{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78b2bf72f520>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78b2bf72f5b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78b2bf72f640>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78b2bf72f6d0>", "_build": "<function ActorCriticPolicy._build at 0x78b2bf72f760>", "forward": "<function ActorCriticPolicy.forward at 0x78b2bf72f7f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78b2bf72f880>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78b2bf72f910>", "_predict": "<function ActorCriticPolicy._predict at 0x78b2bf72f9a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78b2bf72fa30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78b2bf72fac0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78b2bf72fb50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78b2bf8d0480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 4014080, "_total_timesteps": 4000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1720174276694111360, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZq9jvDsVa6rjcluCR+HrPXpyS4ZalCNwAAgD8AAIA/oJc8PmwKAz/vRSe+J1cQv+myXT7OCvq9AAAAAAAAAADGsTW+JplmP+TkO71aNQ2/GGtYvuAsnT0AAAAAAAAAAJqHoT1SGva7d10SvqZXvzvGllc9sZytvAAAAAAAAIA/mg9rvBSAiroztHk5nDhoNM2tAToyK5G4AACAPwAAgD8NFaW9OQI8PtujiT5wIsW+DzqqPRAHIj0AAAAAAAAAADM6Cj3DhWe60jXdtrGRp7H9P4K7TLwBNgAAAAAAAAAAk1IDPuLJrD8ryhg/pL3HvlCeIj7PTJs+AAAAAAAAAABmvpe9HweqP+K2w74Uqty+UrABvrN/ar4AAAAAAAAAAABIojvh5J+6UrBLveJ4MbOzLTU6/eZnMwAAgD8AAIA/pnE4vu1j9T7WV5g+a7bovljnV72khDA+AAAAAAAAAADNJkS+e4cfP6ZmcD2Jhey+iPsrvvEPuj0AAAAAAAAAAB3ZrD4fnno/8fypPs/pKL9lNhc/lpFxPQAAAAAAAAAAzXEhvQ2QaD4eKDy7NM/MvqnsD76TcLU7AAAAAAAAAAAzn2e8zHUEPxmZtr38PBO/e6WBvDPUlL0AAAAAAAAAAABQ3LyO1dO8uucKPY+qvTybxIy6ZRROuwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHN5kNBnjACMAWyUS9qMAXSUR0C0wQzynUDudX2UKGgGR0Bu+sNH6MzeaAdLvGgIR0C0wRDK1XvIdX2UKGgGR0Bx+38/D+BIaAdL5WgIR0C0wRC8WbgCdX2UKGgGR0Bwxxx4ptrLaAdL3GgIR0C0wSGgBcRldX2UKGgGR0BwX8m8dxQ0aAdL2mgIR0C0wT3vx6OYdX2UKGgGR0Bzra7PIGQkaAdLwmgIR0C0wUpqdpZfdX2UKGgGR0BxWomplz2faAdLuWgIR0C0wVVCb+cZdX2UKGgGR0BzHjRc/t6YaAdLyGgIR0C0wVuJk5IZdX2UKGgGR0By9GhRIjGDaAdL32gIR0C0wY6FM7EHdX2UKGgGR0By/HR4QjD9aAdL0GgIR0C0wZ2JJoTPdX2UKGgGR0BwoySTyJ9BaAdL1WgIR0C0wazjzZpSdX2UKGgGR0Bz8YaOxSpBaAdLumgIR0C0wcQ2l2vCdX2UKGgGR0Bv7I62fChwaAdLwGgIR0C0wdKVMVUNdX2UKGgGR0Bx2ixA0KqoaAdL2mgIR0C0wdoAn2IwdX2UKGgGR0BzJ6Jj2BataAdL1GgIR0C0wfqhL5ARdX2UKGgGR0BxN3ZBcAzYaAdL1WgIR0C0whCAhB7edX2UKGgGR0ByK8w1zhgmaAdL1mgIR0C0whlBY3efdX2UKGgGR0BxyQJ6Y3NtaAdL2GgIR0C0wht30PH1dX2UKGgGR0B0HK8tf5UMaAdL62gIR0C0wi74zrNXdX2UKGgGR0Bxm+DBdld1aAdL2WgIR0C0wi5r56+ndX2UKGgGR0Bw01t0mtyQaAdLyGgIR0C0wjZzT4L1dX2UKGgGR0BzbzI4lyBDaAdLv2gIR0C0wjY1xbSrdX2UKGgGR0BxrfhP0qYraAdLw2gIR0C0wlCW/rSmdX2UKGgGR0BwsqRigCfZaAdL3mgIR0C0xtU1Q66rdX2UKGgGR0BwcynsLORlaAdLqWgIR0C0xuso6S1WdX2UKGgGR0BzxvaL4vexaAdLzWgIR0C0xvlk1/DtdX2UKGgGR0Bw/96w+t8vaAdL1WgIR0C0xw/czqKQdX2UKGgGR0BwGaYkVvdeaAdLv2gIR0C0xxoc7yQQdX2UKGgGR0Bye2by6MBIaAdLxGgIR0C0xy3z+WGAdX2UKGgGR0Bx94C7sfJWaAdLxGgIR0C0xzVWwNb1dX2UKGgGR0ByfUD2alUIaAdLsmgIR0C0x0F5rxiHdX2UKGgGR0BxnEcXFcY7aAdLv2gIR0C0x2Qwwj+rdX2UKGgGR0Bx4tfeDWbxaAdLxGgIR0C0x3UM1CPZdX2UKGgGR0By2a+vhZQpaAdLsGgIR0C0x3n8GcFydX2UKGgGR0Bz6AOhCdBjaAdL0mgIR0C0x4iJoCdSdX2UKGgGR0BwPFSQ5myxaAdLtWgIR0C0x5dU83dcdX2UKGgGR0Bt6ULfDUExaAdL1mgIR0C0x6Gplz2fdX2UKGgGR0Bxsz7TDwYtaAdL3mgIR0C0x6qsp5NXdX2UKGgGR0BzZTmJWNm2aAdL3WgIR0C0x7FJQLuydX2UKGgGR0By95inYQJ5aAdLtWgIR0C0x+9RvWH2dX2UKGgGR0BzJ5H7P6bfaAdL6WgIR0C0x/HXyy2QdX2UKGgGR0BzTnMNc4YKaAdL3GgIR0C0x/kRe1KHdX2UKGgGR0ByZDh86V+raAdL6WgIR0C0yBkiMYMwdX2UKGgGR0BzBQpRXOnmaAdLymgIR0C0yCk5U96kdX2UKGgGR0ByPAUdq+JxaAdL4WgIR0C0yDFSS/0vdX2UKGgGR0BxewiqyWzGaAdL6GgIR0C0yFWZiNKidX2UKGgGR0BzeYR7JGONaAdL62gIR0C0yGYwh4dIdX2UKGgGR0Bxf8jFAE+xaAdLw2gIR0C0yG0it7rtdX2UKGgGR0Bz7/idat9yaAdL2WgIR0C0yHZSiudPdX2UKGgGR0BwDzBuXNTtaAdLvWgIR0C0yHXd9Dx9dX2UKGgGR0BzxPfpD/lyaAdL0WgIR0C0yHqgIyCWdX2UKGgGR0B0D/oTwlSkaAdL1GgIR0C0yJvOhTOxdX2UKGgGR0Bw5CHSF49paAdLzmgIR0C0yKa9TP0JdX2UKGgGR0BzgD4UN8VpaAdL2WgIR0C0yKrDhtLtdX2UKGgGR0Bz2NVZLZi/aAdL0GgIR0C0yK7fUF0QdX2UKGgGR0BzIPpMYdhiaAdLz2gIR0C0yOYChew+dX2UKGgGR0Bw9Rrbg0j1aAdL02gIR0C0yO2R7qptdX2UKGgGR0Bx5YTQE6kqaAdL3GgIR0C0yP9IsiB5dX2UKGgGR0BxForXlKbsaAdL1GgIR0C0yRVe8f3fdX2UKGgGR0ByWgBp5/smaAdLy2gIR0C0ySPllsgudX2UKGgGR0BzOygL7XQMaAdL02gIR0C0ySW4iHIqdX2UKGgGR0Bw5S/M4cWCaAdLxGgIR0C0yT0ZNwirdX2UKGgGR0BxbEK1G9YfaAdLv2gIR0C0yVONHYpVdX2UKGgGR0BypcKpkwvhaAdLx2gIR0C0yWIhhYvGdX2UKGgGR0ByCQFSsKb8aAdL0mgIR0C0yWNBBzFNdX2UKGgGR0BxyA75mAbyaAdL3WgIR0C0yWoCEHt4dX2UKGgGR0ByKzHsC1Z1aAdL22gIR0C0yXUOI68ydX2UKGgGR0Bxq0KIBRyfaAdLz2gIR0C0yZAI2OyWdX2UKGgGR0BybZ9roGILaAdLx2gIR0C0yZYMKCxvdX2UKGgGR0BunafL9uP4aAdLz2gIR0C0yZrxZuAJdX2UKGgGR0Bw3+m2sq8UaAdLzWgIR0C0yaD0L+gldX2UKGgGR0Byhth/iHZcaAdLzGgIR0C0ydZZKWcCdX2UKGgGR0BwGhc0Ltu2aAdLymgIR0C0ydslTm4idX2UKGgGR0BzxOgFotcwaAdLzGgIR0C0ye9vsJIEdX2UKGgGR0BxhbnMdLg5aAdLwGgIR0C0yfXqzJIUdX2UKGgGR0BvkiZBsyi3aAdLvmgIR0C0ygJOrQw9dX2UKGgGR0BzESkuYhMbaAdLyGgIR0C0yieZ1FH8dX2UKGgGR0BwabtMPBi1aAdL4WgIR0C0yitYKYzBdX2UKGgGR0Bx7ACjk+5faAdLumgIR0C0yj03sHB2dX2UKGgGR0BxD7b0voNeaAdLumgIR0C0yj5QcghbdX2UKGgGR0Bx7DLvCuU2aAdL0mgIR0C0ykrwe/5+dX2UKGgGR0Bxf53iaRZEaAdLymgIR0C0ylfE0iyIdX2UKGgGR0Bvr6HIp6QeaAdLuGgIR0C0ymexB3RpdX2UKGgGR0B0NJjPOY6XaAdL3mgIR0C0ynqeK8+SdX2UKGgGR0BvOCqU/wAmaAdLxWgIR0C0yoxgVoHtdX2UKGgGR0Bx+E8cMmWuaAdL12gIR0C0ypXJgb6ydX2UKGgGR0ByGfQY1pCbaAdL1GgIR0C0ypeP7vXtdX2UKGgGR0Bw47Q1JlJ6aAdLxWgIR0C0ysi7PIGRdX2UKGgGR0Bydp8eCCjDaAdLtmgIR0C0ytGqkuYhdX2UKGgGR0BzxZ0ihWYGaAdL0GgIR0C0yvegxrSFdX2UKGgGR0Bw8yhZha1UaAdL1WgIR0C0yyAZKnNxdX2UKGgGR0ByisyxiXpoaAdLwGgIR0C0yzJ1Ng0CdX2UKGgGR0Bx3piBoVVQaAdLu2gIR0C0y0qFdszmdX2UKGgGR0BxerkIX0oSaAdLymgIR0C0y2J4wAU+dX2UKGgGR0B0AClUIcBEaAdL4WgIR0C0y3M9W6sidX2UKGgGR0ByhxiF0xM4aAdLzmgIR0C0y4BDb8FZdX2UKGgGR0BxkC11GLDRaAdLxmgIR0C0y4S7btZ3dX2UKGgGR0ByrfKISDh+aAdLv2gIR0C0y5Ldi2DydX2UKGgGR0Bw11Ey+HrRaAdL0WgIR0C0y8ttVJcxdX2UKGgGR0BypfyNGViXaAdLxmgIR0C0y87Lt/nXdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1244, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |