR8BXex7mdRR/aAdLSWgIR0Bh+y9AX2ugdX2UKGgGR8BZo67Ackt3aAdLrGgIR0Bh+8wevIOpdX2UKGgGR8BMwIs7MgU2aAdLTWgIR0Bh/OITGo73dX2UKGgGR8BM3Msg+yJLaAdLfmgIR0Bh/ccCHRCydX2UKGgGR8BTN8lHBk7PaAdLe2gIR0Bh/q7K7qY7dX2UKGgGR8BK83HJcPe6aAdLU2gIR0Bh/7pqynk1dX2UKGgGR8BXBlF+d9UkaAdLbGgIR0BiAP7DVH4HdX2UKGgGR8BWqkeyRjjJaAdLc2gIR0BiAgTmGM4tdX2UKGgGR8BXa7XDm8ujaAdLX2gIR0BiApf4REncdX2UKGgGR7/2v0AcT8HfaAdLmmgIR0BiBNdcB2fTdX2UKGgGR8BGWgi/wiJPaAdLemgIR0BiBNjNIK+jdX2UKGgGR8BYlhSpBHCoaAdLbmgIR0BiCAA4n4O+dX2UKGgGR8BQVKwyIpH7aAdLYGgIR0BiCIGIKtxNdX2UKGgGR8Bkbej0th/iaAdLZWgIR0BiCqJuVHFxdX2UKGgGR8BMpx5LRKHxaAdLkmgIR0BiCoTXarWAdX2UKGgGR8BBgtBOYYzjaAdLVmgIR0BiC2N1hb4bdX2UKGgGR8BKhYwqRU3oaAdLkGgIR0BiDMa86FM7dX2UKGgGR8BK6Tq0MPSVaAdLX2gIR0BiD7aTOgQIdX2UKGgGR8BRDf6oESuhaAdLe2gIR0BiEABRyfcvdX2UKGgGR8BWzakqMFUyaAdLemgIR0BiEFmlImPYdX2UKGgGR8BJAgRsdkrgaAdLXmgIR0BiEX+wTufFdX2UKGgGR8BU7j7EYO2BaAdLgmgIR0BiE1Jrcj7idX2UKGgGR8BLXowmE5AAaAdLfGgIR0BiFrjcVQANdX2UKGgGR8A3lF36hxo7aAdLX2gIR0BiF+KoAGSqdX2UKGgGR8BNuM7U5MlDaAdLkmgIR0BiGQ9mpVCHdX2UKGgGR8BXG9adMCcPaAdLc2gIR0BiGvSYw7DEdX2UKGgGR8BVtj6SDAaeaAdLWWgIR0BiG6i22G7BdX2UKGgGR8Bdb/dM0xdqaAdLkmgIR0BiHP6GgzxgdX2UKGgGR8BqCPq5byH3aAdLwWgIR0BiH1itq59WdX2UKGgGR8BAWjopx3mnaAdLoWgIR0BiH76rNnoQdX2UKGgGR8BUCNGViWmhaAdLf2gIR0BiICUA1ejVdX2UKGgGR8A2nO4oZydXaAdLgGgIR0BiIS1/lQuVdX2UKGgGR8BaWNLcsUZfaAdLmWgIR0BiJG3lS0jUdX2UKGgGR8BGwUhmoR7JaAdLTmgIR0BiJy2rn1WbdX2UKGgGR8A4VV5KODJ2aAdLhWgIR0BiJ2Ur08NhdX2UKGgGR8BMGDeTFERbaAdLg2gIR0BiKEzTF2mpdX2UKGgGR8BXybsjVx0daAdLfWgIR0BiKU6tDD0ldX2UKGgGR8BgsuBz3h4uaAdLn2gIR0BiKxjhDPWydX2UKGgGR8BIvv1L8JlbaAdLcmgIR0BiLDFId2gWdX2UKGgGR8BMdlbNbC79aAdLXmgIR0BiLY1DSgGsdX2UKGgGR8Bc0WPkq+ajaAdLbmgIR0BiLm4RVZLadX2UKGgGR8BIgYZl4C6paAdLUmgIR0BiLhylvZRLdX2UKGgGR8BYhgFC9h7WaAdLs2gIR0BiLt70Fr2ydX2UKGgGR8BVAuRcNYr8aAdLXmgIR0BiL6xcE/0NdX2UKGgGR8BcUGCNCJGfaAdLdWgIR0BiMBntfG+9dX2UKGgGR8A0voUBXCCSaAdLm2gIR0BiMdOdoWYXdX2UKGgGR8BLRktVaOghaAdLRGgIR0BiMmixmkFfdX2UKGgGR8Bobt4LThHcaAdLbGgIR0BiM2cFyJbddX2UKGgGR8A+xiwB5ooNaAdLTWgIR0BiNMPz4DcNdX2UKGgGR8BT5XRG+bmVaAdLTGgIR0BiNYu7HyVfdX2UKGgGR8BTsAI2OyVwaAdLhGgIR0BiNfyZrpJPdX2UKGgGR8BSZZDu0CzUaAdLSGgIR0BiN2cQRPGidX2UKGgGR8BXGB1oxpL3aAdLf2gIR0BiOTZQHiWFdX2UKGgGR8Baa3juKGcnaAdLcWgIR0BiOTYXfqHHdX2UKGgGR8BVVlENOM2naAdLTGgIR0BiOeMbWEsbdX2UKGgGR8A9Pjvuw5eaaAdLWGgIR0BiOtkQPI4mdX2UKGgGR8BRY2PtD2J0aAdLXmgIR0BiPOycCo0idX2UKGgGR8BQktKh+OOsaAdLVWgIR0BiPpOSGJvYdX2UKGgGR8BMIpJf6XSjaAdLVGgIR0BiPxV0cOsldX2UKGgGR8A7DlXA/LTyaAdLj2gIR0BiQXKOktVadX2UKGgGR8BRf8zyjHn2aAdLe2gIR0BiQodCE6DHdX2UKGgGR8BLoU2tMfzSaAdLSGgIR0BiQpqmCROldX2UKGgGR8Bbyk2pAD7qaAdLZmgIR0BiQwyM1jy4dX2UKGgGR8Az4ro4dZJTaAdLVWgIR0BiQyYRdyDJdX2UKGgGR8BRRdGd7OVxaAdLcGgIR0BiRmSfUWl/dX2UKGgGR8BW2iQ9zOopaAdLnmgIR0BiRtFQVKwqdX2UKGgGR8BBzAyEcsDoaAdLmWgIR0BiSA7ihnJ1dX2UKGgGR8BWmt4mkWRBaAdLXWgIR0BiSEkyDZlGdX2UKGgGR8BHTgUUO/cnaAdLXGgIR0BiSNZTyauwdX2UKGgGR8BPYLzf779AaAdLgGgIR0BiSbSPU8V6dX2UKGgGR8BTEflyR0U5aAdLTmgIR0BiSyOFQEZBdX2UKGgGR8BLHV4HHFP0aAdLQ2gIR0BiTfGwRoRJdX2UKGgGR8BlcbwH7gsLaAdLiGgIR0BiTxAQg9vCdX2UKGgGR8BKxkKu0TlDaAdLe2gIR0BiUl8w5/9YdX2UKGgGR8BgxwcLjPv8aAdLimgIR0BiUrbg0j1PdX2UKGgGR8BMr5rHlwLmaAdLdWgIR0BiVDl1bJOndX2UKGgGR8BAWrj5sTFmaAdLdWgIR0BiWlUEPlMidX2UKGgGR8BdpVGoaUA1aAdLemgIR0BiWrPjXFtLdX2UKGgGR8BOe4XO4XoDaAdLWmgIR0BiW9dRiw0PdX2UKGgGR8BR9MCxNZeSaAdLi2gIR0BiXs/IKc/ddX2UKGgGR8BVi0cCHRCyaAdLeWgIR0BiX9q8DjiodX2UKGgGR8BTNmepXIU8aAdLdmgIR0BiX9yLhrFgdX2UKGgGR8BWmOy3Td+HaAdLZmgIR0BiYFfVqesgdX2UKGgGR0BB/jCxeLNwaAdLdGgIR0BiYcrZrYXgdX2UKGgGR8BQzPixVyWBaAdLomgIR0BiYv4TK1XvdX2UKGgGR8BJimBvrGBGaAdLfGgIR0BiY1ARkEs8dX2UKGgGR8BQsoi9qUNbaAdLR2gIR0BiZA35vcagdX2UKGgGR8BURmHk92X+aAdLVmgIR0BiZKsCDEm6dX2UKGgGR8A0zTWXkYGdaAdLc2gIR0BialhE0BOpdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 40,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c93b9b02a8f5a150a85470785a16bfcef596b9fce2901fa63c684bf275b36020
3
+ size 87978
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8369941d80a5072af4db78cea6a7ce5f63ccb246a39252e266a58aeac7d5f9be
3
+ size 43634
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.0+cu121
5
+ - GPU Enabled: False
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (106 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -560.5980391, "std_reward": 312.71498160933317, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-29T23:22:29.473213"}