JBZhang2342
commited on
Commit
•
d015c78
1
Parent(s):
a52f576
Model save
Browse files- README.md +328 -172
- model.safetensors +1 -1
README.md
CHANGED
@@ -1,26 +1,22 @@
|
|
1 |
---
|
2 |
-
language:
|
3 |
-
- en
|
4 |
-
license: mit
|
5 |
base_model: microsoft/speecht5_tts
|
6 |
tags:
|
7 |
-
- en_accent,mozilla,t5,common_voice_1_0
|
8 |
- generated_from_trainer
|
9 |
datasets:
|
10 |
-
-
|
11 |
model-index:
|
12 |
-
- name:
|
13 |
results: []
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
should probably proofread and complete it, then remove this comment. -->
|
18 |
|
19 |
-
#
|
20 |
|
21 |
-
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
|
25 |
## Model description
|
26 |
|
@@ -46,173 +42,333 @@ The following hyperparameters were used during training:
|
|
46 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
- lr_scheduler_type: linear
|
48 |
- lr_scheduler_warmup_steps: 500
|
49 |
-
- training_steps:
|
50 |
- mixed_precision_training: Native AMP
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
-
| Training Loss | Epoch
|
55 |
-
|
56 |
-
| No log |
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
118 |
-
| 0.
|
119 |
-
| 0.
|
120 |
-
| 0.
|
121 |
-
| 0.
|
122 |
-
| 0.
|
123 |
-
| 0.
|
124 |
-
| 0.
|
125 |
-
| 0.
|
126 |
-
| 0.
|
127 |
-
| 0.
|
128 |
-
| 0.
|
129 |
-
| 0.
|
130 |
-
| 0.
|
131 |
-
| 0.
|
132 |
-
| 0.
|
133 |
-
| 0.
|
134 |
-
| 0.
|
135 |
-
| 0.
|
136 |
-
| 0.
|
137 |
-
| 0.
|
138 |
-
| 0.
|
139 |
-
| 0.
|
140 |
-
| 0.
|
141 |
-
| 0.
|
142 |
-
| 0.
|
143 |
-
| 0.
|
144 |
-
| 0.
|
145 |
-
| 0.
|
146 |
-
| 0.
|
147 |
-
| 0.
|
148 |
-
| 0.
|
149 |
-
| 0.
|
150 |
-
| 0.
|
151 |
-
| 0.
|
152 |
-
| 0.
|
153 |
-
| 0.
|
154 |
-
| 0.
|
155 |
-
| 0.
|
156 |
-
| 0.
|
157 |
-
| 0.
|
158 |
-
| 0.
|
159 |
-
| 0.
|
160 |
-
| 0.
|
161 |
-
| 0.
|
162 |
-
| 0.
|
163 |
-
| 0.
|
164 |
-
| 0.
|
165 |
-
| 0.
|
166 |
-
| 0.
|
167 |
-
| 0.
|
168 |
-
| 0.
|
169 |
-
| 0.
|
170 |
-
| 0.
|
171 |
-
| 0.
|
172 |
-
| 0.
|
173 |
-
| 0.
|
174 |
-
| 0.
|
175 |
-
| 0.
|
176 |
-
| 0.
|
177 |
-
| 0.
|
178 |
-
| 0.
|
179 |
-
| 0.
|
180 |
-
| 0.
|
181 |
-
| 0.
|
182 |
-
| 0.
|
183 |
-
| 0.
|
184 |
-
| 0.
|
185 |
-
| 0.
|
186 |
-
| 0.
|
187 |
-
| 0.
|
188 |
-
| 0.
|
189 |
-
| 0.
|
190 |
-
| 0.
|
191 |
-
| 0.
|
192 |
-
| 0.
|
193 |
-
| 0.
|
194 |
-
| 0.
|
195 |
-
| 0.
|
196 |
-
| 0.
|
197 |
-
| 0.
|
198 |
-
| 0.
|
199 |
-
| 0.
|
200 |
-
| 0.
|
201 |
-
| 0.
|
202 |
-
| 0.
|
203 |
-
| 0.
|
204 |
-
| 0.
|
205 |
-
| 0.
|
206 |
-
| 0.
|
207 |
-
| 0.
|
208 |
-
| 0.
|
209 |
-
| 0.
|
210 |
-
| 0.
|
211 |
-
| 0.
|
212 |
-
| 0.
|
213 |
-
| 0.
|
214 |
-
| 0.
|
215 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
|
218 |
### Framework versions
|
|
|
1 |
---
|
|
|
|
|
|
|
2 |
base_model: microsoft/speecht5_tts
|
3 |
tags:
|
|
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
6 |
+
- common_voice_13_0
|
7 |
model-index:
|
8 |
+
- name: speecht5_tts
|
9 |
results: []
|
10 |
---
|
11 |
|
12 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
should probably proofread and complete it, then remove this comment. -->
|
14 |
|
15 |
+
# speecht5_tts
|
16 |
|
17 |
+
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the common_voice_13_0 dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.5888
|
20 |
|
21 |
## Model description
|
22 |
|
|
|
42 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
- lr_scheduler_type: linear
|
44 |
- lr_scheduler_warmup_steps: 500
|
45 |
+
- training_steps: 80000
|
46 |
- mixed_precision_training: Native AMP
|
47 |
|
48 |
### Training results
|
49 |
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
51 |
+
|:-------------:|:------:|:-----:|:---------------:|
|
52 |
+
| No log | 1.25 | 250 | 0.6821 |
|
53 |
+
| 0.8074 | 2.5 | 500 | 0.5618 |
|
54 |
+
| 0.8074 | 3.75 | 750 | 0.5362 |
|
55 |
+
| 0.5957 | 5.0 | 1000 | 0.5279 |
|
56 |
+
| 0.5957 | 6.25 | 1250 | 0.5183 |
|
57 |
+
| 0.567 | 7.5 | 1500 | 0.5216 |
|
58 |
+
| 0.567 | 8.75 | 1750 | 0.5096 |
|
59 |
+
| 0.5507 | 10.0 | 2000 | 0.5097 |
|
60 |
+
| 0.5507 | 11.25 | 2250 | 0.5111 |
|
61 |
+
| 0.5396 | 12.5 | 2500 | 0.5090 |
|
62 |
+
| 0.5396 | 13.75 | 2750 | 0.5072 |
|
63 |
+
| 0.5348 | 15.0 | 3000 | 0.5099 |
|
64 |
+
| 0.5348 | 16.25 | 3250 | 0.5098 |
|
65 |
+
| 0.5269 | 17.5 | 3500 | 0.5094 |
|
66 |
+
| 0.5269 | 18.75 | 3750 | 0.5081 |
|
67 |
+
| 0.5209 | 20.0 | 4000 | 0.5088 |
|
68 |
+
| 0.5209 | 21.25 | 4250 | 0.5100 |
|
69 |
+
| 0.5176 | 22.5 | 4500 | 0.5084 |
|
70 |
+
| 0.5176 | 23.75 | 4750 | 0.5107 |
|
71 |
+
| 0.5129 | 25.0 | 5000 | 0.5131 |
|
72 |
+
| 0.5129 | 26.25 | 5250 | 0.5205 |
|
73 |
+
| 0.5081 | 27.5 | 5500 | 0.5174 |
|
74 |
+
| 0.5081 | 28.75 | 5750 | 0.5131 |
|
75 |
+
| 0.5033 | 30.0 | 6000 | 0.5127 |
|
76 |
+
| 0.5033 | 31.25 | 6250 | 0.5272 |
|
77 |
+
| 0.505 | 32.5 | 6500 | 0.5208 |
|
78 |
+
| 0.505 | 33.75 | 6750 | 0.5263 |
|
79 |
+
| 0.4933 | 35.0 | 7000 | 0.5257 |
|
80 |
+
| 0.4933 | 36.25 | 7250 | 0.5270 |
|
81 |
+
| 0.4929 | 37.5 | 7500 | 0.5240 |
|
82 |
+
| 0.4929 | 38.75 | 7750 | 0.5272 |
|
83 |
+
| 0.4942 | 40.0 | 8000 | 0.5266 |
|
84 |
+
| 0.4942 | 41.25 | 8250 | 0.5364 |
|
85 |
+
| 0.4883 | 42.5 | 8500 | 0.5339 |
|
86 |
+
| 0.4883 | 43.75 | 8750 | 0.5313 |
|
87 |
+
| 0.4874 | 45.0 | 9000 | 0.5335 |
|
88 |
+
| 0.4874 | 46.25 | 9250 | 0.5300 |
|
89 |
+
| 0.4849 | 47.5 | 9500 | 0.5357 |
|
90 |
+
| 0.4849 | 48.75 | 9750 | 0.5361 |
|
91 |
+
| 0.483 | 50.0 | 10000 | 0.5306 |
|
92 |
+
| 0.483 | 51.25 | 10250 | 0.5330 |
|
93 |
+
| 0.4812 | 52.5 | 10500 | 0.5234 |
|
94 |
+
| 0.4812 | 53.75 | 10750 | 0.5248 |
|
95 |
+
| 0.484 | 55.0 | 11000 | 0.5364 |
|
96 |
+
| 0.484 | 56.25 | 11250 | 0.5381 |
|
97 |
+
| 0.4786 | 57.5 | 11500 | 0.5340 |
|
98 |
+
| 0.4786 | 58.75 | 11750 | 0.5385 |
|
99 |
+
| 0.4794 | 60.0 | 12000 | 0.5365 |
|
100 |
+
| 0.4794 | 61.25 | 12250 | 0.5411 |
|
101 |
+
| 0.4719 | 62.5 | 12500 | 0.5358 |
|
102 |
+
| 0.4719 | 63.75 | 12750 | 0.5377 |
|
103 |
+
| 0.479 | 65.0 | 13000 | 0.5378 |
|
104 |
+
| 0.479 | 66.25 | 13250 | 0.5426 |
|
105 |
+
| 0.474 | 67.5 | 13500 | 0.5370 |
|
106 |
+
| 0.474 | 68.75 | 13750 | 0.5402 |
|
107 |
+
| 0.473 | 70.0 | 14000 | 0.5400 |
|
108 |
+
| 0.473 | 71.25 | 14250 | 0.5453 |
|
109 |
+
| 0.4717 | 72.5 | 14500 | 0.5453 |
|
110 |
+
| 0.4717 | 73.75 | 14750 | 0.5419 |
|
111 |
+
| 0.4663 | 75.0 | 15000 | 0.5407 |
|
112 |
+
| 0.4663 | 76.25 | 15250 | 0.5427 |
|
113 |
+
| 0.4631 | 77.5 | 15500 | 0.5408 |
|
114 |
+
| 0.4631 | 78.75 | 15750 | 0.5408 |
|
115 |
+
| 0.4665 | 80.0 | 16000 | 0.5400 |
|
116 |
+
| 0.4665 | 81.25 | 16250 | 0.5486 |
|
117 |
+
| 0.4658 | 82.5 | 16500 | 0.5429 |
|
118 |
+
| 0.4658 | 83.75 | 16750 | 0.5395 |
|
119 |
+
| 0.4657 | 85.0 | 17000 | 0.5361 |
|
120 |
+
| 0.4657 | 86.25 | 17250 | 0.5415 |
|
121 |
+
| 0.4647 | 87.5 | 17500 | 0.5464 |
|
122 |
+
| 0.4647 | 88.75 | 17750 | 0.5428 |
|
123 |
+
| 0.4646 | 90.0 | 18000 | 0.5412 |
|
124 |
+
| 0.4646 | 91.25 | 18250 | 0.5478 |
|
125 |
+
| 0.4649 | 92.5 | 18500 | 0.5479 |
|
126 |
+
| 0.4649 | 93.75 | 18750 | 0.5463 |
|
127 |
+
| 0.4622 | 95.0 | 19000 | 0.5447 |
|
128 |
+
| 0.4622 | 96.25 | 19250 | 0.5440 |
|
129 |
+
| 0.4598 | 97.5 | 19500 | 0.5524 |
|
130 |
+
| 0.4598 | 98.75 | 19750 | 0.5518 |
|
131 |
+
| 0.461 | 100.0 | 20000 | 0.5470 |
|
132 |
+
| 0.461 | 101.25 | 20250 | 0.5507 |
|
133 |
+
| 0.4608 | 102.5 | 20500 | 0.5486 |
|
134 |
+
| 0.4608 | 103.75 | 20750 | 0.5481 |
|
135 |
+
| 0.4565 | 105.0 | 21000 | 0.5509 |
|
136 |
+
| 0.4565 | 106.25 | 21250 | 0.5532 |
|
137 |
+
| 0.4561 | 107.5 | 21500 | 0.5488 |
|
138 |
+
| 0.4561 | 108.75 | 21750 | 0.5448 |
|
139 |
+
| 0.4577 | 110.0 | 22000 | 0.5492 |
|
140 |
+
| 0.4577 | 111.25 | 22250 | 0.5539 |
|
141 |
+
| 0.4545 | 112.5 | 22500 | 0.5497 |
|
142 |
+
| 0.4545 | 113.75 | 22750 | 0.5536 |
|
143 |
+
| 0.4548 | 115.0 | 23000 | 0.5497 |
|
144 |
+
| 0.4548 | 116.25 | 23250 | 0.5520 |
|
145 |
+
| 0.4555 | 117.5 | 23500 | 0.5445 |
|
146 |
+
| 0.4555 | 118.75 | 23750 | 0.5518 |
|
147 |
+
| 0.456 | 120.0 | 24000 | 0.5520 |
|
148 |
+
| 0.456 | 121.25 | 24250 | 0.5512 |
|
149 |
+
| 0.4526 | 122.5 | 24500 | 0.5516 |
|
150 |
+
| 0.4526 | 123.75 | 24750 | 0.5534 |
|
151 |
+
| 0.4528 | 125.0 | 25000 | 0.5524 |
|
152 |
+
| 0.4528 | 126.25 | 25250 | 0.5512 |
|
153 |
+
| 0.4506 | 127.5 | 25500 | 0.5530 |
|
154 |
+
| 0.4506 | 128.75 | 25750 | 0.5534 |
|
155 |
+
| 0.4512 | 130.0 | 26000 | 0.5528 |
|
156 |
+
| 0.4512 | 131.25 | 26250 | 0.5524 |
|
157 |
+
| 0.4504 | 132.5 | 26500 | 0.5569 |
|
158 |
+
| 0.4504 | 133.75 | 26750 | 0.5489 |
|
159 |
+
| 0.4472 | 135.0 | 27000 | 0.5530 |
|
160 |
+
| 0.4472 | 136.25 | 27250 | 0.5571 |
|
161 |
+
| 0.447 | 137.5 | 27500 | 0.5566 |
|
162 |
+
| 0.447 | 138.75 | 27750 | 0.5562 |
|
163 |
+
| 0.4465 | 140.0 | 28000 | 0.5546 |
|
164 |
+
| 0.4465 | 141.25 | 28250 | 0.5579 |
|
165 |
+
| 0.4455 | 142.5 | 28500 | 0.5557 |
|
166 |
+
| 0.4455 | 143.75 | 28750 | 0.5533 |
|
167 |
+
| 0.4487 | 145.0 | 29000 | 0.5528 |
|
168 |
+
| 0.4487 | 146.25 | 29250 | 0.5576 |
|
169 |
+
| 0.445 | 147.5 | 29500 | 0.5574 |
|
170 |
+
| 0.445 | 148.75 | 29750 | 0.5593 |
|
171 |
+
| 0.4455 | 150.0 | 30000 | 0.5579 |
|
172 |
+
| 0.4455 | 151.25 | 30250 | 0.5539 |
|
173 |
+
| 0.4467 | 152.5 | 30500 | 0.5551 |
|
174 |
+
| 0.4467 | 153.75 | 30750 | 0.5654 |
|
175 |
+
| 0.4448 | 155.0 | 31000 | 0.5555 |
|
176 |
+
| 0.4448 | 156.25 | 31250 | 0.5602 |
|
177 |
+
| 0.4438 | 157.5 | 31500 | 0.5595 |
|
178 |
+
| 0.4438 | 158.75 | 31750 | 0.5575 |
|
179 |
+
| 0.4426 | 160.0 | 32000 | 0.5592 |
|
180 |
+
| 0.4426 | 161.25 | 32250 | 0.5618 |
|
181 |
+
| 0.4451 | 162.5 | 32500 | 0.5628 |
|
182 |
+
| 0.4451 | 163.75 | 32750 | 0.5623 |
|
183 |
+
| 0.4406 | 165.0 | 33000 | 0.5583 |
|
184 |
+
| 0.4406 | 166.25 | 33250 | 0.5575 |
|
185 |
+
| 0.443 | 167.5 | 33500 | 0.5580 |
|
186 |
+
| 0.443 | 168.75 | 33750 | 0.5606 |
|
187 |
+
| 0.4423 | 170.0 | 34000 | 0.5575 |
|
188 |
+
| 0.4423 | 171.25 | 34250 | 0.5616 |
|
189 |
+
| 0.4379 | 172.5 | 34500 | 0.5660 |
|
190 |
+
| 0.4379 | 173.75 | 34750 | 0.5600 |
|
191 |
+
| 0.4424 | 175.0 | 35000 | 0.5624 |
|
192 |
+
| 0.4424 | 176.25 | 35250 | 0.5656 |
|
193 |
+
| 0.4414 | 177.5 | 35500 | 0.5653 |
|
194 |
+
| 0.4414 | 178.75 | 35750 | 0.5645 |
|
195 |
+
| 0.4401 | 180.0 | 36000 | 0.5608 |
|
196 |
+
| 0.4401 | 181.25 | 36250 | 0.5639 |
|
197 |
+
| 0.4374 | 182.5 | 36500 | 0.5659 |
|
198 |
+
| 0.4374 | 183.75 | 36750 | 0.5655 |
|
199 |
+
| 0.443 | 185.0 | 37000 | 0.5660 |
|
200 |
+
| 0.443 | 186.25 | 37250 | 0.5664 |
|
201 |
+
| 0.4406 | 187.5 | 37500 | 0.5676 |
|
202 |
+
| 0.4406 | 188.75 | 37750 | 0.5631 |
|
203 |
+
| 0.4372 | 190.0 | 38000 | 0.5640 |
|
204 |
+
| 0.4372 | 191.25 | 38250 | 0.5661 |
|
205 |
+
| 0.4403 | 192.5 | 38500 | 0.5656 |
|
206 |
+
| 0.4403 | 193.75 | 38750 | 0.5696 |
|
207 |
+
| 0.4339 | 195.0 | 39000 | 0.5651 |
|
208 |
+
| 0.4339 | 196.25 | 39250 | 0.5642 |
|
209 |
+
| 0.4403 | 197.5 | 39500 | 0.5661 |
|
210 |
+
| 0.4403 | 198.75 | 39750 | 0.5659 |
|
211 |
+
| 0.4359 | 200.0 | 40000 | 0.5656 |
|
212 |
+
| 0.4359 | 201.25 | 40250 | 0.5692 |
|
213 |
+
| 0.4373 | 202.5 | 40500 | 0.5646 |
|
214 |
+
| 0.4373 | 203.75 | 40750 | 0.5695 |
|
215 |
+
| 0.4362 | 205.0 | 41000 | 0.5658 |
|
216 |
+
| 0.4362 | 206.25 | 41250 | 0.5696 |
|
217 |
+
| 0.4354 | 207.5 | 41500 | 0.5665 |
|
218 |
+
| 0.4354 | 208.75 | 41750 | 0.5684 |
|
219 |
+
| 0.4359 | 210.0 | 42000 | 0.5672 |
|
220 |
+
| 0.4359 | 211.25 | 42250 | 0.5665 |
|
221 |
+
| 0.4334 | 212.5 | 42500 | 0.5690 |
|
222 |
+
| 0.4334 | 213.75 | 42750 | 0.5645 |
|
223 |
+
| 0.436 | 215.0 | 43000 | 0.5704 |
|
224 |
+
| 0.436 | 216.25 | 43250 | 0.5696 |
|
225 |
+
| 0.4373 | 217.5 | 43500 | 0.5689 |
|
226 |
+
| 0.4373 | 218.75 | 43750 | 0.5698 |
|
227 |
+
| 0.4353 | 220.0 | 44000 | 0.5706 |
|
228 |
+
| 0.4353 | 221.25 | 44250 | 0.5679 |
|
229 |
+
| 0.4344 | 222.5 | 44500 | 0.5676 |
|
230 |
+
| 0.4344 | 223.75 | 44750 | 0.5709 |
|
231 |
+
| 0.4357 | 225.0 | 45000 | 0.5717 |
|
232 |
+
| 0.4357 | 226.25 | 45250 | 0.5646 |
|
233 |
+
| 0.4319 | 227.5 | 45500 | 0.5676 |
|
234 |
+
| 0.4319 | 228.75 | 45750 | 0.5709 |
|
235 |
+
| 0.4333 | 230.0 | 46000 | 0.5746 |
|
236 |
+
| 0.4333 | 231.25 | 46250 | 0.5734 |
|
237 |
+
| 0.4322 | 232.5 | 46500 | 0.5732 |
|
238 |
+
| 0.4322 | 233.75 | 46750 | 0.5726 |
|
239 |
+
| 0.4299 | 235.0 | 47000 | 0.5659 |
|
240 |
+
| 0.4299 | 236.25 | 47250 | 0.5723 |
|
241 |
+
| 0.4308 | 237.5 | 47500 | 0.5709 |
|
242 |
+
| 0.4308 | 238.75 | 47750 | 0.5735 |
|
243 |
+
| 0.4323 | 240.0 | 48000 | 0.5688 |
|
244 |
+
| 0.4323 | 241.25 | 48250 | 0.5724 |
|
245 |
+
| 0.4348 | 242.5 | 48500 | 0.5740 |
|
246 |
+
| 0.4348 | 243.75 | 48750 | 0.5762 |
|
247 |
+
| 0.4292 | 245.0 | 49000 | 0.5706 |
|
248 |
+
| 0.4292 | 246.25 | 49250 | 0.5736 |
|
249 |
+
| 0.4328 | 247.5 | 49500 | 0.5722 |
|
250 |
+
| 0.4328 | 248.75 | 49750 | 0.5760 |
|
251 |
+
| 0.4321 | 250.0 | 50000 | 0.5710 |
|
252 |
+
| 0.4321 | 251.25 | 50250 | 0.5754 |
|
253 |
+
| 0.4275 | 252.5 | 50500 | 0.5721 |
|
254 |
+
| 0.4275 | 253.75 | 50750 | 0.5729 |
|
255 |
+
| 0.4301 | 255.0 | 51000 | 0.5737 |
|
256 |
+
| 0.4301 | 256.25 | 51250 | 0.5731 |
|
257 |
+
| 0.4304 | 257.5 | 51500 | 0.5736 |
|
258 |
+
| 0.4304 | 258.75 | 51750 | 0.5744 |
|
259 |
+
| 0.4298 | 260.0 | 52000 | 0.5787 |
|
260 |
+
| 0.4298 | 261.25 | 52250 | 0.5767 |
|
261 |
+
| 0.4296 | 262.5 | 52500 | 0.5750 |
|
262 |
+
| 0.4296 | 263.75 | 52750 | 0.5739 |
|
263 |
+
| 0.4308 | 265.0 | 53000 | 0.5754 |
|
264 |
+
| 0.4308 | 266.25 | 53250 | 0.5726 |
|
265 |
+
| 0.4299 | 267.5 | 53500 | 0.5770 |
|
266 |
+
| 0.4299 | 268.75 | 53750 | 0.5775 |
|
267 |
+
| 0.4282 | 270.0 | 54000 | 0.5777 |
|
268 |
+
| 0.4282 | 271.25 | 54250 | 0.5800 |
|
269 |
+
| 0.4273 | 272.5 | 54500 | 0.5789 |
|
270 |
+
| 0.4273 | 273.75 | 54750 | 0.5787 |
|
271 |
+
| 0.4284 | 275.0 | 55000 | 0.5757 |
|
272 |
+
| 0.4284 | 276.25 | 55250 | 0.5755 |
|
273 |
+
| 0.4267 | 277.5 | 55500 | 0.5777 |
|
274 |
+
| 0.4267 | 278.75 | 55750 | 0.5764 |
|
275 |
+
| 0.4241 | 280.0 | 56000 | 0.5764 |
|
276 |
+
| 0.4241 | 281.25 | 56250 | 0.5772 |
|
277 |
+
| 0.43 | 282.5 | 56500 | 0.5782 |
|
278 |
+
| 0.43 | 283.75 | 56750 | 0.5777 |
|
279 |
+
| 0.4273 | 285.0 | 57000 | 0.5787 |
|
280 |
+
| 0.4273 | 286.25 | 57250 | 0.5789 |
|
281 |
+
| 0.4261 | 287.5 | 57500 | 0.5769 |
|
282 |
+
| 0.4261 | 288.75 | 57750 | 0.5766 |
|
283 |
+
| 0.4244 | 290.0 | 58000 | 0.5792 |
|
284 |
+
| 0.4244 | 291.25 | 58250 | 0.5788 |
|
285 |
+
| 0.4237 | 292.5 | 58500 | 0.5770 |
|
286 |
+
| 0.4237 | 293.75 | 58750 | 0.5804 |
|
287 |
+
| 0.427 | 295.0 | 59000 | 0.5775 |
|
288 |
+
| 0.427 | 296.25 | 59250 | 0.5818 |
|
289 |
+
| 0.4259 | 297.5 | 59500 | 0.5808 |
|
290 |
+
| 0.4259 | 298.75 | 59750 | 0.5776 |
|
291 |
+
| 0.4248 | 300.0 | 60000 | 0.5789 |
|
292 |
+
| 0.4248 | 301.25 | 60250 | 0.5793 |
|
293 |
+
| 0.4269 | 302.5 | 60500 | 0.5762 |
|
294 |
+
| 0.4269 | 303.75 | 60750 | 0.5829 |
|
295 |
+
| 0.428 | 305.0 | 61000 | 0.5820 |
|
296 |
+
| 0.428 | 306.25 | 61250 | 0.5823 |
|
297 |
+
| 0.4246 | 307.5 | 61500 | 0.5848 |
|
298 |
+
| 0.4246 | 308.75 | 61750 | 0.5784 |
|
299 |
+
| 0.4273 | 310.0 | 62000 | 0.5791 |
|
300 |
+
| 0.4273 | 311.25 | 62250 | 0.5798 |
|
301 |
+
| 0.4261 | 312.5 | 62500 | 0.5791 |
|
302 |
+
| 0.4261 | 313.75 | 62750 | 0.5805 |
|
303 |
+
| 0.4275 | 315.0 | 63000 | 0.5812 |
|
304 |
+
| 0.4275 | 316.25 | 63250 | 0.5821 |
|
305 |
+
| 0.4261 | 317.5 | 63500 | 0.5820 |
|
306 |
+
| 0.4261 | 318.75 | 63750 | 0.5751 |
|
307 |
+
| 0.4254 | 320.0 | 64000 | 0.5800 |
|
308 |
+
| 0.4254 | 321.25 | 64250 | 0.5816 |
|
309 |
+
| 0.4226 | 322.5 | 64500 | 0.5824 |
|
310 |
+
| 0.4226 | 323.75 | 64750 | 0.5812 |
|
311 |
+
| 0.4263 | 325.0 | 65000 | 0.5841 |
|
312 |
+
| 0.4263 | 326.25 | 65250 | 0.5820 |
|
313 |
+
| 0.4198 | 327.5 | 65500 | 0.5875 |
|
314 |
+
| 0.4198 | 328.75 | 65750 | 0.5855 |
|
315 |
+
| 0.4232 | 330.0 | 66000 | 0.5834 |
|
316 |
+
| 0.4232 | 331.25 | 66250 | 0.5834 |
|
317 |
+
| 0.4252 | 332.5 | 66500 | 0.5839 |
|
318 |
+
| 0.4252 | 333.75 | 66750 | 0.5843 |
|
319 |
+
| 0.4231 | 335.0 | 67000 | 0.5858 |
|
320 |
+
| 0.4231 | 336.25 | 67250 | 0.5847 |
|
321 |
+
| 0.4234 | 337.5 | 67500 | 0.5863 |
|
322 |
+
| 0.4234 | 338.75 | 67750 | 0.5803 |
|
323 |
+
| 0.4251 | 340.0 | 68000 | 0.5842 |
|
324 |
+
| 0.4251 | 341.25 | 68250 | 0.5858 |
|
325 |
+
| 0.4244 | 342.5 | 68500 | 0.5835 |
|
326 |
+
| 0.4244 | 343.75 | 68750 | 0.5830 |
|
327 |
+
| 0.4226 | 345.0 | 69000 | 0.5834 |
|
328 |
+
| 0.4226 | 346.25 | 69250 | 0.5843 |
|
329 |
+
| 0.4221 | 347.5 | 69500 | 0.5864 |
|
330 |
+
| 0.4221 | 348.75 | 69750 | 0.5869 |
|
331 |
+
| 0.4236 | 350.0 | 70000 | 0.5847 |
|
332 |
+
| 0.4236 | 351.25 | 70250 | 0.5860 |
|
333 |
+
| 0.4262 | 352.5 | 70500 | 0.5856 |
|
334 |
+
| 0.4262 | 353.75 | 70750 | 0.5851 |
|
335 |
+
| 0.4213 | 355.0 | 71000 | 0.5869 |
|
336 |
+
| 0.4213 | 356.25 | 71250 | 0.5868 |
|
337 |
+
| 0.4235 | 357.5 | 71500 | 0.5883 |
|
338 |
+
| 0.4235 | 358.75 | 71750 | 0.5890 |
|
339 |
+
| 0.4242 | 360.0 | 72000 | 0.5869 |
|
340 |
+
| 0.4242 | 361.25 | 72250 | 0.5881 |
|
341 |
+
| 0.4221 | 362.5 | 72500 | 0.5874 |
|
342 |
+
| 0.4221 | 363.75 | 72750 | 0.5889 |
|
343 |
+
| 0.4209 | 365.0 | 73000 | 0.5890 |
|
344 |
+
| 0.4209 | 366.25 | 73250 | 0.5870 |
|
345 |
+
| 0.4189 | 367.5 | 73500 | 0.5897 |
|
346 |
+
| 0.4189 | 368.75 | 73750 | 0.5901 |
|
347 |
+
| 0.4252 | 370.0 | 74000 | 0.5885 |
|
348 |
+
| 0.4252 | 371.25 | 74250 | 0.5885 |
|
349 |
+
| 0.4226 | 372.5 | 74500 | 0.5901 |
|
350 |
+
| 0.4226 | 373.75 | 74750 | 0.5886 |
|
351 |
+
| 0.4219 | 375.0 | 75000 | 0.5872 |
|
352 |
+
| 0.4219 | 376.25 | 75250 | 0.5876 |
|
353 |
+
| 0.4196 | 377.5 | 75500 | 0.5894 |
|
354 |
+
| 0.4196 | 378.75 | 75750 | 0.5866 |
|
355 |
+
| 0.4212 | 380.0 | 76000 | 0.5899 |
|
356 |
+
| 0.4212 | 381.25 | 76250 | 0.5871 |
|
357 |
+
| 0.4207 | 382.5 | 76500 | 0.5894 |
|
358 |
+
| 0.4207 | 383.75 | 76750 | 0.5880 |
|
359 |
+
| 0.423 | 385.0 | 77000 | 0.5864 |
|
360 |
+
| 0.423 | 386.25 | 77250 | 0.5896 |
|
361 |
+
| 0.4213 | 387.5 | 77500 | 0.5909 |
|
362 |
+
| 0.4213 | 388.75 | 77750 | 0.5886 |
|
363 |
+
| 0.4211 | 390.0 | 78000 | 0.5906 |
|
364 |
+
| 0.4211 | 391.25 | 78250 | 0.5878 |
|
365 |
+
| 0.4205 | 392.5 | 78500 | 0.5883 |
|
366 |
+
| 0.4205 | 393.75 | 78750 | 0.5874 |
|
367 |
+
| 0.4244 | 395.0 | 79000 | 0.5879 |
|
368 |
+
| 0.4244 | 396.25 | 79250 | 0.5908 |
|
369 |
+
| 0.4211 | 397.5 | 79500 | 0.5893 |
|
370 |
+
| 0.4211 | 398.75 | 79750 | 0.5902 |
|
371 |
+
| 0.4243 | 400.0 | 80000 | 0.5888 |
|
372 |
|
373 |
|
374 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 577789320
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d9667300d3b6d75085780bb6186a1ee5be70ebc64a18068d790bb1ccdd5b4e8
|
3 |
size 577789320
|