|
optim = AdamW(model.parameters(), lr=5e-5, eps=1e-8) #tasa de aprendizaje |
|
# Se inicializa el cargador de datos para los datos de entrenamiento |
|
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True) |
|
|
|
for epoch in range(10): |
|
|
|
{'score': 0.7284889221191406, 'start': 14, 'end': 29, 'answer': 'serology tests,'} |
|
|
|
Precisi贸n del modelo ajustado: 0.8211654387139986 |
|
|
|
Epoch 0: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [00:57<00:00, 1.62it/s, loss=1.87] |
|
Epoch 1: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [00:57<00:00, 1.62it/s, loss=0.211] |
|
Epoch 2: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [00:57<00:00, 1.62it/s, loss=1.95] |
|
Epoch 3: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [00:57<00:00, 1.62it/s, loss=0.0322] |
|
Epoch 4: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [00:57<00:00, 1.62it/s, loss=0.0229] |
|
Epoch 5: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [00:57<00:00, 1.62it/s, loss=0.0271] |
|
Epoch 6: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [00:57<00:00, 1.62it/s, loss=0.59] |
|
Epoch 7: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [00:57<00:00, 1.62it/s, loss=0.0233] |
|
Epoch 8: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [00:57<00:00, 1.62it/s, loss=0.00257] |
|
Epoch 9: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [00:57<00:00, 1.62it/s, loss=0.00663] |
|
|